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Abstract 

Despite the rapid progress in the development of automated 
vehicles, formal verification of the full automated driving process is 
unsolved. A promising approach investigated in the EU project 
UnCoVerCPS is the combination of online and offline verification as 
well as testing steps. The methods developed in UnCoVerCPS are 
applicable to many safety critical, cyber physical systems. As a 
specific use case, we investigate a system, which facilitates safe 
cooperation of automated vehicles. Leveraging a formal proof on a 
validated vehicle dynamics model and by negotiating exclusive 
access to subsets of the drivable area via Car-to-Car 
communication, the freedom of collisions and safe operation in other 
respects are ascertained online and during operation of the vehicle. 
One of the goals of UnCoVerCPS is to demonstrate applicability of 
the online verification approach in a cooperative driving scenario with 
two life-sized vehicles. In this paper we discuss the detailed 
approach and preliminary results en route to the physical realization. 

 
1. Introduction 

A significant challenge in automated vehicle design is validation and 
verification. Purely test-based validation approaches tend to require 
high numbers of test kilometers, which can be cost and time 
intensive. Under assumption of a stochastic model, a recent study 
estimates that showing with 95% confidence a fatality rate of 
automated cars within 20% of the fatality rate of human operated 
cars would require 8.8 billion miles of driving [1]. Furthermore, it is 
difficult to transfer results to unforeseen driving situations or new 
software configurations.  
Results on formal correctness proves exist, but often consider very 
limited application scopes or very abstract problem formulations. An 
approach for safely entering an intersection is presented in [2]. In [3], 



automated cruise control is formally verified by automated theorem 
proving, but under the assumptions that all vehicles cooperate and 
communicate, and that no unexpected vehicle appears. A verified 
synthesis for driving assistance in traffic merging is presented in [4], 
but with limited consideration of the underlying dynamics required for 
fully automated driving. Offline verification approaches have the 
problem that they have to account for all values of a high number of 
environmental variables inherent in the application, which is 
especially difficult in the combination of mixed continuous and 
discrete dynamical systems. The number of variables can be 
drastically reduced, if a proof of correctness is attempted for only a 
specific instance of traffic situations – this though requires repeated 
evaluation for each decision, on-the-fly and during operation of the 
vehicle [5]. 
We present an approach that uses a combination of offline- and 
online computation steps to verify on-the-fly that a certain control 
action of a vehicle is safe to execute. The pre-computation of verified 
motion primitives in an offline step allows replacing time intensive 
online computations with simple look-ups. Safety is proven by 
calculating an emergency maneuver, which takes the vehicle to a 
safe state after execution of the control action, without intersecting 
worst case predictions of other vehicles. Using worst case 
predictions for the behavior of other traffic participants is in some 
situations conservative, yet it avoids the complexity of game theory 
or differential games and it allows using very general assumptions 
about other traffic participants. The presented approach is 
formulated especially for cooperative lane-changing situations and 
makes no unrealistic assumptions on communication protocols. 
Changing the constraint sets used for emergency maneuver planning 
allows to easily extend the approach to other automated driving 
applications or vehicle capabilities. The proposed cooperation 
scheme considers only direct cooperation in a 1 to 1 relationship. 
The approach is intended as a safe basis for more complex, group-
based interactions, as proposed in [6] and further pursued in the 
DFG project CoInCiDE. The next section gives an overview of our 
approach and the following sections detail the software modules 
involved in realization. 
 

2. Approach 

We propose a supervisory module, which enforces safety of 
cooperative automated driving by filtering the communication 



exchange between vehicles, as well as filtering the driving 
commands sent to each vehicle’s actuators. 
 

 
Fig. 1: Layered vehicle control architecture with Supervisor 

 
We make use of a typical, layered architecture, fig. 1, structured 
analogously to the driving tasks defined by Donges [7]. At the lowest 
level, the physical vehicle accepts control inputs from a stabilizing 
control layer. Higher-level driving skills on the short term guidance / 
maneuvering layer as well as the navigation layer are subsumed in a 
“black box” termed High-level Behaviors. The contained modules are 
thought to handle normal, every-day driving situations by providing 
nominal set-points, which lead to a good average-case driving 
performance by such measures as duration of travel, fuel 
consumption, comfort, etc. We will not focus on the inner workings of 
the High-level Behaviors, but rather assume them to be given 
according to the state of the art. The black box of High-level 
behaviors is expected, but not required to provide new, desired set 

points 𝜏𝑑𝑒𝑠 with a fixed rate 1/𝑇𝑝, (we use 𝑇𝑝 = 0.1𝑠). In our specific 

application, a set point 𝜏𝑑𝑒𝑠 is a reference trajectory of duration 𝑇𝑝. 

The Low-level Controller executes at a fixed rate 1/𝑇𝑐 (e.g. here 

using 𝑇𝑐 = 0.005𝑠) and stabilizes the vehicle, by regulating the 
vehicle’s deviation from the set point (reference trajectory). The Low-
level Controller is assumed to be a “white box” module with known 
equations, as it is submitted to formal analysis in order to compute 
bounds on the closed-loop performance of the system, see sec. 3 
and sec. 4. 
In each vehicle, which is following the presented approach, a 
Supervisor module is inserted between High-level Behaviors and 



Low-level Controller. Every time frame of length 𝑇𝑝, the Supervisor 

tries to find a proof of safety for the current desired set point. If 
successful, it passes the desired set point to the Low-Level 
Controller. This is defined as the nominal operation. Otherwise it 
supplies a surrogate - an emergency set point, for which a proof of 
safety is known. This is henceforth referred to as emergency 
operation. 
To facilitate cooperation between automated vehicles, we assume 
that information is passed between the vehicles’ respective High-
level Behaviors via wireless car-to-car messages. A Car-to-car 
communication module (C2C) realizes the transmission. We require 
the C2C module to guarantee that messages are neither altered nor 
faked (e.g. by employing asymmetric encryption). Albeit, a guarantee 
for successful or timely transmission is not required, as such a 
performance could not be reliably provided by contemporary C2C 
protocols such as the ETSI GeoNetworking protocol [8]. Agreements 
between vehicles are allowed to be safety critical. Therefore the 
message content has to be standardized and known to the 
Supervisor and all safety critical messages have to be passed 
through the Supervisor. The Supervisor keeps track of incoming 
messages and transfers outgoing messages only, if it is able to show 
that the contained agreement is safe. 
 
2.1 The Supervisor Module 
According to the proposed concept, the Supervisor proves safety of 
a desired set point 𝜏𝑑𝑒𝑠 by constructing an emergency maneuver, 
which can be appended after execution of 𝜏𝑑𝑒𝑠 and which guides the 
vehicle to a safe terminal state, (e.g. stand still in a specific lane or 
emergency lane). The central part of the Supervisor, fig. 2, is a 
Planner, which constructs the emergency maneuvers as a 
concatenation of atomic motion primitives supplied by a Maneuver 
Database. The Maneuver Database specifies: (1) A finite set of 
motion primitives and their according set points (2) A guaranteed 
over-approximation of the 𝑋, 𝑌, 𝑡 occupancy of each motion primitive, 

meaning the set of positions in 𝑋, 𝑌, 𝑡, which could be covered by any 
part of the vehicle body during execution of the motion primitive. (3) 
A graph structure that defines admissible orders of execution of the 
motion primitives. (4) Entry conditions for starting an emergency 
maneuver. The Planner tests the motion primitives’ 𝑋, 𝑌, 𝑡 
occupancies against constraints supplied by the Constraints module 
and thus creates a tree of admissible emergency maneuvers. 



Eventually it finds a valid chain of motion primitives, which starts with 
the nominal set point and leads to a safe state. The chain of 

reference trajectories is designated 𝜙𝑖 ≔ (𝜏𝑑𝑒𝑠
𝑖 𝜏𝑒𝑚,1

𝑖 𝜏𝑒𝑚,2
𝑖 … 𝜏𝑒𝑚,𝑘

𝑖 ).  

 
Fig. 2: Sub-components of the Supervisor 

 
If such a solution 𝜙𝑖 is found, it is passed on to the Dispatcher, a 
sub-process of the Supervisor, which runs in parallel to the Planner. 
The Dispatcher oversees the correct timing of presenting a validated 
set point to the Low-level Control module. If 𝜙𝑖 is available on time, 

the Dispatcher will replace its previous 𝜙𝑖−1 with 𝜙𝑖 and send the 

new first entry 𝜏𝑑𝑒𝑠
𝑖  to the Low-Level Control. This constitutes the 

case of normal operation: Each update, the old desired set point 𝜏𝑑𝑒𝑠
𝑖  

is directly succeeded by a new desired set point 𝜏𝑑𝑒𝑠
𝑖+1. The High-level 

Behavior’s set points are therefore passed through the Supervisor 
module with a delay of 𝑇𝑝 and execution of an emergency maneuver 

is regularly postponed. In contrast, the emergency case occurs, if the 
Dispatcher does not receive 𝜙𝑖 on time. This could be provoked for 
numerous reasons, such as a software or timing error in the High-
level Behaviors, excessive complexity of the scene presented to the 
Motion Planner, a software error in the Motion Planner or in general 
an unsafe set point 𝜏𝑑𝑒𝑠. In the case of such an emergency, the 
Dispatcher continues execution of the previous 𝜙𝑖−1, consequently 

transitioning from the last desired set point 𝜏𝑑𝑒𝑠  to the first emergency 

set point 𝜏𝑒𝑚,1 and so forth. Accordingly the full 𝜙𝑖 will be executed 

until the vehicle has reached the safe terminal state, or until a new 
and safe desired set point is available.  
The proof of correctness of the Supervisor module hinges on the set 
point switching of the Dispatcher: Assuming that at a certain time the 
Dispatcher is initialized with a first, valid emergency maneuver, one 



can show by induction that the vehicle will subsequently execute only 
such set points, which are leading to safe states, as witnessed by the 
according emergency maneuver.  
Of course, one has to guarantee that an emergency maneuver, 
which is based on observations at the beginning of motion planning, 
will remain safe during execution of the emergency maneuver up to 
reaching its terminal state. Depending on the initial velocity and the 
number of required steering actions, environment predictions must 
be guaranteed to hold for an interval of several seconds. The 
Constraints module makes use of worst-case assumptions based on 
physical bounds and simple traffic rules to achieve reliable 
predictions, see sec. 5. These predictions are presented as 𝑋, 𝑌, 𝑡-
constraints to the Motion Planner. Furthermore, it has to account for 
safety critical agreements between cooperating vehicles: The 
observation-based 𝑋, 𝑌, 𝑡-constraints are tightened by constraints 
from the Occupied set, which represents promises made by the ego-
vehicle to other cooperating vehicles through an outgoing Promise 
message. In a symmetric fashion, Promise messages received by 
the ego-vehicle are stored in the Promised set: The Constraints 
module relaxes the 𝑋, 𝑌, 𝑡-constraints using the information contained 
in the Promised set.   
In our approach, vehicles are allowed to build their safety critical 
emergency maneuver based on information exchanged with C2C 
messages. Therefore Promise messages have to constitute a 
contract that may not be violated under any circumstances. While a 
High-level Behavior might decide that it is desirable (according to 
whichever metric) to answer a Request message with a Promise 
message, the Supervisor investigates inside the Contract Validation 
module whether a Promise is safe for the ego vehicle and whether it 
can be honored under all circumstances. Only then, and after saving 
the Promise information in the Occupied set, transmission is allowed, 
see sec. 5. Looking closer at fig. 2, it is apparent that the Supervisor 
does not handle outgoing Request messages. This is due to the fact 
that Requests are not safety critical: High-Level Behaviors are free to 
issue Requests in any manner that seems appropriate to them. 
In order to create a reliable, deterministic interface to the vehicle 
dynamics two steps have to be taken during an offline design phase. 
First, a closed loop vehicle model with appropriate disturbance 
bounds has to be chosen.  In sec. 3 the model is defined and the 
choice of bounds in relation to the physical vehicle is described. 
Based on the disturbed ego vehicle model, sec. 4 describes 



computation of a Maneuver Database, which provides deterministic 
action sets for nominal and emergency maneuvers. Online, during 
operation of the vehicle, a set of constraints is computed, which 
takes vehicle cooperation into account. The interaction and 
cooperation scheme is described in sec. 5. A maneuver planner, 
briefly covered in sec. 6, computes safe emergency maneuvers, 
which avoid intersection with the constraint set. 
 

3. Vehicle Model with Error Bounds 

The goal of this section is to provide a validated mathematical model 
for the vehicle movement. Given the nature of the physical system, 
the relation between system and mathematical model can only be 
established by a finite set of examples. Conformance Testing is 
employed to find and quantify the differences between model and 
system, based on a set of exemplary test drives.  
We use a planar bicycle model to describe the vehicle motion. Tire 
forces are modeled as linear equations, yet the overall model is 
nonlinear in the longitudinal velocity and the kinematic equations. 

The vehicle state 𝑥𝜖ℝ6 is chosen as  𝑥 = (𝑋, 𝑌, 𝜓, 𝑣𝑥 , 𝑣𝑦 , 𝜔)
T
, 

including the vehicle position, the orientation, the relative longitudinal 
and lateral velocity as well as the rotational speed. The input space 

is 𝑢𝜖ℝ2, 𝑢 = (𝑎𝑥 , 𝛿)T including the desired longitudinal acceleration 
and the steering angle. The parameter vector is 
𝑝 = (𝜗, 𝑐𝐹 , 𝑐𝑅, 𝑎, 𝑏, 𝜇𝑔) with 𝜗 = 𝑚/𝐽 the ratio of mass and rotational 

inertia, 𝑐𝐹 , 𝑐𝑅 the relative front and rear tire stiffness, 𝑎, 𝑏 the distance 
from center of gravity to front and rear axle with 𝐿 = 𝑎 + 𝑏. In the 

following, the constants 𝑘𝐹 = −𝜇𝑔𝑐𝐹𝑏/𝐿 and 𝑘𝑅 = −𝜇𝑔𝑐𝑅𝑎/𝐿 are 

used. A disturbance acting on the vehicle is defined as 𝑒𝑑 =

(𝑒𝑓𝑥 , 𝑒𝑓𝑦𝐹 , 𝑒𝑓𝑦𝑅)
T

𝜖ℝ3, which contains three error forces divided by the 

vehicle mass, 𝑒𝑓𝑥 for combined longitudinal errors and 𝑒𝑓𝑦 and 𝑒𝑓𝑦 for 

front and rear lateral error terms.  
Def. 3.1: The vehicle’s differential equation is defined as 𝑥̇ =
𝑓(𝑥, 𝑢, 𝑒𝑑) = (𝑓1, … , 𝑓6)T with: 

𝑓1 = 𝑣𝑥 cos(𝜓) − 𝑣𝑦 sin(𝜓) , 𝑓2 = 𝑣𝑥 sin(𝜓) + 𝑣𝑦 cos(𝜓), (3.1) 

𝑓3 = 𝜔, 𝑓4 = 𝑎𝑥 + 𝑒𝑓𝑥, (3.2) 

𝑓5 = 𝑘𝐹  (
𝑣𝑦 + 𝑎𝜔

𝑣𝑥

− 𝛿) + 𝑘𝑅

𝑣𝑦 − 𝑏𝜔

𝑣𝑥

− 𝑣𝑥𝜔 + 𝑒𝑓𝑦𝐹 + 𝑒𝑓𝑦𝑅 , (3.3) 

𝑓6 = 𝑎𝜗𝑘𝐹  (
𝑣𝑦 + 𝑎𝜔

𝑣𝑥

− 𝛿) − 𝑏𝜗𝑘𝑅

𝑣𝑦 − 𝑏𝜔

𝑣𝑥

 + 𝑎𝜗𝑒𝑓𝑦𝐹 − 𝑏𝜗𝑒𝑓𝑦𝑅 . (3.4) 



The parameter vector has been matched to our physical test vehicle, 
by minimizing the error between a test-drive recording (open loop) 
and the parametrized model. Fig. 3 shows a comparison between 
lateral forces estimated from the recording (blue) and the fitted 

relative tire stiffness (red). The parameters 𝜗 = 0.64 𝑚−2, 𝑐𝐹 =
10.8 𝑟𝑎𝑑−1, 𝑐𝑅 = 17.8 𝑟𝑎𝑑−1, 𝑎 = 1.16𝑚, 𝑏 = 1.54𝑚, 𝜇𝑔 = 0.8 ∙
9.81𝑚𝑠−2 are used. 
 

 

Fig. 3: Cornering stiffness (red) matched to test drive data (blue) 

 

3.1 Low-Level Control 

Def. 3.2: A reference trajectory 𝜏: ℝ → ℝ10 is defined as a solution to 
the initial value problem (IVP) for an error-free vehicle model (𝑒𝑑 ≡ 0) 

with the reference state vector 𝑥𝑟𝑒𝑓 = (𝑋, 𝑌, 𝜓, 𝑣𝑥 , 𝑣𝑦 , 𝜔, 𝑎𝑥 , 𝛿, 𝑤1, 𝑤2)
T
 

containing the reference input 𝑎𝑥 , 𝛿 and the reference input change 

𝑤1, 𝑤2 and with the differential equation 𝑥̇𝑟𝑒𝑓 = 𝑓𝑟𝑒𝑓(𝑥𝑟𝑒𝑓): 

𝑓𝑟𝑒𝑓 ≔ (𝑓T, 𝑤1, 𝑤2, 0,0)T (3.5) 

Def. 3.3: The feedback control function makes use of a nonlinear 
transformation of a control point in front of the vehicle similar to [16]. 

The control point is located a distance 𝜆 ∈ ℝ2 relative to the vehicle 
and a reference control point is located 𝜆 relative to the reference 
vehicle. The control error is defined as the difference between both 
control points, expressed in the local coordinates of the reference 

vehicle, using the rotation matrix 𝑅(𝜓) = (
cos (𝜓) −sin (𝜓)

sin (𝜓) cos (𝜓)
): 

𝑒𝑡𝑛 ≔ 𝑅(−𝑥3
𝑟𝑒𝑓

) ∙ (𝑥1:2 − 𝑥1:2
𝑟𝑒𝑓

+ 𝑅(𝑥3) ∙ 𝜆) − 𝜆. (3.6) 

Def. 3.4: Including a feed-forward and a linear PD feed-back term, 

the control function 𝑢 = 𝑐(𝑥, 𝑥𝑟𝑒𝑓) is defined: 



𝑐 ≔ 𝑥7:8
𝑟𝑒𝑓

− 𝐾 (𝑒𝑡𝑛
T , 𝑒̇𝑡𝑛

T )T. (3.7) 

Def. 3.5: The closed-loop system used for conformance testing and 
reachability analysis is defined as the differential equation 𝑓𝑐 with the 

exogenous disturbance 𝑒𝑑 and the measurement error 𝑒𝑚𝜖ℝ6: 

𝑓𝑐(𝑡, 𝑥, 𝑒𝑚, 𝑒𝑑) = 𝑓 (𝑥, 𝑐 (𝑥 + 𝑒𝑚, 𝑥𝑟𝑒𝑓(𝑡)) , 𝑒𝑑) (3.8) 

 
3.2 Conformance Testing 
The goal of conformance testing is to validate the vehicle dynamics 
model and to bound the size of measurement errors 𝑒𝑚 and 

disturbance 𝑒𝑑 that have to be expected during closed loop operation 
of the vehicle. Given a parametrized vehicle model 𝑓𝑐, the error sets 

𝐸𝑚 and 𝐸𝑑 with ∀𝑡: 𝑒𝑚(𝑡) ∈ 𝐸𝑚 ∧ 𝑒𝑑(𝑡) ∈ 𝐸𝑑  and some recordings of 
test drives of the actual vehicle, the conformance testing step tries to 
invalidate the hypothesis that the combination {𝑓𝑐, 𝐸𝑚 , 𝐸𝑑} suffices to 
explain the relevant physical processes. If the hypothesis is falsified, 
{𝑓𝑐 , 𝐸𝑚, 𝐸𝑑} has to be adapted in the quest for a reliable model. If the 
hypothesis cannot be falsified, a certain degree of confidence in the 
model is provided, according to the test cases’ density of coverage of 
the operational regime of the vehicle. Roehm et. al. [9] describe 
different types of conformance relations between model and physical 
process. Here, we make use of trace conformance: Given a 

measurement trace 𝑌 ∈ ℝ𝑛×𝑘 containing measurements 𝑦 ∈ ℝ𝑛 at 

times 𝑇 ∈ ℝ𝑘, the model is conformant, if traces 𝜀𝑚 ∈ 𝐸𝑚
𝑘  and 𝜀𝑑 ∈ 𝐸𝑑

𝑘 
exist, for which holds ∀𝑖 < 𝑘: 

(𝑌𝑖+1 − 𝜀𝑚,𝑖+1) = (𝑌𝑖 − 𝜀𝑚,𝑖) + ∫ 𝑓𝑐(𝜏, 𝑥(𝜏), 𝜀𝑚,𝑖 , 𝜀𝑑,𝑖)𝑑𝜏
𝑇𝑖+1

𝑇𝑖
. (3.9) 

We formulate and solve a constrained optimal control formulation 
with local linearization of 𝑓𝑐, in order to find a valid pair 𝜀𝑚, 𝜀𝑑 for each 

𝑌. First results haven achieved on real test-drive recordings, 
although these are matched against an open loop vehicle model, 
instead of using the ultimately desired closed loop formulation. In this 
preliminary formulation, 𝑢 has been replaced by the measured 
actuator values. As an exemplary test suite, a double lane change 
maneuver has been executed at 10m/s for five times. Fig. 4 displays 
the estimated state and actuator measurement error traces as well 
as disturbance traces. The error traces are conformant with the test 
drive recordings according to the error bounds displayed in red. The 
bounds derived for the measurement errors are 𝑒̂𝑋,𝑌 = 0.05𝑚, 𝑒̂𝜓 =

 0.5°, 𝑒̂𝑣𝑥 = 0.1𝑚𝑠−1, 𝑒̂𝑣𝑦 = 0.1𝑚𝑠−1, 𝑒̂𝜔 = 0.8°𝑠−1, 𝑒̂𝑎𝑥 = 0.1𝑚𝑠−2, 𝑒̂𝛿 =



1° and 𝑒̂𝑓𝑥 = 0.049𝑚𝑠−2, 𝑒̂𝑓𝑦𝑓 = 0.028𝑚𝑠−2, 𝑒̂𝑓𝑦𝑟 = 0.021𝑚𝑠−2 for the 

disturbance errors. 
 

Fig. 4: Conformant error traces for five executions of a double lane 

change maneuver 



4. Maneuver Database 

In our application, the Maneuver Database is used by the Planner as 
a deterministic, offline computed control interface to the originally 
non-deterministic motion of the physical vehicle. This is achieved by 
selecting a set of short, exemplary motions (reference trajectories) 
and using Reachability Analysis [10] to compute an upper bound on 
the disturbed vehicle’s maximum possible deviation from a 
reference. Adding the extent of the vehicle body to this upper bound 
yields the area, which has to be reserved for collision-free execution 
of a so called motion primitive. A motion planner may then construct 
a sufficiently long emergency maneuver as a concatenation of short, 
collision-free motion primitives.  

 

 
Fig. 5: Parallelotope hull of reachable sets (blue) and covered 𝑋, 𝑌, 𝑡 

area, 𝑃𝑖 (black), for an exemplary motion primitive 
 
Def. 4.1: A motion primitive 𝑚𝑖 is a tuple consisting of a reference 

trajectory 𝜏𝑖: ℝ → ℝ10, the number of sampled time steps 𝐾𝑖, an 

ordered list of reachable state sets 𝑅𝑖[∙], 𝑅𝑖[𝑗] ⊂ ℝ𝑛, with 𝑅𝑖[1] = 𝑅𝑖
𝑆 

the start set and 𝑅𝑖[𝐾𝑖] = 𝑅𝑖
𝐹 the final reachable state set of the 

motion primitive, with one reachable set per time step, as well as the 
motion primitive’s 𝑋, 𝑌, 𝑡-hull 𝑃𝑖 ⊂ ℝ3:   

𝑚𝑖 ≔ {𝜏𝑖 , 𝐾𝑖 , 𝑅𝑖[∙], 𝑃𝑖}. (4.1) 
An exemplary motion primitive is displayed in fig. 5. 
Def. 4.2: A Maneuver Database is defined similar to [11] as a tuple: 

𝑀𝐷𝐵 ≔ {𝑀, ∆, 𝑀0, 𝐺}, (4.2) 

where 𝑀 = {𝑚1, 𝑚2, … } is a finite set of motion primitives, ∆⊆ 𝑀 × 𝑀 

is the set of directed transitions between motion primitives, 𝑀0 ⊆ 𝑀 
is the set of possible initial motion primitives and 𝐺 ⊆ 𝑀 is the set of 
final motion primitives, which lead to a standstill of the vehicle. 
Def. 4.3: The Maneuver Database is sound, if all states contained in 

a motion primitive’s final reachable set 𝑅𝑖
𝑓
 continue to be pursued 



after a transition to the next motion primitive, i.e. if the first motion’s 
final set is completely contained in the second motion’s start set: 

 (𝑚𝑖 , 𝑚𝑗) ∈ ∆ ⟹ 𝑅𝑖
𝐹 ⊆ 𝑅𝑗

𝑆 (4.3) 

In order to create a sound and useful maneuver database, three 
questions have to be answered: How to facilitate the nominal set 
point selection from a continuous manifold? How to select the 
exemplary motion primitives, given that a finite number is required 
with which a maximally diverse set of emergency maneuvers should 
be constructible? And how to interconnect the motion primitives, in 
order to fulfill eq. (4.3)? These questions will be discussed in the 
following. 
 
4.1 Sampling the Nominal Set Point Space 
We want the Supervisor module to impose as little constraints as 
possible on the High-Level Decision modules. To facilitate operation 
in a usual manner, High-Level Decision modules should be allowed 
to select nominal set points from a continuous set. It has been shown 
previously [11] that a continuous range of reference trajectories may 
be considered in the reachability analysis, by incorporating both the 
actual vehicle’s state space as well as the reference state space into 
the reachability analysis. Instead of following this approach for the 
complete MDB, we here allow continuous reference trajectory sets 
only for the entry points of the MDB, e.g. the nominal set points.  
Def. 4.4: A set point bundle is defined by a set of initial reference 

states, 𝑅𝑥𝑟𝑒𝑓
(0) ⊂ ℝ10, where one reference trajectory 𝜏 is the 

solution to an IVP with 𝜏(0) ∈ 𝑅𝑥𝑟𝑒𝑓
(0) and 𝜏̇ = 𝑓𝑟𝑒𝑓(𝜏). 

In order to keep a grip on the number of bundles, which are required 
for a gap-free coverage of the ten-dimensional reference trajectory 
space, two observations are useful: First, the dynamics are invariant 
to the dimensions 𝑋, 𝑌, 𝜓. Therefore a single sample 𝑋 = 𝑌 = 𝜓 = 0 
is sufficient. Second, it is desirable to operate the system near a 
steady state surface, which allows constraining 𝑣𝑦 , 𝜔, 𝛿 according to 

the choice of 𝑣𝑥  and a steady-state acceleration 𝑎𝑦
𝑆𝑆.  

Def. 5.5: Using interval sets 𝐼𝑑 ≔ 𝑑𝑚𝑖𝑛  + {[0, Δ𝑑], [Δ𝑑, 2Δ𝑑], … , [(𝑘𝑑 −
1)Δ𝑑, 𝑘𝑑Δ𝑑]}, a vector set 𝐺 = {𝑔1, … , 𝑔𝑘}, 𝑔 ∈ ℝ10 and  ⊕ denoting 

Minkovski addition, the total set of trajectory bundles for coverage of 
the nominal set point space is defined: 

ℜ𝑁𝑀 = {𝑅𝑥𝑟𝑒𝑓

1 (0), … , 𝑅𝑥𝑟𝑒𝑓

𝑁 (0)} ≔ 𝐼𝑣𝑥
× 𝐼𝑎𝑥

× 𝐼𝑎𝑦
𝑆𝑆 × 𝐼𝑤1

× 𝐼𝑤2
⊕ 𝐺 (4.4) 

The sampling of 𝐼𝑣𝑥
× 𝐼𝑎𝑦

𝑆𝑆 defines a two-dimensional surface of 

steady-states. The set 𝐺 adds a certain width in the dimensions 



𝑣𝑦 , 𝜔, 𝛿 to each tile on the surface, in order to allow the nominal set 

point to digress slightly from the steady-state. The resulting structure 
is visualized in fig. 6.  

 
Fig. 6: Projection of 𝑅𝑥𝑟𝑒𝑓

𝑖 (0) sets (nominal set point sets) 

 
Using the values 𝑣𝑥,𝑚𝑖𝑛 = 10𝑚/𝑠, ∆𝑣𝑥 = 1𝑚/𝑠, 𝑣𝑥,𝑚𝑎𝑥 = 20𝑚/𝑠, 

𝑎𝑥,𝑚𝑖𝑛 = −4𝑚/𝑠2, ∆𝑎𝑥 = 1𝑚/𝑠2, 𝑎𝑥,𝑚𝑎𝑥 = 2𝑚/𝑠2, 𝑎𝑦,𝑚𝑖𝑛
𝑆𝑆 = −4𝑚/𝑠2, 

∆𝑎𝑦 = 1𝑚/𝑠2, 𝑎𝑦,𝑚𝑎𝑥
𝑆𝑆 = 4𝑚/𝑠2, as well as three intervals for 𝐼𝑤1

, 𝐼𝑤2
 

each, a cardinality of #ℜ𝑁𝑀 = 6237 nominal set point bundles is 
achieved. Thereby the operational region for nominal driving is 
constrained to 𝑣𝑥 ∈ [10,20]𝑚/𝑠 for this study. In the current set up, it 
is difficult to extend the region to lower velocities, as the dynamic 
bicycle model is hard to analyze with reachability analysis for very 
low velocities.  
To bound the behavior of the disturbed, closed-loop vehicle model, 

when tracking any of the set points 𝜏(0) ∈ 𝑅𝑥𝑟𝑒𝑓
𝑖 (0) of the set point 

bundle, the initial deviation of the vehicle state from the set-point has 
to be defined. We chose an initial tracking-error set 𝐸𝑇0 ⊂ ℝ6. Using 
the measurement inaccuracy 𝐸𝑚 (sec. 3.2), the combined initial state 

set 𝑅𝑥,𝑥𝑟𝑒𝑓
𝑖 (0) ⊂ ℝ16 is defined as: 

𝑅𝑥,𝑥𝑟𝑒𝑓
𝑖 (0) ≔ (

𝑅𝑥𝑟𝑒𝑓,1:6
𝑖 ⊕ 𝐸𝑚 ⊕ 𝐸𝑇0

𝑅𝑥𝑟𝑒𝑓
𝑖                                

) (4.5) 



Reachability analysis is then executed for the combined system 

dynamics (𝑓𝑐
T, 𝑓𝑟𝑒𝑓

T )
T
and the initial reachable set 𝑅𝑥,𝑥𝑟𝑒𝑓

𝑖 (0), so that for 

each nominal set point tile 𝑅𝑥,𝑥𝑟𝑒𝑓
𝑖 (0) ∈ ℜ𝑁𝑀 a motion primitive 𝑚0

𝑖  is 

constructed and placed in the MDB’s set of initial motion primitives 
𝑀0. During operation of the vehicle, a nominal set point 𝜏(0) ∈
𝑅𝑥𝑟𝑒𝑓

𝑖 (0) may be selected for execution, if the measured vehicle state 

𝑥𝑚 is inside the assumed tracking error bounds, 𝑥𝑚 −  𝜏(0) ∈ 𝐸𝑇0
. 

The validity of transitioning from the nominal set point to a 
subsequent emergency maneuver is automatically guaranteed by the 
following construction of the MDB and does not have to be tested 
during operation. 
It is important to note that the reference system 𝑓𝑟𝑒𝑓 is not stabilized. 

Therefore, the reference trajectories in a set point bundle tend to 
spiral away from each other after a short time, leading to increased 
reachable sets and difficulties in the reachability analysis. 
Fortunately, the necessity to keep the nominal maneuvers short is 
mirrored by the High-Level Behaviors’ requirement to fast switching 
between desired set points. We are thus using short nominal set 
points for a duration of only 0.1 𝑠 each.  
 
4.2 Sampling the Emergency Maneuver Set Point Space 
In contrast to the nominal maneuvers, emergency maneuvers are 
here defined to use discretely valued (singular) set points and are 
thus comparatively simple. We create a discrete graph with vertices 

𝑔𝑖 ∈ 𝑉 and directed edges 𝑒 ∈ 𝐸 ⊂ 𝑉2 as a template for the creation 

of the maneuver automaton. Each vertex 𝑔𝑖 = (𝑣𝑥,𝑖 , 𝜑𝑖) represents an 

operating point at maximum absolute acceleration, allocated to 

longitudinal and lateral directions as 𝑎𝑥,𝑖 ≔ −𝑎𝑚𝑎𝑥cos (𝜑𝑖) and 

𝑎𝑦,𝑖 ≔ 𝑎𝑚𝑎𝑥sin (𝜑𝑖). An edge (𝑔𝑖 , 𝑔𝑗) ∈ 𝐸 defines a trajectory, which 

steers from the operating point (𝑣𝑥,𝑖 , 𝜑𝑖) to (𝑣𝑥,𝑗 , 𝜑𝑗). The idea, which 

was already pursued in [12], is to concentrate on maximum 
acceleration trajectories, if the number of selectable trajectories has 
to be limited. The duration of a trajectory is chosen in order to 
respect input change limitations and to comply to the end point 
velocity. An edge is created for each source node 𝑔𝑖 and each target 
acceleration direction 𝜑𝑗. The velocity of the target node 𝑔𝑗 is chosen 

in such a way that the duration of the trajectory is inside a desired 
range. For each node below a certain velocity threshold, an edge to 



the standstill node (0,0) is inserted. The resulting graph is visualized 
in fig. 7. 
 

 
Fig. 7: Nominal set point tiles (red) and emergency maneuver grid 

(blue vertices, blue edges for one example vertex). 
 
To apply the graph structure to the MDB, a function is defined, which 
translates an initial reference state 𝜏(0) and a target vertex into a 

reference trajectory 𝜏 = 𝑅𝐸𝐹(𝜏(0), 𝑔𝑗) by solving the IVP for 𝑓𝑟𝑒𝑓 with 

appropriately chosen, constant 𝑤1 𝑤2. As a concrete parametrization, 
an angular range of 𝜑𝑖 ∈ 0.8[−𝜋, 𝜋] with 11 samples and a velocity 

range with 𝑣𝑥 ∈ [6,20]𝑚/𝑠 with a ∆𝑣𝑥 = 1𝑚/𝑠 subdivision is used. 
 
4.3 Composition of the Maneuver Database  
The main purpose of the maneuver database is to provide fast 
access to formal bounds on the space required for set point 
execution and the admissible order of set point selection. In the 
following offline algorithm this information is assembled. The 

algorithm’s core is a procedure 𝑚𝑖 ← REACH(Ri
𝑆, 𝜏𝑖), which computes 

the sets of reachable states for the disturbed closed loop system 𝑓𝑐, 
as defined in sec. 3, following a reference trajectory 𝜏𝑖. For each 
motion primitive, reachability analysis begins with an initial set of 

vehicle states Ri
𝑆 ⊂ ℝ6 and then computes the subsequent reachable 

sets 𝑅𝑖[𝑘], 1 < 𝑘 < 𝐾𝑖, for all sampled time steps. The resulting 



motion primitive 𝑚𝑖 is supplemented with an over-approximation 𝑃𝑖 of 

all potentially covered 𝑋, 𝑌 positions, based on the reachable sets.  

As defined by eq. (4.3), the choice of the maneuvers’ initial sets Ri
𝑆 is 

essential for the connectivity of the resulting MDB. Previously, an 
algorithm was proposed, which increased the initial set size 
iteratively to re-create the connectivity of a cyclic template graph 
[11]. Here, we consider nominal maneuvers and emergency 
maneuvers separately and make the assumption that an a-cyclic 
graph sufficiently represents possible maneuvers. For nominal 
maneuvers, a connectivity check is postponed to online analysis, as 
it is not safety critical. For emergency operation we assume that 
each motion primitive is a partial braking maneuver, thus always 
reducing the vehicle’s velocity and thereby guaranteeing an a-cyclic 
structure. The proposed algorithm, alg. 1, receives as input the set of 
initial motion primitives 𝑀0, which represent nominal driving as 
defined in sec. 4.1, as well as the template graph 𝑉, 𝐸 as defined in 
sec. 4.2. Due to the a-cyclic nature of the template graph, alg. 1 
computes the total set of motion primitives 𝑀, the set of final motion 

primitives 𝐺 and the transition function ∆ in one pass through 𝑉 in the 
order of decreasing velocity, (line 2). For a template node 𝑔0, all 

incoming motion primitives computed so far are collected, 𝑀𝑖𝑛 (line 3) 
and grouped, (line 4). We define a distance metric based on the 

center and the interval hull of the end set 𝑅𝑖
𝐹 of a maneuver 𝑚𝑖. The 

procedure 𝐶 ← CLUSTER(𝑀𝑖𝑛), 𝐶 ∈ ℕ#𝑀𝑖𝑛 uses k-means clustering to  
group the incoming motion primitives according to this metric, 
resulting in groups of motion primitives 𝑀𝑖𝑛

𝑐  with similar end sets, (line 

6). The vector of indices 𝐶 links a maneuver 𝑚𝑗 to its cluster and the 

associated centroid maneuver 𝑚𝐶(𝑗). For a group 𝑀𝑖𝑛
𝑐 , the hull 𝑅0

𝑐 of 

the end sets of all associated maneuvers is computed so that 

𝑚𝑗 ∈ 𝑀𝑖𝑛
𝑐 ⟹ 𝑅𝑗

𝐹 ⊆ 𝑅0
𝑐 is guaranteed, (line 7). The algorithm then 

attempts to create one motion primitive per edge in the template 
graph, which starts at 𝑔0: Based on the target velocity and 

acceleration direction of the node 𝑔1, REF creates a reference 
trajectory as a continuation of the reference trajectory of the group’s 
centroid motion primitive, and a new motion primitive 𝑚𝑘 is thus 

created, (line 10). If the reachable sets of 𝑚𝑘 guarantee compliance 

with all dynamics constraints, as computed by VALIDATE, 𝑚𝑘 is 
admitted,  (line 11-14). In line 15, connections are created from all 
incoming motion primitives of this group, to all valid outgoing motion 
primitives, as eq. (4.3) is guaranteed by construction, (line 7).  
 



 
Goal motion primitives are created based on their reference velocity 
at the end point. Further post-processing steps may imbue the MDB 
with additional information, as for example a precomputed heuristic 
value for the online graph search, or they could enforce that only 
motion primitives are contained, which eventually lead to a standstill. 
Applying the algorithm to the concrete numbers given above yields a 
database with a total number of #𝑀 = 12,434 motion primitives and 

#(𝑀\𝑀0\G) = 5,469 intermediate motion primitives.  
 

 𝐂𝐎𝐌𝐏𝐔𝐓𝐄_𝐌𝐃𝐁(𝑉, 𝐸, 𝑀0) 

1 𝑀 ← 𝑀0 
2 For each 𝑔0 ∈ 𝑉, ordered by 𝑣𝑥(𝑔0), decreasing  

3  𝑀𝑖𝑛 ← {𝑚𝑗 ∈ 𝑀 | 𝑒𝑛𝑑𝑠𝐴𝑡(𝑚𝑗, 𝑔0)}  

4  𝐶 ← CLUSTER(𝑀𝑖𝑛) 

5  For each unique 𝑐 ∈ 𝐶  

6   𝑀𝑖𝑛
𝑐 ← {𝑚𝑗 ∈ 𝑀𝑖𝑛|𝐶(𝑗) = 𝑐} 

7   𝑅0
𝑐 ← HULL({𝑅𝑗

𝐹| 𝑚𝑗 ∈ 𝑀𝑖𝑛
𝑐 }) 

8   𝑀𝑜𝑢𝑡
𝑐 ← { } 

9   For each 𝑔1 ∈ 𝑉, if (𝑔0, 𝑔1) ∈ 𝐸, then 

10   𝑚𝑘 ← REACH (𝑅0
𝑐 , REF(𝜏𝑐(𝑡𝐾𝑐

), 𝑔1)) 

11   If VALIDATE(𝑚𝑘), then 
12     𝑀𝑜𝑢𝑡

𝑐 ← 𝑀𝑜𝑢𝑡
𝑐  ∪ {𝑚𝑘} 

13     𝑀 ← 𝑀 ∪ {𝑚𝑘} 
14     If 𝑣𝑥(𝑔1) ≤ 𝑣𝑚𝑖𝑛, then 𝐺 ← 𝐺 ∪ {𝑚𝑘} 
15  ∆ ← ∆  ∪ 𝑀𝑖𝑛

𝑐 × 𝑀𝑜𝑢𝑡
𝑐   

Alg. 1: Computes a maneuver database based on an a-cyclic 
template graph structure and a set of initial motion primitives. 
 

5. Constraints: Interaction and Cooperation 

The purpose of the Constraints module is to supply information to the 
planner, which allows discriminating between admissible and 
inadmissible motions of the vehicle, according to the current traffic 

situation. A set 𝐹 ⊂ ℝ3 has to be computed, which describes the 
forbidden 𝑋, 𝑌, 𝑡 region. Besides static constraints resulting from lane 
boundaries, it is especially interesting to consider the forbidden 
region resulting from possible actions of other traffic participants as 
well as the exchange of guarantees between cooperating vehicles, 
which either decrease or increase the size of 𝐹. The following sec. 



5.1 defines 𝐹 in a non-cooperative setting, where vehicles do not 
exchange information, but may nonetheless interact without colliding 
(merge into gaps) based on static assumptions. Sec. 5.2 defines a 
cooperation scheme based on contracts between vehicles, as well 
as the changes to 𝐹, which are required to represent the contracts. 
Sec. 5.3 proposes a C2C-message based realization of the 
cooperation scheme for automated vehicles and 5.4 proposes a 
realization based on implicit communication, in order facilitate a 
certain degree of cooperation between vehicles, where no direct 
communication channel is available, (e.g. between automated 
vehicles and human drivers). 
 
5.1 Conservative Predictions 
It is certainly possible to find conservative bounds on the behavior of 
other traffic participants by considering physically imposed 
acceleration limits only. But, as can be readily imagined, the 
exclusive use of acceleration bounds results in huge reachable sets, 
which cover the entire drivable area after short time. A remedy is to 
introduce additional constraints, as for example in [13], which may 
include speed limits or non-intersection constraints between third-
party vehicles or third-party vehicles and static environment features, 
(e.g. lane boundaries), as well as legal constraints, to structure the 
possible behavior of other traffic participants. For the presented 
approach acceleration limits are further restricted by considering lane 
assignments and road traffic regulations.  
According to §7 (5) StVO, a lane change may only be executed if no 
other traffic participants are endangered and if the lane change has 
been timely and clearly indicated. Interpreting that a vehicle 
executing a lane change has to guarantee safety of the lane change, 
admits the assumption that other vehicles either stick to their lane or 
are already certain about the safety of their lane change. In the 
following, the standard prediction is therefore that vehicles stick to 
their lane, if they do not indicate and if they have not yet begun 
leaving their lane. 
Def. 5.1: A lane with index 𝑘 out of all lanes 𝐾 is defined to have a 

shape parametrized by the distance 𝑠 along the lane center 𝑐𝑘: ℝ →

ℝ2 and a lateral offset 𝑛𝑘(𝑠) ∈ ℝ2 with 𝑛𝑘(𝑠) ⊥
𝜕𝑐𝑘(𝑠) 

𝜕𝑠
, which extends 

to the lane boundary. A cross section through the lane at 𝑠 is: 

𝐿𝑘(𝑠) ≔ 𝑐𝑘(𝑠) ⨁ [−1,1] ∙ 𝑛𝑘(𝑠) (5.1) 
Def. 5.2: A vehicle of possible initial positions 𝑆0 ⊂ ℝ, initial velocities 

𝑑𝑆0 ⊂ ℝ, with length 2𝑙, predicted after 𝑡0 along a lane 𝑘, reserves a 



space 𝑋̂𝐿𝑘
(𝑡) at time 𝑡, if a set of additional constraints Γ = {C1, 𝐶2 … } 

is applied: 

𝑋̂𝐿𝑘
(𝑡;  𝑡0, 𝑆0, 𝑑𝑆0, Γ) ≔ {𝐿𝑘(𝑠(𝑡)⨁ [−𝑙, 𝑙])|  𝑡 > 𝑡0 ⋀ Ci ∈ Γ

𝑖

} (5.2) 

We use the following constraints, in order to fix the initial state and to 
bound the acceleration: 

𝐶0: 𝑠(𝑡0) ∈ 𝑆0 ∧ 𝑠̇(𝑡0) ∈ 𝑑𝑆0 (5.3) 
𝐶𝑎: 𝑎𝑚𝑖𝑛 ≤ 𝑠̈(𝑡) ≤ 𝑎𝑚𝑎𝑥 (5.4) 

Predictions of type 𝑋̂𝐿𝑘
(𝑡;  𝑡0, 𝑆0, 𝑑𝑆0, {C0, 𝐶𝑎}) extend along the lane 

ad infinitum and thereby prevent any lane changes of the ego vehicle 
to a lane occupied by following, non-communicating or human-
steered cars: Their prediction would invalidate any emergency 
maneuvers reaching 𝑣 = 0 in the target lane. In order to resolve this 
issue, we demand that each traffic participant maintains an 
emergency maneuver, which could bring it to a standstill under a 
velocity dependent time bound and furthermore that the traffic 
participant must be able to detect a lane change onto its lane early 
enough to react by applying a moderate deceleration 𝑎𝑏. Therefore 
the following, additional constraint on the velocity is defined, using a 
reaction delay 𝑇𝑟, a local speed limit 𝑣𝑚𝑎𝑥(𝑠) and the moderate 

braking capability 𝑎𝑏 < 0 with 𝑎𝑚𝑖𝑛 < 𝑎𝑏: 

𝐶𝑣: 𝑠̇(𝑡) ≤ max(0, 𝑣𝑚𝑎𝑥(𝑠(𝑡)) + 𝑎𝑏 ∙ 𝑚𝑎𝑥(0, 𝑡 − 𝑡0 − 𝑇𝑟)) (5.5) 

An interesting question is which values are acceptable for interaction 
with human drivers: Using a high 𝑇𝑟 and small |𝑎𝑏| leads to a 

conservative vehicle automation behavior, whereas low 𝑇𝑟 and 

higher |𝑎𝑏| might overestimate human driving capabilities. 

Def. 5.3: A vehicle 𝑖 is matched to a lane, if any part of the vehicle 
body intersects with the lane area. Matched lane indices are 
collected in the set 𝐾𝑖 ⊂ 𝐾.  

Def. 5.4: If the state measurement 𝑠𝑖
𝑚, 𝑣𝑖

𝑚 of a vehicle 𝑖 is attained at 

time 𝑡𝑖
𝑚 with a bounded uncertainty 𝐸𝑠 ⊂ ℝ, 𝐸𝑣 ⊂ ℝ, we define the 

initial sets 𝑆𝑖,0 ≔ 𝑠𝑖
𝑚 ⊕ 𝐸𝑠 and 𝑑𝑆𝑖,0 ≔ 𝑣𝑖

𝑚 ⊕ 𝐸𝑣.  

Def. 5.5: If vehicle 𝑖 is matched to multiple lanes 𝐾𝑖, the total 
prediction set assumed by vehicle  𝑗 is the union of the lane based 

predictions, excepting the lane behind vehicle 𝑗: 

𝑋̂𝑖(𝑡; 𝑡𝑖
𝑚) ≔ ⋃ {

∅                                                 if 𝑘 ∈ 𝐾𝑗 ∧ 𝑠𝑖
𝑚 < 𝑠𝑗

𝑋̂𝐿𝑘
(𝑡;  𝑡𝑖

𝑚, 𝑆𝑖,0, 𝑑𝑆𝑖,0, {C0, 𝐶𝑣 , 𝐶𝑎})      otherwise
𝑘∈𝐾𝑖

 (5.6) 

To satisfy the StVO, we require the ego vehicle to use its indicator 
for a duration of 𝑇𝑖 before it is allowed to traverse to another lane. 



After 𝑇𝑖, 𝑘𝑒𝑔𝑜 + 1 or 𝑘𝑒𝑔𝑜 − 1 are added to 𝐾𝑒𝑔𝑜. If the indicator is 

switched off before entering the adjacent lane, or after leaving the 
previous lane, indices are obviously also removed.  
 

Fig. 8: A lane change without cooperation requirement: Vehicle 𝑣2 

can safely merge into the gap between 𝑣1 and 𝑣3, as an emergency 

maneuver (2) exists, which is non-intersection with predicted sets 𝑋̂𝑣1
 

(1) and 𝑋̂𝑣3
 (3). 

 
Def. 5.5: From the perspective of the ego vehicle with index 𝑗, the 

drivable lane area 𝐷 and its complement, the forbidden region 𝐹𝐷 are 
defined as: 

𝐷(𝑡) ≔ ⋃{𝐿𝑘(𝑠)|𝑠 ≥ 𝑠𝑗(𝑡)}

𝑘∈Kj

, 𝐹𝐷(𝑡) ≔ ℝ3\𝐷(𝑡) (5.7) 

Def. 5.6: The total, non-cooperative constraint set used by vehicle 𝑗 
for planning an emergency maneuver, which starts at 𝑡0 is therefore 
defined as: 

𝐹𝑁𝐶
𝑗 (𝑡; 𝑡0) ≔ FD(𝑡0) ⋃ 𝑋̂𝑖(𝑡; 𝑡𝑖

𝑚)

𝑖∈𝑉\{𝑗}

;   with ∀𝑖 ∈ 𝑉: 𝑡0 > 𝑡𝑖
𝑚 

(5.8) 

This particular definition facilitates non-cooperative lane changes. It 
is based on a global requirement induced by the constraint 𝐶𝑣, which 
limits the size of prediction sets. Depending on the driving 
performance that can be expected from other traffic participants, 
(reaction time and deceleration), the tightness of possible lane 
change maneuvers varies. Fig. 8 shows the prediction sets for 
vehicles 1 and 3 on a lane 𝑘, which allow vehicle 2 to make a lane 

change to lane 𝑘. 
 
5.2 Cooperation  
In order to facilitate cooperation between vehicles, the terms 
reservation, promise, occupied set and promised set are introduced. 



The non-cooperative forbidden set 𝐹𝑁𝐶 is then augmented with 
constraints, which guarantee safety of vehicle cooperation. 

Def. 5.7: A reservation 𝜌𝑟,𝑖 is a tuple consisting of the reservation id 

𝑟, the reserving vehicle id 𝑖, the target lane id 𝑘, a reservation start 

time 𝑡𝑟,0, acceleration bounds 𝑎𝑟,𝑚𝑖𝑛 and 𝑎𝑟,𝑚𝑎𝑥 used to refine 𝐶𝑎, an 

initial position set 𝑆0 and an initial velocity set 𝑑𝑆0: 

𝜌𝑟,𝑖 ≔ {𝑟, 𝑖, 𝑘, 𝑡𝑟,0, 𝑎𝑟,𝑚𝑖𝑛 , 𝑎𝑟,𝑚𝑎𝑥 , 𝑆𝑟,0, 𝑑𝑆𝑟,0} (5.9) 

A reservation 𝜌𝑟,𝑖 is dual to vehicle 𝑖 claiming an option on the space 

on lane 𝑘, which is accessible to it at time 𝑡 according to its latest 

state at time 𝑡𝑖
𝑚.  

Def. 5.8: At first, the preliminary reservation 𝑋̂𝑖
𝑟0 is defined, using a 

lane-based prediction with the modified constraint set Γr =

{𝐶0, 𝐶𝑣 , 𝐶𝑎(𝑎𝑟,𝑚𝑖𝑛 , 𝑎𝑟,𝑚𝑎𝑥)}: 

𝑋̂𝑖
𝑟0(𝑡) ≔  𝑋̂𝐿𝑘

(𝑡; 𝑡𝑟,0, 𝑆𝑟,0, 𝑑𝑆𝑟,0, Γr) (5.10) 

Subsequently, a disjunction is applied, in order to shrink the 
reservation area with newer observations of the vehicle state: If, 
according to the usual lane based prediction, a vehicle 𝑖 is no longer 

able to attain certain states covered by 𝑋̂𝑖
𝑟0, these states do not have 

to be held free by others. 
Def.: Considering a vehicle state measurement at time 𝑡𝑖

𝑚  and a 

prediction based on constraints Γ = {𝐶0, 𝐶𝑣 , 𝐶𝑎}, the area dedicated to 

a reservation with index 𝑟 is:  

𝑋̂𝑖
𝑟(𝑡; 𝑡𝑖

𝑚) ≔  𝑋̂𝑖
𝑟0(𝑡)  ∩ 𝑋̂𝐿𝑘

(𝑡; 𝑡𝑖
𝑚, 𝑠𝑖(𝑡𝑖

𝑚), 𝑣𝑖(𝑡𝑖
𝑚), Γ) (5.11) 

Def. 5.9: The occupied set 𝑂𝑗 of a vehicle 𝑗 is a set of reservations, 

which the vehicle 𝑗 is going to honor: 

𝑂𝑗 = {𝜌1,1, 𝜌2,1, 𝜌1,2, … }  (5.12) 

A vehicle 𝑗 promises not to plan any emergency maneuvers starting 

at a time 𝑡0, which would conflict with reservation sets defined by 
reservations in 𝑂𝑗. In order to maintain invariant safety, a vehicle, 

which wants to add a reservation to its occupied set, has to make 
sure first that it can still construct an emergency maneuver inside the 
augmented forbidden set.  
Def. 5.10: A promise is a tuple consisting of a reservation and the id 
𝑗 of a vehicle, which promises to honor the reservation: 

𝑝𝑗,𝑟,𝑖 ≔ {𝑗, 𝜌𝑟,𝑖} (5.13) 

Def. 5.11: The set 𝑃𝑖 of a vehicle 𝑖 keeps track of received promises, 

which describe that it is known to vehicle 𝑖 that other vehicles 𝑗, ℎ, … 

will honor a certain reservation of vehicle 𝑖: 



𝑃𝑖 = {𝑝𝑗,𝑟,𝑖 , 𝑝ℎ,𝑟,𝑖 , … } (5.14) 

It must be certain, that vehicles 𝑗, ℎ, … honor the reservation: 

{𝑗, 𝜌𝑟,𝑖} ∈ 𝑃𝑖 ⟹ 𝜌𝑟,𝑖 ∈ 𝑂𝑗 (5.15) 

Given a state of the set 𝑃𝑗 of vehicle 𝑗, the constraint set used to 

predict vehicle 𝑖 can be refined: 

𝑋̂𝑖(𝑡; 𝑡𝑖
𝑚, 𝑃𝑗) ≔ 𝑋̂𝑖(𝑡; 𝑡𝑖

𝑚) \ ⋃ 𝑋̂𝑗
𝑟(𝑡, 𝑡𝑗

𝑚)

𝑝𝑖,𝑟,𝑗∈𝑃𝑗

 (5.16) 

The cooperation-based forbidden set used by vehicle 𝑗 for planning 

an emergency maneuver starting at 𝑡0 is therefore defined as: 

𝐹𝐶
𝑗
(𝑡; 𝑡0, 𝑂𝑗 , 𝑃𝑗) ≔ FD(t) ⋃ 𝑋̂𝑖(𝑡; 𝑡𝑖

𝑚, 𝑃𝑗)

𝑖∈𝑉{𝑗}

⋃ 𝑋̂𝑖
𝑟(𝑡, 𝑡𝑖

𝑚)

𝜌𝑟,𝑖∈𝑂𝑗

 (5.16) 

An example of a refined prediction is given in fig. 9: The tighter gap 
between vehicle 1 and 3 becomes accessible to vehicle 2, if vehicle 
1 positively answers the reservation request of vehicle 2. 

Fig. 9: A lane change with cooperation requirement: In order to allow 
vehicle 𝑣2 to safely merge into the smaller gap between 𝑣1 and 𝑣3, a 

reservation 𝜌𝑟,2 (1) has to be defined. If 𝜌𝑟,2 ∈ 𝑂1, then {1, 𝜌𝑟,2} ∈ 𝑃2 is 

admissible, so that 𝑣2 may plan an emergency maneuver based on 

(2), the augmented prediction 𝑋̂1(𝑡; 𝑡1
𝑚, 𝑃2) = 𝑋̂1(𝑡; 𝑡1

𝑚)\𝑋̂2
𝑟(𝑡, 𝑡0). 

 
5.3 Cooperation based on C2C Communication 

It is possible to explicitly transmit intentions between vehicles, which 
are automated and equipped with a C2C module. Therefore a 
realization of the cooperation strategy described in sec. 5.2 is 
straightforward. For the message protocol, we define two types of 
messages, Request and Promise. A Request message contains the 
information of a reservation as defined in eq. (5.9). A vehicle sends a 
Request message via broadcast to all vehicles in its vicinity. Each 
vehicle is assumed to be known by a unique id and is able to keep 
track of all request identifiers, it has been using so far. Therefore the 
combination of request id and vehicle id (𝑟, 𝑖), is unique. Recipients 



of a Request message have the option to ignore the Request, or to 
answer it with a Promise message. A request message is not 
answered, if the recipient cannot or does not want to guarantee 
integrity of the reservation. E.g. vehicle 𝑣3 in fig. 9 could prefer to be 
uncooperative, in order to maintain a steep emergency maneuver.  
A Promise message is realized as a data structure containing the 
three ids (𝑗, 𝑟, 𝑖). If a recipient of a Request decides to reply with a 
Promise message, it has to test first, whether the continued 
existence of at least one emergency maneuver is guaranteed under 
the tightened constraints. The question can be decided by re-
planning the emergency maneuver under the tightened constraints, 
yet this could incur unwanted computational demands if many 
Requests are received. In our approach we opt to test for 
intersection between the current emergency maneuver and the 
reservation to determine whether they are compatible. The test is 
carried out by the Contract Validation module, see fig. 2. This simpler 
test is guaranteeing correctness, but is more conservative and less 
cooperative than re-planning. Before a Promise message is issued, 
the Supervisor module assures that an entry is made in the 
Occupied set. In this way, eq. (5.15) and therefore safety of the 
cooperation is guaranteed, irrespective of the performance of the 
communication layer. Due to the possibility of message loss, eq. 
(5.15) is not an equivalence relationship. The proposed protocol is 
guaranteeing safety and is also resilient to misuse, as reservations 
are limited in space and are only relevant with respect to the 
reserving vehicle’s actual state.  
 
5.4 Implicit Cooperation 

Usually, human drivers initiate cooperation using gestures and the 
vehicle’s indicators. Easily observable and interpretable to the 
automated vehicle is probably only the indicator. Yet even the 
indicator is an implicit form of communication, as relevant details 
considering start time, start velocity or intended accelerations of a 
lane change cannot be unambiguously derived. In order to 
nonetheless show a degree of cooperation towards unequipped 
vehicles, we create reservation requests, when an active indicator is 
observed: If an unequipped vehicle indicates a lane change ahead of 
the automated vehicle, the automated vehicle creates a virtual 
Request message addressed to itself. The reservation is set to the 
earliest lane-change, which is compatible with the current emergency 
maneuver.  



6. Planning  

We use an anytime weighted A* algorithm based on [14], which 
builds a search tree from the motion primitives in the Maneuver 
Database. The concept has been evaluated in [12] and is only 
sketched here. The root node of the search tree is created by 

selecting the nominal set point bundle 𝑅𝑥𝑟𝑒𝑓
𝑖 , which contains the 

High-level behavior’s desired set point 𝜏𝑑𝑒𝑠. The entry-point into the 
MDB is thereby defined. To create edges in the search tree, motion 
primitives are chosen from the transition function ∆ according to their 

predecessor. A motion primitive’s 𝑋, 𝑌, 𝑡-hull is translated and rotated 
according to the progress made by its predecessors. The 
transformed hull is then tested for intersection with the forbidden set 
𝐹𝑐, using hierarchically applied separating axis tests [15]. In case of 
any intersection, the edge is marked invalid and is discarded. As 
soon as a valid edge with a motion primitive from the goal set 𝐺 is 
explored, a safe emergency maneuver and therefore a proof of 
safety for the set point 𝜏𝑑𝑒𝑠 has been found.  
 

 
Fig. 10: Example of a valid emergency maneuver (green)  

under consideration of a forbidden set 𝐹 (red).  
 
The anytime extension is used, in order to give the search a depth-
first bias, as the primary goal is to find any kind of safety proof. While 
the current 𝑇𝑝 time slice is not at its end, the planner refines the 

solution, in order to provide better results in case the emergency 
maneuver should be selected for execution after the next time slice. 
If the planner cannot find a valid emergency maneuver in the current 
time slice, it will break off searching and not provide any update to 



the Dispatcher. The Dispatcher will then automatically switch to 
execution of the previously computed emergency maneuver. 
An example for an emergency maneuver is shown in fig. 10. In the 
given traffic situation, one car is stopped in the lane in front of the 
ego vehicle, and one car is moving in the adjacent (right) lane. The 
maneuver planner is able to compute a valid emergency maneuver, 
which brings the ego-vehicle to a standstill in the adjacent lane. 
 

7. Conclusion and Outlook 

Validation approaches for automated vehicles, which are based 
solely on testing or offline verification are difficult to realize. We 
present a detailed description of an approach to safety analysis for 
cooperative, automated driving, which is based on a combination of 
testing, offline- as well as online-verification. A Supervisor module 
makes use of offline pre-computed results, relates them to the 
current traffic situation and shows whether set points or cooperation 
agreements are safe. While an agreement between two cooperating, 
automated vehicles is rather straight-forward, the cooperation with 
human drivers is difficult: There are no legal guidelines, which driving 
performance can be expected from a human driver, (e.g. reaction 
times). Furthermore, without a direct communication channel, no 
certainty about the intent of human drivers can exist. It is worthwhile 
to further investigate human capabilities as well as implicit 
cooperation based on conservative predictions. The presented 
approach, as well as similar ones, which are making use of over-
approximations are necessarily restrictive on the vehicle behavior. It 
is interesting to further quantify  the limitations, which are resulting 
from over-approximative reachability analysis, the finiteness of 
sampled motion primitive sets and the conservative environment 
prediction. 
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