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ABSTRACT

Inversion of potential vorticity density Ph*5 (va � =h)/(›h/›z) with absolute vorticity va and function h is

explored in h coordinates. This density is shown to be the component of absolute vorticity associated with the

vertical vector of the covariant basis of h coordinates. This implies that inversion of Ph* in h coordinates is a

two-dimensional problem in hydrostatic flow.

Examples of inversions are presented for h5 u (u is potential temperature) and h5 p (p is pressure) with

satisfactory results for domains covering the North Pole. The role of the boundary conditions is investigated

and piecewise inversions are performed as well. The results shed new light on the interpretation of potential

vorticity inversions.

1. Introduction

Potential vorticity (PV) is an important variable in

dynamic meteorology and oceanography and is widely

used for the simulation and interpretation of a broad

range of flow phenomena (e.g., Vallis 2006), where po-

tential vorticity is

Q
h
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v
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r
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and va is absolute vorticity, h is a function of space and

time, and r is density (Ertel 1942). Use of Qh is not

widespread except for h5 u (u is potential temperature)

whereQu is conserved in adiabatic and inviscid flow. The

explicit expression for Qh in spherical coordinates is

fairly complicated:
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with standard notation (longitude l; latitude u; height z;
velocity components u, y, and w; Coriolis parameter

f 5 2V sinu with V5 2p day21; and Earth’s radius a).

The traditional approximation is accepted in (2), where

we assume r5 a1 z’ a and neglect Coriolis terms with

2V cosu (e.g., Vallis 2006). A simplification can be ob-

tained by selecting h as a vertical coordinate and turning

to PV density (PVD) Ph 5Qhr. We have to realize,

however, that Ph is a density in (l, u, z) space, but not in
(l,u, h) space, as would be appropriate in h coordinates.

We introduce the density Ph*5Ph(›z/›h) to ensure that

volume integrals of Ph in height coordinates equal those

of Ph* in h coordinates.

The transformation of (2) to h coordinates can be

performed by introducing the covariant basis vectors
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where ei are the standard spherical unit vectors with e1
pointing eastward, e2 pointing northward, and e3
pointing upward [e.g., Zdunkowski and Bott (2003), see

their Fig. 1]. The first two vectors are embedded in

h surfaces and orthogonal to =h5 p3 with contravariant

basis vector p3, where p3 � pi 5 d3i . Next we have to adapt

the derivatives in (2) to the h system so that the absolute

vorticity, after expressing all ei in terms of pi, becomes
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where all ‘‘horizontal’’ derivatives are performed for

constant h and z(l, u, h) is the height of h surfaces. The

final step consists in multiplying (4) by (›z/›h)p3, so that
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On the other hand, Ph results if we multiply (4) by p3. An

alternative derivation of (6) is provided byViúdez (2001).

Because (›h/›z)p3 5 e3 in (4) is a unit vector and

because we may replace p1 and p2 in (4) by unit vectors

pi/jpij multiplied by jpij, we see that Ph* is the vertical

component of absolute vorticity with respect to a

nonorthogonal basis of unit vectors parallel to the co-

variant ones. In particular, zh is the related vertical

component of relative vorticity in hydrostatic flow

where w5 0 in (4)–(6). This interpretation differs

somewhat from others found in the literature. For ex-

ample, McIntyre (2015) claims that ‘‘the isentropic

vorticity. . . is the same as the component of the vorticity

vector normal to the isentropic surface’’ (p. 376). This

definition converges to ours for steepness a/ 0 (see

Fig. 1). Small values of a are typical of isentropic

surfaces in large-scale flow, but the vorticity must be

formulated with respect to the nonorthogonal vector

basis to be correct also for steep surfaces as found, for

example, in PV banners (Schär et al. 2003). In what

follows we will concentrate on hydrostatic flows so

that Ph*5 zh 1 f . This formula is well known for

isentropic flow.

With Ph* available we can now turn to inversion. PV

inversion (PVI) is one of the most popular applications

of PV thinking (Hoskins et al. 1985), which is used to

derive winds, pressure, and temperature from aQh field

on the basis of a balance condition and suitable

boundary conditions (e.g., Thorpe 1985; Hoskins et al.

1985). However, inversion ofQh is difficult owing to the

nonlinearity of Qh so that iterative methods have to be

used (e.g., Davis 1992). This problem can be partly

overcome by recognizing that invertibility is not re-

stricted to PV (Egger andHoinka 2010). In particular, we

may perform an inversion ofPh* (PVDI) inh coordinates.

For example, Pu* is a linear two-dimensional expression

on isentropic surfaces [see (6)], so that inversion is

relatively simple.

AlthoughQu is materially conserved for adiabatic and

inviscid flow, all other choices of PV like Qp are not

conserved nor are Ph and Ph*. Thus, Qu can be stepped

forward with the winds obtained from the inversion,

while that is not possible for Qp and Ph and Ph*. How-

ever, as will be discussed in detail below, inversion of Pu*

allows to evaluateQu so that the inversions ofQu andPu*

are equivalent with respect to eventual predictions.

Moreover, PVDI is of interest by itself, because it at-

tributes the flow on an h surface to the vorticity zh on

that surface, at least for geostrophic balance, as will be

shown below. PVI would attribute the flow to the three-

dimensional field Qh. Thus, the same flow can be

attributed to different ‘‘sources’’ depending on the

variable selected for inversion.

It is the purpose of this short contribution to

present inversions of Pu* and also of Pp* based on

FIG. 1. Orientation of the various basis and vorticity vectors with

respect to an h surface.
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observations to demonstrate the feasibility of this

approach and to discuss the interpretation of

inversions.

2. Inversion of potential vorticity density

As stated above, PVI is a well explored and widely

used technique to approximately capture all dynamic

information about a flow state (e.g., Thorpe 1985).

Only PV has to be known, if a balance relation is im-

posed together with appropriate boundary conditions.

PVI has mainly been carried out for Qu in pressure

coordinates.

Piecewise potential vorticity inversion (PPVI) goes

one step further by seeking to determine the flow fields

associated with isolated PV anomalies. This technique

has been used to understand, for example, the impact of

observed PV anomalies on hurricane development

(Davis and Emanuel 1991) or the influence of upper-

level PV features on the evolution of polar lows

(Bracegirdle and Gray 2009). We wish to invert Ph* for

h5 u and h5 p, where the main step involves the deri-

vation of the flow on an h surface from observed zh on

that surface. Piecewise inversions will be carried out

as well.

In general, a streamfunction c can be obtained by

inverting D2c5 zh, with two-dimensional Laplacian D2.

This is a linear problem. Geostrophic balance, or a more

advanced balance condition like that of Charney (1955),

must then be used to obtain, for example, the Mont-

gomery potential M5 cpT1 gz for h5 u or the

geopotential f for h5p. Although the latter condition

is nonlinear with respect to c, it is linear with respect to

M or f.

a. Inversion of Pu*

We select the distribution of Pu* on the surface

u 5 285K in the Northern Hemisphere for a demon-

stration of PVDI (see Fig. 2). The date in Fig. 2 has been

chosen randomly, as we do not aim to perform a dy-

namic analysis of a certain flow configuration. The main

purpose of this presentation is to discuss PVDI as

a method.

The u 5 285-K surface intersects Earth’s surface all

around the North Pole on that day and forms a dome

north of the intersection contour. The observed vorticity

zu on this surface, as determined from ERA-Interim

(Dee et al. 2011), is fairly patchy, but there are several

stripes of positive as well as negative vorticity extending

from the southern boundary almost to the pole (Fig. 2a).

The observedM perturbations are dominated by a huge

ridge covering much of western Eurasia and a system of

lows closer to the pole (Fig. 2b), where a northward

decrease of M implies westerly flow. The scale of the

observedM perturbations, defined as the deviation from

the areal mean, is much larger than that of zu, as

expected.

Accepting geostrophic balance with geostrophic

winds

u
g
52

1

fa

›M

›u
, (7)

FIG. 2. Vorticity andMontgomery potential on the u5 285-K surface at 0000UTC12Feb 2008: (a) vorticity (1024 s21;

contour interval 5 0.5 3 1024 s21) and (b) Montgomery potential on u 5 285 K (103 m2 s22; contour interval 5
1.0 3 103 m2 s22). Negative values and areas outside the intersection contour are shaded. Mean value

M5 0:2773 106 m2 s22 subtracted in (b).
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inversion of Pu* requires to solve
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Observed values of M are prescribed where isentropic

surfaces intersect the ground.

A circular domain of radius 450 km covering the

North Pole is excluded from the inversion to avoid

technical problems due to convergence of themeridians.

Observed values of M are prescribed at this bounding

circle. Relaxation with a convergence threshold of

DM5 1m2 s22 yields the M patterns in Figs. 3 and 4,

where the area-mean M has been subtracted. The in-

verted M field (Fig. 3a) satisfactorily approximates the

observations in Fig. 2b. The inversion turns the com-

plicated vorticity distribution in Fig. 2a into a relatively

simple M pattern.

The role of the prescribed boundary values can be

explored by inverting a vanishing relative vorticity

zu 5 0 (Fig. 3b) but keeping the same boundary values as

in Fig. 3a. This inversion of boundary values is inspired

by the standard practice in PVI to determine the impact

of boundary values on distant flows (e.g., Davis and

Emanuel 1991). This technique is partly motivated by

the idea that potential temperature at the lower

boundary can be interpreted as a PV anomaly that ex-

erts an impact on the flow (Hoskins et al. 1985). Al-

though this interpretation cannot be extended to our

case, the boundary values of M indicate direction and

intensity of the geostrophic flow across the boundary.

Thus, inversions with zu 5 0 tell us how these fluxes can

be maintained by a flow in the interior without vorticity.

FIG. 3. Results of Ph* inversion. Montgomery po-

tential on the u 5 285-K surface at 0000 UTC 12 Feb

2008 (103m2 s22) (a) as obtained by inverting zu as in

Fig. 2a, (b) as obtained by inverting zu 5 0, and (c) the

difference of (a) and (b). The contour interval is

0.53 103 m2 s22. Negative values and areas outside

the intersection contour are shaded. Mean value

M5 0:2773 106 m2 s22 subtracted in (a) and (b).
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A gross estimate of the response to boundary values

can be based on f-plane solutions. In these cases,

boundary perturbations of wavenumber k at a zonal

boundary with meridional coordinate y decay pro-

portional to e2kjy2y0j away from the boundary at y0.

Thus, the smallest wavenumbers dominate the far field

yielding a fairly smooth pattern away from the

boundary.

The pattern in Fig. 3b is indeed quite smooth and the

M values at the boundary extend far into the domain.

Figures 3a and 3b are quite similar with positive values

over Central Asia and a large depression extending from

the Pacific across the North Pole as in Fig. 3a. In other

words, the role of the boundary values in the inversion is

at least as important as that of zu and amplitudes are

generally small in the difference pattern in Fig. 3c. Note

the reduced contour interval in Fig. 3c. We attribute this

difference to the vorticity anomalies on the u surfaces.

The height of the isentropic surface in Fig. 3a cannot

be derived from the inverted M values on just one is-

entropic surface. We would have to solve (9) on a

stack of u surfaces so that the hydrostatic relation

›M/›u5 cp(p/p0)
R/cp can be used to determine the

pressure, provided the surface temperature is known.

With that, even Qu would be available and could be

predicted using the available geostrophic winds.

Piecewise inversion has to select features of the vor-

ticity field in Fig. 2a. Inversion is then performed with

M5 0 at the boundaries. For example, the sector 908 ,
l, 1208E contains patches of negative relative vorticity,

say, south of 708N and a positive anomaly close to the

North Pole. Figure 4a shows the Montgomery potential

obtained with M5 0 at the boundaries, zu 5 0 outside

the domain 908–1208E, and observed vorticity inside.

The solution is centered in the longitude sector with a

high in the south and a small low in the north, though the

high extends into the adjacent sectors.

There are patches of strong positive vorticity in the

sector 1208–1508 (Fig. 2a), which correspond to the

eastward-extending trough (Fig. 2b). The PPVDI results

for this sector have also a low near the pole, which

corresponds to a vorticity maximum there (see Fig. 4b).

Amplitudes in Fig. 4 are smaller but of the same order

of magnitude as in Fig. 2b. That is to be expected, be-

cause the impact of the boundary values is missing in

Fig. 4. Piecewise inversion could be performed for all

latitude sectors, where superposition of all their results

would give Fig. 3c. Comparison of Figs. 4a,b to Fig. 3c

leads to the conclusion that the vorticity in one sector

almost completely determinesM in that sector in Fig. 3c.

b. Inversion of Pp*

Investigations of Qp are relatively rare, though

Haynes and McIntyre (1987) discussed fluxes of Qp.

Note that hydrostatic PVD and PV are the same for

h5 p except for a factor (Pp*52gQp). Thus, PVI is the

same as PVDI. The equation to be solved is (9), where

we have to replaceM by the geopotential f and zu by zp.

The boundary conditions are the values of the geo-

potential at the boundary. We chose the 500-hPa sur-

face, which rarely intersects the ground. The selected

boundary contour is the same as before, which is an

unusual choice for a pressure surface but was chosen to

aid the comparison with the previous case. Such

FIG. 4. Piecewise inversion ofPu
*on u5 285-K surface at 0000UTC12 Feb 2008.Montgomery potential (102m2 s22)

for zu 5 0 except in the sector (a) 908 , l, 1208E and (b) 1208 , l, 1508E. The contour interval is 0.23 102m2 s22.

Negative values and areas outside the intersection contour are shaded.
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inversions have a long tradition and have been carried

out routinely in the early one-layer models of numerical

forecasting (Thompson 1961). It is nevertheless of in-

terest to perform an inversion of Pp* in parallel to Pu*.

The observed f field in Fig. 5a is similar to the M

pattern in Fig. 3a with an Asian ridge and lows at the

North Pole, over North America, and over the Pacific.

The inversion is again satisfactory (Fig. 5b) with a dis-

tinct Arctic low. The inversion for zp 5 0 (Fig. 5c)

yields a pattern that captures much of Fig. 5a and doc-

uments the importance of the lateral boundary values.

As before, these boundary values of f determine the

geostrophic flows across the boundary. Areal mean

values f have been subtracted for the respective fields.

Note that the Arctic low has no closed height line in

Fig. 5b, as is required for flows without vorticity. As the

height of the p surfaces is given by the geopotential,

PVDI in the isobaric case yields the complete

information andwe do not have to solve (9) for a stack of

isobaric surfaces. Moreover, Qp is readily available on

this isobaric surface owing to the simple relationship

with Pp*.

3. Concluding remarks

This study has been stimulated by the well-known

result that isentropic hydrostatic PVD Pu* reduces to a

vorticity in isentropic coordinates. The variable h, as

specified in the definition of Qh, has been chosen as a

vertical coordinate in extension of the isentropic case

and the PVD Ph* is considered instead of Qh. The vor-

ticity Ph* turns out to be the absolute vertical vorticity

component with respect to the basis pi/jpij of unit vectors
aligned with the covariant basis. The nonhydrostatic

terms of Ph* can be important for strongly non-

hydrostatic flows, such as in PV banners.

FIG. 5. PVDI for the 500-hPa surface: (a) observed

geopotential f at 0000 UTC 12 Feb 2008 (102m2 s22);

(b) inverted f field for observed zp; and (c) as in (b),

but for zp 5 0. The contour interval is 1.03 102m2 s22.

Negative values and areas outside the intersection con-

tour are shaded. Subtractedmean values off: (a) 0.4393
105, (b) 0.440 3 105, and (c) 0.444 3 105m2 s22.
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Three-dimensional PVI requires iterative methods to

reconstruct the complete flow from the PV field in order to

associate flow features with PV anomalies. The relatively

simple structure of Ph* in h coordinates, however, led us to

consider the inversion of Ph* on h surfaces, which reduces

to a two-dimensional linear problem for hydrostatic flow.

Such inversions have been carried out for h5 u and h5 p.

Geostrophic balance yielded satisfactory results in both

cases. The role of the boundary values has been investigated

by conducting inversions with zh 5 0 in the domain. It

turnedout that a substantial part of theobservedM (f) field

is related to the conditions at the boundaries, which repre-

sent the geostrophic wind across the boundaries and, thus,

the dynamic interaction with the surrounding atmosphere.

We also conducted piecewise inversion to explore the

role of isolated PV features. Examples of PPVDIhave been

presented, where we evaluated the geostrophic stream-

function associated with the vorticity in various longitude

sectors and their extension into neighboring sectors.

Attribution appears to be straightforward in our case.

The vorticity zh on an h surface is a ‘‘source’’ for the flow

on that surface, but boundary values are also important.

On the other hand, inversion of Qh would result in dif-

ferent attributions.

The simplicity of the hydrostatic Ph* inversion in

h coordinates is lost if we turn to nonhydrostatic flows.

The contribution of w to Ph* is difficult to evaluate,

because the inversion becomes inherently nonlinear

and three-dimensional [see Viúdez (2012) for non-

hydrostatic inversions in a Boussinesq fluid].
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