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Abstract

Global active control methods of sound radiation into acoustic cavities neces-
sitate the formulation of the interior sound field in terms of the surrounding
structural velocity. This paper proposes an efficient approach to do this by pre-
senting an analytical method to describe the radiation modes of interior sound
radiation. The method requires no knowledge of the structural modal proper-
ties, which are often difficult to obtain in control applications. The procedure
is exemplified for two generic systems of fluid-structure interaction, namely a
rectangular plate coupled to a cuboid cavity and a hollow cylinder with the
fluid in its enclosed cavity. The radiation modes are described as a subset of the
acoustic eigenvectors on the structural-acoustic interface. For the two studied
systems, they are therefore independent of frequency.
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1. Introduction

The active control of structural sound radiation is divided into the cate-
gories active vibration control [I] (AVC), active noise and vibration control [2]
(ANVC) and active structural-acoustic control [3] (ASAC). ANC and ANVC
deal with the active reduction of structural vibration levels or acoustic pressure
levels respectively. This is achieved by using structural actuators. For ASAC
applications, comprehensive literature exists describing the sound radiation into
the acoustic far field [, [5]. In problems of noise reduction in enclosed spaces
or cavities, the quantity to be controlled is commonly based on the volume-
averaged acoustic pressure levels, i. e. the acoustic potential energy (APE) [6].
In the last case it is usual to express the APE as a linear combination of con-
tributions from each interior radiation mode. The interior radiation modes are
orthogonal functions that describe vibration modes of the structure, such that
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the contribution from each one of them to the APE in the enclosed fluid is un-
coupled from any other. In recent studies [7} [8, [, [10] this formulation is based
on the orthonormal decomposition of the error weighting matrix. The error
weighting matrix relates the velocity of a vibrating structure to the acoustic
potential energy in an adjacent fluid-filled cavity and is usually assembled using
the modal interaction theory. If a weak coupling between the structure and the
cavity fluid is assumed, the calculation of vibration modes can be performed
separately for the structure and the fluid respectively [I1]. Using this method,
disregard of high-frequency vibration modes can lead to an inaccurate calcula-
tion of the error weighting matrix and the radiation modes likewise.

Snyder and Tanaka describe the interior radiation modes and efficiencies based
on an analytical study of a plate coupled to a rectangular enclosure in [7]. The
radiation modes are based on a frequency dependent orthonormal decomposi-
tion of the error weighting matrix. The modal interaction approach is employed,
using 30 acoustic and structural modes. The interior radiation modes, calcu-
lated from the orthonormal matrix decomposition are shown to resemble the
cavity modes at the interaction plane. An independence from frequency is not
mentioned.

The implementation of active control of sound radiation in an irregular shaped
cavity is investigated by Cazzolato et al. [§], using structural error sensors.
The acoustic potential energy is related via the error weighting matrix to the
structural modes based on a discrete set of structural measurements. The error
weighting matrix is assembled by utilizing the modal interaction theory, coupling
numerically calculated cavity and structural vibration modes. Decomposing the
error weighting matrix, the orthogonal modes of sound radiation into the cavity
are calculated. The interior radiation modes presented by Cazzolato [8] depend
on frequency.

Cazzolato et al. [I2] propose the definition of the interior radiation modes as
the cavity modes at the interaction plane. The cavity modes, however, are not a
set of orthogonal eigenvectors at the interaction plane, as described by Johnson
in [9]. Therefore the error weighting matrix is not diagonalized by the cavity
modes, which is a requirement for using the interior radiation modes for real-
time active control applications.

The interior radiation modes are used by Johnson [0, [T0], here termed princi-
ple velocity patterns, to tailor the structural-acoustic-coupling for an optimal
sound radiation into a cylindrical cavity. The calculation of these velocity pat-
terns is based on a frequency-dependent singular value decomposition of the
error weighting matrix. Since the singular value decomposition is performed at
every frequency step, the singular values are sorted based on the orthogonality
properties of the singular vectors. Although a similarity in the numerical results
of the singular vectors for different frequencies is observed, an independence of
frequency is not conclusively proven.

The concept of interior radiation modes is also used by Bagha et al. in [I3]
for structural sensing of the acoustic potential energy. In order to reduce the
number of sensors necessary, a numerical study is conducted, using the modal
interaction approach. For a rectangular plate, coupled to a cuboid cavity, a



frequency-dependence of the interior radiation modes is described. This de-
pendence is illustrated by a reference to the exterior radiation modes [4]. The
exterior radiation modes are derived from the radiation resistance matrix, which
is assembled using the elemental radiator approach [II]. These exterior radia-
tion modes do not include any coupling selectivity to acoustic eigenvectors. The
dependence of the radiation resistance between elemental radiators on frequency
is responsible for the exterior radiation modes frequency-dependence.

In summary, it can be seen, that most of this research regarding the inte-

rior radiation modes is done using an orthonormal decomposition of the error
weighting matrix. When using the modal coupling theory for the purpose of
assembling the error weighting matrix, numerous eigenvectors of the uncoupled
systems are required to correctly describe the physical coupling. The quality
of the modal solution as well as the level of the numerical discretisation are
expected to be correlated to the frequency dependence of the interior radiation
modes. To the authors’ knowledge the interior radiation modes have not yet
been calculated using an analytic formulation, which is the aim of this study.
This formulation utilizes specific properties of the cavity mode shapes at the
interaction plane. This allows assembling the interior radiation modes as a sub-
set of the cavity modes at the interaction plane, which makes them in return
independent from frequency. The objective of this paper is to calculate these
radiation modes, which only show self-radiation efficiency, for generic coupled
systems and verify their frequency-independence. It is the aim, to make the radi-
ation modes utilizable for real-time applications of active reduction approaches,
designed to minimize the global sound radiation into cavities.
The foundation for the analytical radiation mode evaluation is given in section
where the APE is described in terms of the surrounding structural velocity. Sec-
tion [3| expands the general formulation for two specific coupled fluid-structure
systems and examines the interior radiation modes. The first model is a rectan-
gular plate coupled to a cuboid fluid cavity. The other one is a cylindrical shell
coupled to an interior cavity. It is shown, for the two models considered, that
the interior radiation modes are independent of frequency, as they belong to a
subset of the cavity modes orthogonal at the interaction plane. The frequency-
independent radiation modes and efficiencies are presented in section[d Finally,
in section |5 the paper is concluded and an outlook to future research activities
is given.

2. Acoustic potential energy evaluation

This section presents the theoretical foundation for the evaluation of the in-
terior radiation modes. It will result in a formulation of the APE in dependence
of the surrounding structural velocity.

A graphical representation of the noise radiation into a cavity along with the
boundary conditions considered is shown in Figure A vibrating structural
surface S is coupled to an interior volume V filled with a fluid, e.g. air. The
vector n describes the unit normal vector on the structural surface. The interior



fluid reacts as a forced vibration to the structural excitation and can also lead
to an excitation of the structure. The surface S, represents an acoustically rigid
boundary condition.

The time-averaged APE F(w) inside the volume V' is proportional to the volume
average of the mean squared acoustic pressure p [6]

1

B) = oz [ btrw)av (1)
Vv

where p and c are the fluid density and acoustic velocity respectively. Here, w is
the angular frequency. The coordinate vector r describes points in the acoustic
domain V.

The acoustic pressure can be expressed as a linear combination of cavity modes
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S

Figure 1: Graphical representation of noise radiation from a vibrating structural surface S
into a cavity volume V with acoustically rigid boundary conditions at S

(orthogonal mode shape functions) ®;(r) as
o)
p(r,w) =) q;(w)®;(r) (2)
j=1

with g¢;(w) being the amplitude of the j-th cavity mode. With equation (2), the
APE is rewritten as

1 o0
BE(w) = 4pc? erlqj(w”Zv (3)
j=1
with the volume normalization factor

r; = / 1B () dV. (4)
\%

The aim of this section is to express the APE in terms of the surrounding
structural velocity v(rs,w) of the points at the surface S. For that reason, the
transfer function from the structural velocity to the acoustic pressure p(r,w)



from the Kirchhoff-Helmholtz integral equation is considered [6], which simplifies
to

p(r,w) = ipw/v(rs,w)g(ﬂrs,w)ds, (5)
s
when there are no sources inside the cavity. In equation , r, is the position
vector of the points in the structural domain S and i = v/—1 the complex unit.
The function v(rs,w) is the normal velocity on the structural boundary S in
contact with the fluid and G(r|rs,w) is the Green’s function [6] satisfying rigid
walled boundary conditions

- P (rs)
I'|r57 z:l F] H +22<JHJk ]fQ) (6)

In equation @, k describes the frequency-dependent wave number k = % and

k; the resonant wave number of the j-th cavity mode. The modal damping ratio
of the j-th cavity mode is denoted by (;. Substituting equations and @
into equation yields an expression for the j-th frequency dependent modal
amplitude
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This expression is introduced in equation to obtain

w):zsj(w)/cpj(rs)v(rs,w)ds ) (8)
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In equation , the radiation efficiency s;(w) of the j-th cavity mode is
_ 2
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Equation describes the APE in the acoustic domain V' depending on the
contribution of the structural velocity v(rs,w) to the cavity modes ®;(rs) on
the vibrating surface S. The cavity modes ®;(rs) are orthogonal along the
fluid domain V' and therefore do not describe independent contributions of the
structural vibration to the APE. The next section will show, that it is possible to
obtain an orthogonal formulation of the cavity modes on the structural surface S
for the exemplary systems.

3. Analytical Study

This section applies the aforementioned formulation for the APE to two
particular models of structural-acoustic interaction systems, which vibration
and cavity modes are well known [I4] and can be analytically described. The
properties of the cavity mode shapes at the interaction plane are investigated
and the resulting interior radiation modes calculated.



3.1. Rectangular plate-cavity system
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Figure 2: Rectangular plate (gray) with cuboid cavity

The first model to be analysed is a rectangular thin plate coupled to a cuboid
cavity. The model is shown in Figure [2 The acoustic cavity is surrounded by
five acoustically rigid walls and one structural, elastic wall at z = 0.

The mode shapes for the acoustic domain with dimensions (Ly x L, X L) as
well as rigid cavity walls are written as

Imx mmny nwz
o - e 1
Lm,n (%, Y, 2) = cos ( I ) cos ( I, ) cos ( I ) , (10)

with the modal indices [,m,n € Ny [I4]. Here, Ny describes the non-negative
natural numbers. According to [15, [16] it is appropriate to use the rigid walled
cavity modes, since their mode shapes will not change significantly in the coupled
system when the structure is not thin and the acoustic medium is not dense.
The validity of such an approach as well as its limitations are investigated in
[17]. From this it can be concluded, that using the uncoupled cavity mode
approach the interior pressure distribution can be accurately modelled.

The acoustic eigenfrequencies [14] are calculated as

1\? m\> n\2
mon = — — — . 11
amn=ri{(z) +(5) + (22) w
Evaluating equation for the acoustic mode shapes in equation yields

the volume normalization factors for the cuboid cavity

L,L,L,
I‘ll,m,n = %elfmen (12)

el_{Q =0 (13)

1 , otherwise.

with



We can see from equation li that the cavity mode shape ®; ., »(z,y)
2=0
constrained to the interaction plane z = 0 does not depend on the modal index n.

To examine the properties of the cavity modes at the interaction plane, the inner
product on L? is considered

(f.9) = / f(ra)g" (x2)dS (14)
S

for the two arbitrary functions f(rs) and g(rs), where * describes the complex
conjugate. The cavity modes constrained to the interaction plane are rewritten

as Uy, (z,y) = <I>l7m,n’ . Evaluating the inner product from equation for
z=0
wm(z,y) yields

<ul1 ;M1 ul27m2>

‘ \/<u117m1 y Uly,my > \/<u12,m2a ul2,m2>

They are orthogonal along the structural surface S. It should be mentioned,
that radiation modes are defined to only show self-radiation efficiencies and
no mutual radiation efficiencies. According to equation , the structural
radiation modes u;,(z,y) fulfil this condition and can therefore be derived
from the cavity modes with indices (I,m) as

lmx mmy
= 3 —_— S . 1
i m(,) = cos ( = ) ( r ) (16)

Note that these radiation modes are independent of frequency. The radiation
efficiency of each radiation mode u; n, (z,y) is then a sum of contributions from
each cavity mode ®; ,,, ,, with n =0,1,2,.... Since cavity modes with different
modal indices n contribute to one radiation mode, the radiation efficiencies from
equation @D can be restated as

(15)

0 , otherwise.

_{1 7if11:lgandm1:m2

2 .
pc w
Sim(w) = - 17
b ( ) n—0 4Fl,m,n Wam7n + 2ZCI,m,nwl,m,n‘*) - WZ ( )
The APE inside the cuboid cavity can than be rewritten as
2
Ew) = Y sim(@) [(ugm,v(@))|*. (18)
I,m=0

The cavity modes have been shown analytically to be either orthogonal or
parallel along the interaction surface in this section. The structural radia-
tion modes u;m,(z,y) for the rectangular plate are therefore independent of
frequency. The next section evaluates these properties for a second model.



8.2. Cylindrical plate-cavity system

The second model of the cylindrical plate-cavity system is depicted in figure[3]
in the cylindrical coordinate system (r, 8, z). The circumferential structural sur-
face at r = R represents an elastic boundary for the fluid, while the cylinder caps
at z =0 and z = L, are rigid. For the cylindrical fluid-structural interaction,

=R gg

Figure 3: Cylindrical shell (gray) with interior cavity

the uncoupled cavity mode shapes [14] can be written as

l
1 (1,0, 2) = cos (f) Jon (i, 75) (sin (m) + cos (mé)), ~ (19)
where .J,,, describes the m-th bessel function of the first kind. Here, [, m,n € Ny
describe the axial, circumferential and radial modal indices respectively. In
equation (19), the scalar 7y, , is the n-th zero of the derivative of the m-th
bessel function, so that J/, (¥m.n) = 0. The acoustic eigenfrequencies [I4] are

I\
Wi,m,n = C ’yr2n,n + (L) (20)
z

Evaluating equation (4 for the cavity mode shapes in equation yields the
volume normalization factors for the cylindrical enclosure

2 J2
o = <1— i ) mOman) gy (21)
Yim,n 2

with

2 1=
€ = ’ 0 (22)
1 ,1#0.

It can be seen from equation (|19), that each of the cavity modes ®;,,

r=R
with given indices (I, m) differs from each other depending on the radial modal



index n. This is different to the cuboid cavity system, where an independence
of the modal index n in z-direction is observed. This means, that the cavity
modes with different radial modal indices n can be multiples of one another.
The cavity modes on the interaction plane (r = R) are rewritten as u; (6, z) =

(bl,m,n:()
r=R
u,m (0, z), which yields

The inner product according to equation is evaluated for

<ull7m1 N1 ul27m277l2>

‘ \/<ul17m1-,n1 y Uly ymy,ny > \/<ul2-,m2,n27 ul2,m2,n2>

_{1 ,ifh:lgal’ldmlzmg

(23)

0 , otherwise.

The structural radiation modes u;,, (¢, z) are orthogonal along the structural
interface S. The radiation modes u; (0, z) as well as the radiation efficien-
cies sy m(w) are therefore rewritten as

l
um (0, 2) = cos ( 22) (sin (md) + cos (mh)), (24)
and )
o0 2 .
pc Wy,
m = - ’ 25
. (w) n=0 4Flvm7" wl%m,n + QZCZ,m,nwl,m,nW - w? ( )

respectively. The factor a,, , from equation is substituted as the ratio of
the cavity modes with different axial modal indices n

Jm(Vm n)
Q= e Tmn) 26
Jm(’Ym,n:O) ( )

In accordance to the rectangular plate, the interior radiation modes for the
cylindrical plate are independent of frequency. The APE can again be rewritten

as
o)

Ew)= Y sim(w) [(um v(w))|” (27)

I,m=0

for the cylindrical enclosure.

4. Frequency-independent interior radiation modes

This section presents the above calculated radiation efficiencies as well as the
frequency-independent radiation modes for the two fluid-structure-interaction
systems. For the following calculations, an acoustic fluid density of 1.204 %
and a speed of sound of 343 7 is assumed. An acoustic modal damping ratio
for all modes of ;. n = 0.01 is considered.



4.1. Radiation modes of the rectangular plate-cavity system

The radiation modes for the rectangular plate-cavity system according to
section [3.1] are evaluated and presented in this section. The structural plate
has dimensions of (L, x L,) = (0.8 x 0.6) m?, while the cavity has a depth of
L, = 0.42 m. Five resulting radiation efficiencies from equation for the
interior sound radiation into the cuboid cavity are shown in Figure [d They
exhibit several resonance peaks, which occur at the acoustic eigenfrequencies
which are associated with the radiation modes. The acoustic eigenfrequencies,
calculated from equation are shown in table

The eigenfrequencies of the cavity modes coincide with the peaks in radiation
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Figure 4: Radiation efficiencies for the interior radiation into the cuboid cavity

Table 1: Acoustic eigenfrequencies of cuboid cavity

(Il,m,n) eigenfrequency wj m n/(2m)
(0,0,0) 0 Hz
(0,1,0) 214.37 Hz
(1,0,0) 285.83 Hz
(1,1,0) 357.29 Hz
(0,0,1) 408.33 Hz
(0,2,0) 428.75 Hz
(0,1,1) 461.18 Hz
(1,0,1) 498.43 Hz

efficiency of the respective radiation mode. Additional peaks occur in each ra-
diation efficiency due to the cavity modes with identical mode shapes on the
interaction plane. In accordance with the analytical expression given in equa-
tion the two peaks in radiation efficiency 1 at 0 Hz and ~ 408 Hz belong

10



to the cavity modes (I, m,n) = (0,0,0) and (I, m,n) = (0,0,1). In other words,
every combination of (I, m) yields one radiation mode independent from n. Each
efficiency of these radiation modes peaks at the acoustic eigenfrequencies of the
associated index n.

Five radiation modes are shown in Figure[§] These correspond to the cavity
modes on the interaction plane. Additional modes with a modal index n > 0
can therefore be neglected for the evaluation of the interior sound field.

L, L,
) El
8 8
0 0
0 y[m] Ly, =0 y[m]
(a) Radiation Mode 1 (ug,0) (b) Radiation Mode 2 (uo,1)

0
0 y[m] Ly
(c¢) Radiation Mode 3 (u1,0) (d) Radiation Mode 4 (u1,1)
Ly
1
= g
= 0 =
ey S
-1
0
0 y[m] Ly

(e) Radiation Mode 5 (uo,2)

Figure 5: Radiation modes for the interior radiation into the cuboid cavity

4.2. Radiation modes of the cylindrical plate-cavity system
The dimensions of the cylindrical plate-cavity system in accordance with
section are (R x L.) = (0.5 x 3) m?. The radiation efficiencies 1-6 and 7-12

11



of the radiation into the cylindrical cavity are shown in figure [6] and figure
respectively. This numbering results from sorting according to an ascending
eigenfrequency of the fundamental cavity mode. In comparison to the cuboid
cavity, a higher density of cavity modes in the considered frequency regime can
be observed. This is due to the bigger volume of the cylindrical cavity. Several
resonances per radiation mode occur at multiples of the radial modal index n.
The corresponding eigenfrequencies of the radiation modes 1-6, calculated from
equation are listed in table The radiation modes 1-6 of the cylindrical

Table 2: Acoustic eigenfrequencies of cylindrical cavity

(I,m,n) eigenfrequency wim »/(27) || (I,m,n) eigenfrequency wj m./(27)
(0,0,0) 0z || (0,0,1) 418.32 Iz
(1,0,0) 57.17 Hz || (1,0,1) 422.21 Hz
(2,0,0) 114.34 Hz || (2,0,1) 433.67 Hz
(3,0,0) 171.50 Hz || (3,0,1) 452.11 Hz
(0, 1, 0) 201.00 Hz (O, 1, 1) 582.09 Hz
(1,1,0) 208.97 Hz || (1,1,1) 584.89 Hz
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Figure 6: Radiation efficiencies 1-6 for the interior radiation into the cylindrical cavity

plate according to equation are shown in figure |8 unwrapped over the
circumference. These, as well, are composed of the cavity modes, orthogonal
over the structural interface.

5. Conclusion

This paper studies the orthogonal radiation properties of structural vibra-
tion with regard to an enclosed sound field. Using an analytical model, a general
formulation for the acoustic potential energy is described in dependence of the
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Figure 7: Radiation efficiencies 7-12 for the interior radiation into the cylindrical cavity

surrounding structural velocities. This formulation does not contain any struc-
tural modal information. The structural vibration is rather a boundary condi-
tion to the interior sound field. The resulting radiation modes of two generic
systems of fluid-structure-interaction are then proven to be independent of fre-
quency and they can be derived from the cavity modes on the interaction plane.
The efficiencies of the interior sound radiation are a sum of the contributions
from each parallel cavity mode at the interaction plane.

The frequency independence of the radiation modes offers a new perspective for
fields like active control theory. In order to achieve a reduction of the acoustic
potential energy in the cavity by active means, the controller must include only
the frequency-independent radiation modes. The change of radiation modes
with frequency can therefore be disregarded, which drastically reduces the com-
putation costs for real-time applications. Future work will be focused on the
global active control of cavity noise with structural radiation mode sensing.
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Figure 8: Radiation modes for the interior radiation into the cylindrical cavity
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