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ABSTRACT

Numerical solutions of a hydrostatic mesoscale model for stratified flow over topography are compared
with analytical results and observational data. The numerical model was found to reproduce well phase and
amplitude of linear and nonlinear waves provided by analytical models. The model was effective in simulating
observed chinook associated with an intense mountain wave. In a nonchinook case the model was successful
in reproducing main features of the observed velocity distribution associated with an elevated region of
blocking. The observed and simulated momentum flux profiles are almost identical. The comparisons of the
model results with observations and analytical results demonstrate the overali ability of the model to
realistically simulate mountain wave flow. In a series of numerical experiments we have investigated how far
the steepness of the waves depends on stratospheric wind structure and on orography. Our simulations
suggest that there is a bifurcation line between the linear and nonlinear regime of flow depending on the
magnitude of the stratospheric wind. Tests with an asymmetric orography show significant increase in wave
amplitude up to the magnitude which was observed. Finally, two bora-type flows, a cyclonic and one
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anticyclonic, are simulated and show the expected structure in the wind and temperature fields.

1. Introduction

In the past few years there has been rapid progress
in understanding mesoscale mountain flow through
a combination of observational, experimental and
numerical modeling studies (see Smith, 1981 for a
review). Field experiments, such as the Colorado Lee
Wave Program in 1971 or ALPEX in 1982 have
provided an important data base, although the data
are necessarily limited and not all flow features can
be resolved; moreover, field programs are extremely
expensive to conduct. In view of this, mesoscale
models play an important role in investigating moun-
tain wave flow.

Numerical simulations of airflow over mesoscale
topography are presented by Mahrer and Pielke
(1977), Klemp and Lilly (1978, hereafter referred to
as KL), Peltier and Clark (1979) (PC), among others.
Several studies (Pielke, 1974; Pielke and Mahrer,
1975; Mahrer and Pielke, 1978; Pielke and Mahrer,
1978) deal with various features of the model of
Mahrer and Pielke (1977), for example numerical
schemes or two- versus three-dimensionality. How-
ever, a systematic verification of this model for moun-
tain flow problems has yet to be made. The skill of
a model can be assessed by comparing its predictions
with the results of analytical models and with obser-
vational case studies. This will be done in the present
study in order to demonstrate the overall ability of
the model of Mahrer and Pielke (1977) to realistically
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simulate mountain wave flow. Henceforth we refer
to the applied numerical model as the University of
Virginia Mesoscale Model (UVM model).

Most mesoscale models incorporate elaborate pa-
rameterizations of physical processes (i.e. boundary-
layer formulation, parameterization of humidity pro-
cesses) and due to the highly complex model structure,
it is sometimes difficult to distinguish between the
physical and nonphysical aspects of the model results.
Therefore it is desirable to investigate first a highly
simplified version of the UVM model. We omit
frictional effects and even the Coriolis force is ne-
glected; we consider just two-dimensional flows.

In a first numerical experiment we investigate the
behavior of the model atmosphere due to small
amplitude orographic forcing. The simulated quasi-
linear hydrostatic waves are compared with analytical
solutions presented by Queney (1948). The solution
to Long’s model (1953), subject to appropriate
boundary conditions, provides a useful test for a
mesoscale model simulating Boussinesq flows as
shown by Lilly and Klemp (1979). In a sécond test
where nonlinear effects play an important role, solu-
tions of Long’s model are compared with those
obtained from the UVM model. Next we compare
the corresponding simulations of the UVM model
with the observations of the 11 January 1972 severe
windstorm in Boulder, Colorado (Klemp and Lilly,
1975) and with those taken on 17 February 1970
over the Rocky Mountains (Lilly and Kennedy, 1973).
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In terms of physical processes that lead to large-
amplitude waves during chinook events, the conclu-
sions of KL and PC appear to be very different. In
the present paper we investigate to what extent the
steepness of the waves depends on stratospheric wind
structure and on orography. The purpose is to show
that the stratospheric wind profile and its associated
shear close to the tropopause could force a severe
downslope windstorm. The numerical simulations of
Durran and Klemp (1983), KL and PC have shown
how the atmosphere responds to simple symmetric
topographic forcing. In a second step we perform a
simulation using an asymmetric orographic forcing.
The purpose is to show numerically that an asym-
metric orographic forcing could have attributed to a
pronounced forward steepening, an earlier wave
breaking at the steepening levels and an increase in
the severity of the downslope winds on 11 January
1972.

Due to the successful verification of. the UVM
model, finally, two bora cases were simulated using
this model, one cyclonic (7 March 1982) and one
anticyclonic (15 April 1982); both cases were observed
during ALPEX.

2. Description of the numerical model (UVM model)
a. The equations

The model used in this study is identical to that
developed and applied by Mahrer and Pielke (1977).
The two-dimensional equations are transformed from
a Cartesian coordinate system to a terrain-following
system (x, z*, r) by the tranformation

z* = H(z — h)/)(H — h), 2.1)

where 4 is the height of the orography, H the height
of the free surface and H the constant free-surface
height H at the time ¢ = 0. In the z*-system the
governing equations of motion, heat and continuity
are the following neglecting frictional and Coriolis
effects:
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A tendency equation for the height of the free
surface is obtained by integrating (2.4) from the
ground to the free surface and assuming that w™* = 0
on both boundaries:

oH 1 79
o Gl o (uH — uh)dz*.

The vertical diffusion term is evaluated following
Mahrer and Pielke (1978). The advective terrns in
(2.2) and (2.3) are evaluated by upstream spline
interpolation techniques. The exchange coefficient K
is parameterized following Lilly (1969),

3
ax
with Ax the horizontal grid spacing. The x-z com-
ponent of the vorticity £ is given by

(2.8)

K = a(Ax) , (2.9)

(2.10)

In the present simulation the constant « is set to be
equal 0.42. A staggered horizontal and vertical grid
is used, as described by Pielke (1974). The model was
run with 81 grid points in the horizontal with a
uniform spacing of 5 km, and 41 grid points in the
vertical. The z* levels from the surface to 1000 m
are 1 and 500 m. Above 1000 m, the levels are spaced
500 m apart, up to a maximum of 20 km.

b. Initial and boundary conditions

The surface friction layer of the original version of
the UVM model has been eliminated and a free-slip
condition is applied at the lower boundary. Special
care must be taken in formulating the upper boundary
condition since it will fundamentally affect the entire
solution. Both theory and observations indicate that
hydrostatic waves may extend to high altitudes and
produce considerable vertical transport of horizontal
momentum. In the present study we impose a viscous
layer of 10 km depth beneath the upper boundary.
The energy radiated upward is absorbed in this layer
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by adding damping terms to the right-hand side of
Egs. (2.2) and (2.3):

« = 7(2)(u — u) 2.11)
and R, respectively. The damping coefficient 7 in-
creases gradually with height throughout the absorbing
layer with the magnitude chosen so that the dominant
wavenumbers are damped most efficiently according
to the criteria described by KL. The structure of the
absorbing layer is described in detail by Durran and
Klemp (1983). Tests with another damping layer
proposed by Mahrer and Pielke (1978) have shown
similar effective damping as do tests with the applied
Rayleigh damping.

The lateral boundary conditions should be designed
to prevent wave energy reflection back into the model
domain. For the present simulations we have chosen
a procedure suggested by Orlanski (1976) and modified
by KL. This procedure estimates the phase speed ¢
of a gravity wave impinging on the boundary, and
the flow variables are advected out from the boundary
with the speed u + c. At each vertical level u + ¢ is
evaluated according to Orlanski (1976). Then a mean
speed of propagation is estimated by averaging u + ¢
along the lateral boundaries (KL). For the present
simulations, tests with the simpler Neumann boundary
conditions have shown similar results.

Initially the potential temperature and the wind
were prescribed for the entire model domain using
the inflow profile. The upstream profiles of potential
temperature and wind are interpolated from observed
soundings to the z*-coordinates using cubic splines.
For the wind profiles the component of the observed
wind that is normal to the barrier is used.

Instead of attempting to specify the detailed moun-
tain terrain we have chosen the simple bell-shaped
contour for the airflow over the Rocky Mountains
simulation. This “Witch of Agnesi” profile has widely
been used because of its easy Fourier decomposition
and physically realistic shape. Moreover, KL have
used this profile, which is given by

ho

"= T

(2.12)

where A, is the maximum height and b the nominal
half-width. The nominal half-width b is set to be
twice the grid distance. In the Rocky Mountains case
hy is set to be 2 km, which is the approximate
difference in height between the Continental Divide
and the plains immediately to the east of the Rockies.
For the bora simulation we have chosen a realistic
mountain profile which is similar to that at the
Yugoslavian coastal range. This orography is charac-
terized by a slight increase in height upslope reaching
a maximum height of 1000 m followed by a sharp
descent downslope (see Fig. 18).
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3. Comparisons with analytical solutions

Before describing numerical simulations of airflow
over mountains during chinook or bora, we compare
numerical simulations with analytic solutions.

a. Linear mountain waves

The behavior of linear hydrostatic mountain waves
is governed by
&e +m?=0
92?2 )
The dependent variable 6(x, z) is the vertical displace-
ment of an air parcel from its undisturbed equilibrium
height z, i.e., 6 = z — z. The Scorer parameter m is
given by

3.1)

2 2

2 & &

¢, Tu? 4R’T?’
The appropriate lower boundary condition is 8(x, /)
= h(x), where £ is the terrain height. The form of A

for a bell-shaped mountain is given by Eq. (2.12).
The solution to Eq. (3.1) is

-\—172 .
b cosmz — x sinmz
5(x, z) = (ﬁ) hob ————

In cases where the mountain height is small (i.e.,
10 m) the forced wave amplitude becomes linear.
Applying 2 = 10 m, N = 0.018 s! (T = 285 K) and
U = 20 m 5! the necessary condition for linearity
Nh/U < 1 is fulfilled. In Fig. 1 the solid lines depict
the streamlines generated by the nonlinear numerical
model for a mountain height of 10 m; they are
amplified by 100 for better visualization. The corre-
sponding analytical solution evaluated by Eq. (3.2) is

3.2)

O-M

-4
x/a

FiG. 1. Comparison of linear analytic (broken) and numerical
solution (full) for potential temperature surfaces with 4, = 10 m.
The amplitudes are amplified by a factor 100 for better visualization.
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shown in Fig. | by the broken streamlines. Both
solutions are in good agreement considering amplitude
and phase. )

One of the most important quantitative measures
of mountain wave intensity is the exchange of mo-
mentum between the atmosphere and the sloping
lower boundary. The nonlinear momentum flux My,
is approximated by

L
Mpy(z) = L! f pu'w'dx, (3.3)
(V]
where L is equal to 200 km. Within the hydrostatic
nonrotating approximation the linear mountain drag
D, is given by (Miles and Huppert, 1969)

D, = —porUNR*/(4L), 3.4)

with N the Brunt-Viisild frequency, pg a mean density
and U the basic flow. Figure 2 shows the vertical
distribution of the nonlinear momentum flux nor-
malized by the linear drag value after several timesteps.
The model approaches a steady state as soon as the
flux becomes about constant with height.

b. Nonlinear mountain waves

Long’s equation (1953) is of second-order quasi-
linear Helmholtz type. The necessary restrictions for
the derivation of this equation are steady-state as-
sumption, no friction, two-dimensionality and hydro-
static, nonrotating flow. Further, the Helmholtz equa-
tion becomes completely linear for a Boussinesq fluid
if static stability and mean velocity are constant with
height. With these assumptions Long’s equation be-

" \ VT
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0 0,5 1,0
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FIG. 2. Vertical flux of horizontal momentum, normalized by
its linear hydrostatic value, after several times of simulation; the
numbers of time steps are given.
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FIG. 3. Numerical (bottom) and analytic (top) Boussinesq solution
for hy = 1000 m.

comes (3.1). For this case the parameter m is equal
to N/U, which is the vertical wavenumber. Again,
the appropriate lower boundary condition is &(x, /)
= h(x). Lilly and Klemp (1979) have obtained solu-
tions to the equation subject to a radiative upper
boundary condition.

In deriving Long’s equation, Long has assumed
that the flow is Boussinesq. For this purpose we alter
the UVM model to make it Boussinesq. This is
accomplished by replacing 4 in Eq. (2.2) by a constant
mean background 6y. Moreover, the equation of state
(2.5) is modified to

or _gH - ho—08

az* H 06, ’
with 8 the horizontal average of 6. The mountain
height is assumed to be 1000 m, and with U = 20 m
s'and N = 0.012 1 s™! we arrive at N&/U = 0.6.
This value is large enough to ensure nonlinearity and
small enough to be beneath the critical value of (.85
at which overturning occurs (Miles and Huppert
1969).

The numerical and analytical solutions are plotted

in Fig. 3. The phases and amplitudes agree well in
the layer between O and 2. Above this layer in the
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numerical simulation the waves are obviously damped
out. This is due to the vertical wavelength of this
flow being 10.5 km. Thus at Nz/U equal to 2« the
damping procedure starts.

4. Comparisons with observations
a. The Boulder windstorm on 11 January 1972

The observed isentropic surfaces and isotachs of
horizontal velocity for this event are reproduced in
Fig. 4 for convenience (Klemp and Lilly, 1975). To
numerically simulate this case we have chosen, fol-
lowing KL, an upwind sounding profile (see Fig. 14
in their paper) based on the National Weather Service
1700 MST sounding taken at Grand Junction, located
some 300 km west of Boulder. For modeling purposes,
the ground level on the upwind side of the mountain
is taken to be the same as that in the lee (1700 m).
Above the tropopause, the atmosphere is specified to
be isothermal with a constant wind of 30 m s™!.

The calculated temperature and wind fields after
9 h of model integration are shown in Fig. 5. The
salient features are one enormous wave trough just
above the barrier accompanied by a wind maximum
at the ground and a minimum aloft. The maximum
surface velocity in the lee of the mountain is calculated
to be 55 m s7!, as obtained by KL. The observed
maximum tropospheric displacement in the wave
trough is approximately 6.5 km. In our simulation
this displacement is only 3.5 km, similar in magnitude
to that reported by KL. Note that the hydrostatic
approximation precludes the simulation of the ob-
served lee waves at lower levels. In summary, the
potential temperature and wind fields are well repre-
sented in the UVM model predictions (compare with
the numerical simulation of KL their Fig. 15).

The observations suggest that the flow in the lower
stratosphere is highly turbulent. Another region of
strong turbulence is in the midtroposphere, where
there is a strong steepening of the wave. These
turbulent areas are marked by crosses in Fig. 4. The
Richardson number Ri can be seen as an indication
for the occurrence of turbulence, and is defined by

Ri = g071(80/9z)(du/dz)~2. 4.1

In Fig. 5, areas in which the Richardson numbers
fall below 0.25 are marked by crosses. Comparisons
with Fig. 4 show that these regions can be identified
with the observed regions of strong turbulence.

The circulation shown in Fig. 5 is not in a steady
state. We may quantify the degree of nonsteadiness
by evaluating the mountain drag as a function of
time. The mountain drag is the force exerted by the
earth through differential pressures on the windward
and leeward slopes. For two-dimensional topography
this force is defined as
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L
DNL = - —Il,—L psdh/dxdx, (4.2)
where the surface pressure ps equals pg[x, h(x)].

In Fig. 6 (top) the temporal evolution of the
nonlinear drag is shown by the full line, and the
broken line represents the linear drag (Eq. 3.4). We
see that the surface drag increases continuously as a
function of time, showing evidently that the numerical
simulation is not steady. Peltier and Clark (1979)
point out that, in their calculations, the surface drag
in the nonlinear regime greatly exceeds the linear
prediction by roughly 300%. In our simulation, the
excess is more than this value. Figure 6 corroborates
that the flow is highly unsteady.

b. The airflow over the Colorado Rockies on 17
February 1970

The observed temperature and wind field for this
event are reproduced in Fig. 7. This situation is quite
different from that shown in Fig. 4. Strong surface
winds are not present and the wave appears to reach
appreciable amplitude only near the tropopause. The
calculations are performed in an atmosphere 15 km
deep topped by a 5 km absorbing layer in which the
wind speed and temperature are taken to be constant.
In contrast, KL use an atmosphere 20 km deep
topped by a 10 km absorbing layer. Following KL
we have chosen an upwind sounding profile (see Fig.
17 in their paper) based on the National Weather
Service 0500 MST sounding taken at Grand Junction.
Above the tropopause, the atmosphere is specified to
be isothermal with a constant wind of 10 m s~

Figure 8 shows the simulated flow fields after 10 h
model time, at which stage a quasi-steady state is
attained. The wave just below the tropopause is
reversed in phase from that at low levels in agreement
with observations, but the model amplitude is not as
strong as the observed. This might be due to the
absorbing layer being too shallow and being located
too close to the region where steepness of the wave
increases. In this respect, the KL simulation gives a
slightly better representation of the upper-level flow
and, in particular, of the wave. Note that the position
of the wave and the associated low wind-speed layer
in the model is in approximately the same height
range as that observed. In contrast, the KL simulation
locates this wave about one km too high. In the
observations we have a level at which u vanishes;
with our model the minimum wind speed results in
magnitude lower than 5 m s™!, similar to the simu-
lation of KL. The calculated low-level wind speed in
the lee is less than 30 m s, as observed. In summary, -
our simulation and that of KL agree remarkably well
and both compare well with the observed structure.

Most of the observed turbulence occurs at heights
between 12 and 15 km (Fig. 7). Another region with
light turbulence is observed close to the mountain on
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" FIG. 4: Cross section of the potential temperature (top) and contours of horizontal velocity (bottom) along an east-west line through
Boulder, as obtained from rawinsonde observations and airborne measurement (taken from Klemp and Lilly, 1975).

the leeward side. The numerical model predicts a
Richardson number smaller than 0.25 in the layer
between 12 and 15 km (see Fig. 8), and also on the

able.

windward side in the lower troposphere. Observations
of turbulent intensity in the latter region are unavail-
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FI1G. 5. Numerical simulation of the 11 January 1972 case (Rocky
Mountains). Potential temperature surfaces (top); contours of hor-
izontal wind components in m s™' (bottom). Crosses mark regions
with Richardson numbers smaller than 0.25.

(KM)

We may quantify the degree of steadiness by
evaluating the surface wave drag as a function of
time, plotted in Fig. 6 (bottom). The quasi-steady
state behavior is evident for times greater than one
hour. Finally, we remark on the magnitude of the
total momentum flux. To compare our flux values
with those reported by KL and with the observations
we must evaluate them over a horizontal distance of
200 km centered on the mountain. This distance is
the length of flight traversed during the event. Com-
parable flux values from the model were obtained by
calculating the total momentum flux across the entire
domain and then dividing the results by the averaging
distance of 200 km (Eq. 3.3).

The momentum flux is about constant up to a
height of 12 km and decreases above (Fig. 9, full
line). Remark that this decrease starts beneath the
damping layer. This is due to the fact that a strong
damping occurs in the region where Ri drops below
0.25. This damping can be seen clearly if we compute
the horizontal mean value of the exchange coefficient
[Eq. (2.9)]. In the case of large coefficients we expect
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strong damping. In the vertical profile of the horizontal
mean of K we note a strong increase in magnitude
between 12 and 15 km (Fig. 9, dotted line) and,
further, a decrease in the damping layer. This decrease
1s due to the two-dimensional vorticity Eq. (2.10)
approaching zero where the disturbances are smoothed
out, which is the case in the damping layer. The
strong magnitude of K just beneath the damping
layer leads to the strong decrease of the momentum
flux in the layer 12-15 km. The magnitude of the
momentum flux in the troposphere is approximately
0.7 Pa. This result is similar to that obtained by KL;
they reported a vertically constant profile between 4
and 16 km of 0.6 Pa, simulated with their model.
The magnitude of the observed momentum flux was
between 0.3 and 0.9 Pa (Lilly and Kennedy, 1973).
Klemp and Lilly (1975) have shown that special
profiles of wind and stability are sensitive to topo-
graphic forcing. They pointed out that if the height
of the tropopause above the mountain corresponds
to a vertical half-wavelength, intense wave response
should be expected associated with strong downslope
winds. In the Boulder storm case the atmosphere was
“tuned” for intense wave response (vertical wavelength
~ 18 km). The height of the tropopause during the

8
6 P
)
P2
o 41
2 Dy
0 L]
0] 5 10
Time
2
{7 T TTTTTTToT
a DL
0 T
0 5 10
Time

FIG. 6. The mountain drag as a function of time for the 11
January 1972 case (top) and the 17 February 1970 case (bottom).
Broken lines mark corresponding linear predictions. Mountain drag
is given in Pa and time in h.
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FIG. 8. As in Fig. 5 but for the 17 February 1970 case.

Colorado case was located 5 km higher than during
the chinook event. With a vertical wavelength of
about 25 km the atmosphere was clearly not tuned
and neither intense wave response nor downslope
windstorm occurred.

5. Increasing steepness of the mountain wave

In the last section we showed a successful simulation
of the observed intense wave and windstorm on 11
January 1972. However, the magnitude of the ob-
served wave amplitude (6.5 km) was larger than the
magnitude of the simulated hydrostatic wave (4.5
km). In this section we consider a possible steepening
of the wave and the increase of its associated wind-
storm due to the magnitude of the stratospheric wind
uy, and due to asymmetric orographic forcing.

a. The wind shear at the tropopause

Peltier and Clark have shown that different strato-
spheric wind profiles linked with different shear close
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to the tropopause cause different regimes of flow in
the model atmosphere, provided that the profile of
the Scorer parameter remains unchanged. Their model
has produced linear responses with stratospheric winds
of 30 m s~! while with u, = 20 m s~ the model has
shown strong nonlinear amplification of the waves.
Here we present a series of numerical simulations
covering a broader variety of stratospheric wind pro-
files to investigate whether there is similar sudden
change from linear to nonlinear regions of flow in a
hydrostatic atmosphere. All simulations are performed
using the stability profile measured at Grand Junction
on 11 January 1972. The observed wind profile was
used up to 10 km and u, was specified by replacing
the observed wind by 0, 10, 20, 30, 40 and 50 m s™!
above 12 km. In the layer between 10 and 12 km a
spline adaption between the lower and upper profiles
was applied.

The numerical results after 5 h simulation time
are shown in Fig. 10. Strong nonlinearity is synony-
mous with the occurrence of highly steepened stream-
lines. This is obviously the case in Fig. 10d (u, = 30

Mean Ridge
Altitude

-0.5 (o}
Momentum Flux

-1.0

F1G. 9. Momentum flux profile (full line) for the 17 February
1970 case. In the layer between 12.5 and 15 km the Richardson
number drops below 0.25. Dotted line is vertical profile of .S, which
is the horizontal average of the exchange coefficient [see Eq. (2.9)]
normalized by its vertical average. The momentum flux is given in
Pa and the height in km.
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FIG. 10. Numerical simulation of the Boulder storm case on 11 January 1972 with various wind profiles

m s7!). For winds lower in magnitude (Figs. 10a~c;
u, = 0, 10, 20 m s~!) strong steepening followed by
wave breaking occurred previous to the time as

in the stratosphere: 0, 10, 20, 30, 40, 50 m s respectively a, b, ¢, d, e, f.

shown. The circulation in this nonlinear regime is
characterized by a strongly steepened wave associated
with a strong downslope windstorm of about 60 m
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s™!. For uy greater than 30 m s™' (Figs. 10e-f; ug
= 40, 50 m s™') steepening can be seen, but over-
turning has not occurred. The circulation in this
quasi-linear regime is characterized by weak amplifi-
cation and weaker winds on the leeside of the obstacle,
which is 50 (Fig. 10d), 40 (Fig. 10e) and 30 (Fig. 10f)
m s~}. Figure 10 suggests that there is a sudden
change from linear to nonlinear wave amplification
dynamics for stratospheric winds u, between 20 and
30 ms™.

To emphasize the previous result the temporal
evolution of the wave drag at mountain top level are
plotted in Fig. 11. As expected, the drag increases
with increasing amplitude of the hydrostatic wave,
which was forced by the increase in wind shear at
the tropopause in response to the decrease in strato-
spheric wind. But the important feature is that after
10 h simulation time the magnitudes of the simulated
wave drag for u, equal to 40 and 50 m s™! are close
together; the same is valid for u, smaller than 30 m
s~!. However, the magnitude of the last drags is three
times the magnitude of that obtained for strong
stratospheric winds. This difference suggests that there
is a bifurcation line between the linear regime char-
acterized by low wave drag and the nonlinear regime
characterized by high wave drag.

The continuous profile of the ratios of surface
wave drag to linear drag is shown in Fig. 12. The
lower (upper) broken line indicates the ratios per-
formed by the UVM model after 2 h (5 h) simulation
time. The increase with time in the nonlinear regime
obviously emphasizes the bifurcation line between
the linear and nonlinear regime of flow between ug,
equal to 20 and 30 m s~!. Additionally the ratios
obtained after 2 h simulation time by PC (crosses),
Durran and Klemp (1983) (circles) and by Clark and
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4 30
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FiG. 11. The temporal evolution of the wave drag (Pa) at
mountain top level on 11 January 1972 applying various strato-
spheric wind ug: 0, 10, 20, 30, 40 and 50 m s™'.
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FiG. 12. Ratios of the nonlinear surface wave drag to the linear
wave drag as a function of the stratospheric wind u,. The upper
(lower) broken line marks the ratios obtained by the UVM model
after 5 (2) h simulation time. Also the ratios reported by PC
(crosses), Durran and Klemp (1983) (circles) and Clark and Farley
(1984) (squares), all after 2 h simulation time. The numbers 2 and
3 indicate two- and three-dimensional simulations.

Farley (1984) (squares) are shown. The results for ug,
= 20 m s~ of PC as well as those of Durran and
Klemp were taken from an unsteady simulation; this
means that the ratios are increasing further. The
ratios obtained by Clark and Farley (1984) are ratios
after reaching an approximate steady state where the
number 2 (3) marks a two- (three-) dimensional
simulation. The differences between the results of PC
and those of Clark and Farley may be due in part to
differences in initialization.

Our results confirm the bifurcation line between
the linear and nonlinear regime of flow as reported
by PC. This confirms in part the strong nonlinear
amplification of the wave, which appears to be pro-
duced by supercritical steepening and subsequent
breaking of the mountain wave in the lower strato-
sphere, as suggested by PC. Our results show also
that in the linear flow regime the severity of the
windstorm increases with increasing amplitude of the
hydrostatic mountain wave (Fig. 10d-f). However, in
the nonlinear flow regime (Fig. 10a-c) we observe a
further increase in wave amplitude but the magnitude
of the low-level wind speed remains nearly 60 m s~
This suggests that the mechanism proposed by PC
might force the strong amplitude of the mountain
wave, but that there is no need of this mechanism
for the occurrence of strong surface winds.

b. The mountain profile

The numerical simulations of Durran and Klemp
(1983), KL, PC and those presented here have shown
the way in which the atmosphere responds to simple
symmetric topographic forcing. In this section we
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perform a simulation using an asymmetric orographic
forcing. The purpose i$ to show numerically that an
asymmetric orographic forcing could contribute to a
pronounced forward steepening, an earlier wave
breaking at the steepening levels and an increase in
the severity of the downslope winds. The studies of
Lilly and Klemp (1979) and Smith (1977) indicate
how and why the response tends to be a strong
function of the terrain shape.

A more realistic contour of the Colorado Front
Range might be an asymmetric profile with a gradual
upslope from Park Range to the Continental Divide
and a steep downslope down to Boulder (see Fig. 4).
This type of profile is obtained by applying the
mountain profile [Eq. (2.12)] with a downslope nom-
inal half-width of & = 10 km and an upslope half-
width of b = 40 km.

The isentropic fields predicted by the UVM model
are displayed in Fig. 13. It must be compared with
Fig. 5, in which the prediction is given for a symmetric
orographic forcing. The amplitude of the wave is 6.5
km, similar to the observed data. After 4 h wave
breaking has occurred; this is significantly earlier than
in the case with symmetric forcing. The simulated
low-level wind maximum is 75 m s}, which is larger
than the observed maximum wind. Additionally, the
location of the wind maximum is shifted slightly
downstream. Both features might be due to the fact
that no boundary-layer effects reduce the velocities.

In Fig. 14 we show the evolution in time of the
wave drag at mountaintop level for simulations with
various upslope nominal half-widths between 10 (bell-
shaped) and 60 km. As expected, the magnitude of
the wave drag forced by the leeside-steepened moun-
tain (b = 20, 40, 60 km)-is larger than for the bell-
shaped mountain. Additionally, the drﬁgs simulated
by the asymmetric mountain are of similar magnitude
and all are about 30% larger than the drag obtained
with symmetric forcing.

The previous simulation of the 11 January 1972
windstorm showed strong steepening forced by a
slightly asymmetric orography. The question remains
whether this is also the case for the nonchinook event
on 17 February 1970. Figure 15 shows the isentropic
and wind fields of a simulation with an asymmetric
orography with an upslope (downslope) nominal width
of 40 km (10 km). There is almost no change in flow
patterns compared to the case with symmetric forcing
(Fig. 8). The momentum flux profile is similar to
that obtained for symmetric forcing (Fig. 9).

This is a remarkable result. For two different flows,
a chinook and a nonchinook event, the model at-
mosphere responded differently to asymmetric oro-
graphic forcing. For the nonchinook event the simu-
lated flow field is similar to that obtained with
symmetric forcing. For the chinook event a more
pronounced steepening, an earlier wave breaking at
steepening levels and an increase in the severity of
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the windstorm was obtained by applying asymmetric
orographic forcing.

6. The numerical simulation of two bora events

The bora is a cold downslope windstorm best
known from observations along the northeasiern
Adriatic coast. During ALPEX several missions were
flown successfully to obtain data during bora events.
Since the data analysis of the bora missions is not
terminated at the moment (Smith, 1982) we cannot
compare our results to the ALPEX data. However, it
has been demonstrated in the foregoing sections that
the UVM model is capable of successfully simulating
airflow over mountains. Therefore, we will perform
numerical simulations of two bora events.

The observations suggest that during the Yugosla-
vian bora a strong inversion is present at approxi-
mately the 2 km height (Yoshino, 1976). Bencath
this level the wind blows normal to the barrier (from
the northeast), whereas above it the wind is parallel
to the barrier (southeast) or comes from the southwest.
A distinction is made betweéen the anticyclonic and
the cyclonic bora, depending on whether a cyclone
exists close to the surface at Italy or not. At 500 mb
we find in the cyclonic case a developed cyclone over
Italy, very frequently a cutoff low which leads to -
winds from the southeast along the Yugoslavian
coast. In the anticyclonic case at 500 mb we find a
trough, located at 10°E, leading to winds from the
southwest along our region of interest.

The synoptic situation for both bora events is
plotted in Fig. 16. The cyclonic case is a typical one,
since the upper tropospheric structure of the anticy-
clonic event is characterized by a cutoff low east of
Spain. Nevertheless, the mesoscale dynamical features
at the Dalmatian coast are typically of anticyclonic
type, similar to those observed with an upper-air
trough at 10°E. _

For both bora events the soundings (1200 GMT)
of Zagreb, located 130 km upstream, are used; they
provide a good data base of the upstream wind and
temperature structure during the bora (Fig. 17). In
both profiles an inversion above Zagreb is noticeable
at about 2000 m. It is well known that this inversion
close to mountaintop height upstream of the barrier
is favorable for the occurrence of strong downslope
winds. The thickness of both inversion layers is cjuite
different: 1000 m (15 April) and 200 m (7 March).
However, the most important difference betweern the
events is their stability characteristic beneath the
inversion layer. Neutral stratification was observed
on 15 April, whereas during the cyclonic event on 7
March a stable stratified flow with N = 0.015 1 s7!
occurred. Note that the upstream temperatures be-
neath the stable layer during the cyclonic case are
much lower than during the anticyclonic event.

The wind speed in the surface layer is about 10 m
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FiG. 13. Numerical simulation of 11 January 1972 case (Rocky Mountains) with a sharply downsloping mountain.

Evolution in time of the isentropic surfaces (left) and wind speed (right). Times shown are 3, 6, 9 h. The contour
interval is 10 m s,
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FiG. 14. The evolution of the wave drag (Pa) at mountaintop
level for various mountain types: with a downslope & = 10 km and
an upslope b = 10, 20, 40, 60 km [see Eq. (2.12)]. The time is
given in h.

s™! during the cyclonic bora, which is twice the
magnitude of the wind during the anticyclonic event.
This is due to.the surface wind speed being generally
higher under the combined influence of a well-devel-
oped high and low (cyclonic bora).

The presence of the strong inversion seems to give
the flow a hydraulic nature. For this type of flow the
characteristic Froude number is defined by

F = UlgA8-Z/6]72,

where U is the mean wind speed in the bora air, Z
the height of the inversion surface and g the gravity
constant. Here 6 is the mean potential temperature
at the inversion and A6 the temperature difference
between both layers near the inversion. It has been
shown (Long, 1954) that hydraulic jumps must be
expected for Froude numbers greater than unity
above mountain crests.

Because the bora is a relatively shallow flow it is
reasonable to use a vertical grid with a grid distance
of 200 m, and to have a model top at 8 km. For the
anticyclonic case with winds aloft from the southwest
we have performed several numerical experiments to
test the influence of the flow aloft on the low-level
dynamics beneath the inversion. The results were
identical to vanishing flow aloft.

a. The anticyclonic bora on 15 April 1982

In Fig. 18 the numerical simulation of this event
is given. Beyond the mountain crest the air descends
rapidly towards the sea to ascend again well off the
coast. This hydraulic jump nature of the bora is
corroborated by observations (Yoshino, 1976). In the
present case a wind speed of 13 m s™! is simulated
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above the mountain crest, whereas 15 m s~' was

observed. The magnitude of the wind increases up to
16 m s~! in the low levels in the lee downstrzam
close to the barrier.

The Froude numbers are given in Table 1 for the
atmosphere above Zagreb, above the mountain crest
and above Pula, located 80 km downstream. The
observed and simulated numbers over the mountain
crest are close to unity.

b. The cyclonic bora on 7 March 1982

The numerical simulation of this case is shown in
Fig. 19. We see an even stronger descent of the wave
in the lee than in the preceding event. The velocity
just above the mountain crest is 21 m s™!, increasing
up to 28 m s”! in the lower lee close to the sea.
Moreover, this strong wind belt extends further
downstream than it was simulated to do for the
anticyclonic bora.
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FIG. 15. Numerical simulation of 17 February 1970 case (Focky
Mountains) applying a sharply downsloping mountain with = 10
km (downslope), b = 40 km (upslope) [see Eq. (2.12)]. Potential
temperature surfaces (top); contours of horizontal wind components
in m s™! (bottom).
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The Froude numbers (Table 1) of this simulation
are strong in magnitude above the crest, indicating a
hydraulic jump type of flow. In the rawinsonde
observations above Zagreb a very shallow inversion
layer was found (100-200 m), whereas above Pula
no inversion layer was recognized. The observation
suggests that this strong hydraulic jump type of flow
has destroyed the shallow inversion layer in the lee
above Pula, perhaps through vertical turbulent mixing.
However, in the simulation the inversion layer is
present (Fig. 19) because a vertical turbulent mixing
procedure is not applied in the model.

Why, then, are the Froude numbers larger during
the cyclonic case than those obtained during the
anticyclonic event? The main reason is the different
upstream stability characteristic of the layer beneath
the inversion. In the presence of a stable layer the
dynamics force the strong descent of potentially
warmer air beyond the mountain crest. Very cold air
is transported to the barrier and flows rapidly beneath
the cool air located downstream. This leads to strong
winds above the crest and the flow is characterized
by F substantially larger than unity. In the case of
neutrally stratified flow beneath the inversion, the
magnitude of F must be smaller than for the stable
stratified case because the winds above the crest are
smaller due to lower temperature difference between
the windward and leeward sides. In case of F close
to unity, even in neutrally stratified flows a hydraulic

jump type of flow could occur; this is obviously the
case during the anticyclonic bora. All of this suggests
that the surface lee wind speed is generally higher in
the cyclonic case than in the anticyclonic case, which
is confirmed by the numerical simulations.

A further corroboration is shown in Fig. 20, where
the mountain drag is given in its temporal evolution.
‘It can be seen clearly that the magnitude of the
mountain drag for the cyclonic bora (7 March 1982)
is three times as much as that of the anticyclonic
bora.

7. Summary

In this paper we have described numerical simu-
lations of flows over finite-amplitude topography using
the model of Mahrer and Pielke (1977). The numerical
model was found to reproduce well phase and am-
plitude of linear and nonlinear hydrostatic mountain
waves provided by analytical models. The simulation
of a chinook case was successful in obtaining strong
wave of approximately 3.5 km in amplitude accom-
panied by a wind maximum at the ground and a
minimum aloft. The numerical simulation of a non-
chinook event shows good resemblance to observed
data. We obtained the observed elevated region of
blocking near the tropopause with a strong absorption
of wave energy in this region. The simulated momen-
tum flux is about 0.6 Pa and constant with height.
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FIG. 17. Zagreb sounding at 1200 GMT 15 April 1982 during
an anticyclonic bora (top) and at 1200 GMT 7 March 1982 during
a cyclonic bora (bottom). Wind barbs at the left represent the wind
speed (kt) and wind direction using standard meteorological notation.

This profile is identical to that simulated by KL and
is in good agreement with the observations. The
present study has demonstrated the ability of the
Mahrer-Pietke model to deliver solutions that match
analytical results as well as meteorological observations
of hydrostatic airflow over mountains.

In a series of numerical experiments we have
investigated to what extent the steepness of the waves
depends on stratospheric wind structure and on
orography. Our simulations show that there is a
bifurcation line between the linear and nonlinear
regimes of flow. This line is near 20-30 m s~! of
stratospheric winds for the Boulder windstorm. Low
stratospheric wind speeds associated with strong shear
in the vicinity of the tropopause lead to strong
nonlinear amplification of the mountain wave and
large wind speeds linked with slight shear force linear
wave amplification. Tests with an asymmetric orog-
raphy show significant increase in wave response up
to the magnitude observed for the chinook case. For
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FIG. 18. Numerical simulation of the bora on 15 April 1982.
Potential temperature surfaces (top); contours of horizontal wind
components in m s™! (bottom).

50

a nonchinook event the simulated flow field was
similar to that obtained with symmetric forcing. Qur
results suggest that mountain asymmetry and partial
reflection from the tropopause could have contributed
to the strong amplification of the mountain wave and
its associated windstorm on 11 January 1972.

The simulation of the bora shows the two-layer
structure with an inversion at a height of 2 km.
Approaching the barrier this inversion drops sharply
to the Dalmatian Sea. This behavior gives the flow a
natural hydraulic jump which is confirmed in the
magnitude of the observed and calculated Froude

TABLE 1. Observed and simulated Froude number for two bora
cases for the atmosphere above Zagreb (130 km upstream), the
mountain crest and Pula (80 km downstream).

Anticyclonic bora Cyclonic bora

15 April 1982 7 March 1982
Observed Simulated Observed Simulated
Zagreb 0.25 0.25 0.67 0.67
Mountain crest 0.90 1.10 — 1.96
Pula 0.49 0.24 — 0.47
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numbers close t0 unity just above the 'barn'er. The
magnitude of the wind speed close to the mountain
and the mountain drag are both predicted to be
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FIG. 20. Evolution in time of the mountain drag for two bora
cases. The mountain drag is given in Pa and the time in h.
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greater in the cyclonic type of bora than in the
anticyclonic case, which corroborates the observations.
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