
Safe Cooperation of Automated Vehicles

Heß, Daniel; Löper, Christian; Hesse, Tobias

DLR / Institute of Transportation Systems

Lilienthalplatz 7, 38108 Braunschweig, +49 531 295 3590,

Daniel.Hess@DLR.de

Abstract

Despite the rapid progress in the development of automated
vehicles, formal verification of the full automated driving process is
unsolved. A promising approach investigated in the EU project
UnCoVerCPS is the combination of online and offline verification as
well as testing steps. The methods developed in UnCoVerCPS are
applicable to many safety critical, cyber physical systems. As a
specific use case, we investigate a system, which facilitates safe
cooperation of automated vehicles. Leveraging a formal proof on a
validated vehicle dynamics model and by negotiating exclusive
access to subsets of the drivable area via Car-to-Car
communication, the freedom of collisions and safe operation in other
respects are ascertained online and during operation of the vehicle.
One of the goals of UnCoVerCPS is to demonstrate applicability of
the online verification approach in a cooperative driving scenario with
two life-sized vehicles. In this paper we discuss the detailed
approach and preliminary results en route to the physical realization.

1. Introduction

A significant challenge in automated vehicle design is validation and
verification. Purely test-based validation approaches tend to require
high numbers of test kilometers, which can be cost and time
intensive. Under assumption of a stochastic model, a recent study
estimates that showing with 95% confidence a fatality rate of
automated cars within 20% of the fatality rate of human operated
cars would require 8.8 billion miles of driving [1]. Furthermore, it is
difficult to transfer results to unforeseen driving situations or new
software configurations.
Results on formal correctness proves exist, but often consider very
limited application scopes or very abstract problem formulations. An
approach for safely entering an intersection is presented in [2]. In [3],

automated cruise control is formally verified by automated theorem
proving, but under the assumptions that all vehicles cooperate and
communicate, and that no unexpected vehicle appears. A verified
synthesis for driving assistance in traffic merging is presented in [4],
but with limited consideration of the underlying dynamics required for
fully automated driving. Offline verification approaches have the
problem that they have to account for all values of a high number of
environmental variables inherent in the application, which is
especially difficult in the combination of mixed continuous and
discrete dynamical systems. The number of variables can be
drastically reduced, if a proof of correctness is attempted for only a
specific instance of traffic situations – this though requires repeated
evaluation for each decision, on-the-fly and during operation of the
vehicle [5].
We present an approach that uses a combination of offline- and
online computation steps to verify on-the-fly that a certain control
action of a vehicle is safe to execute. The pre-computation of verified
motion primitives in an offline step allows replacing time intensive
online computations with simple look-ups. Safety is proven by
calculating an emergency maneuver, which takes the vehicle to a
safe state after execution of the control action, without intersecting
worst case predictions of other vehicles. Using worst case
predictions for the behavior of other traffic participants is in some
situations conservative, yet it avoids the complexity of game theory
or differential games and it allows using very general assumptions
about other traffic participants. The presented approach is
formulated especially for cooperative lane-changing situations and
makes no unrealistic assumptions on communication protocols.
Changing the constraint sets used for emergency maneuver planning
allows to easily extend the approach to other automated driving
applications or vehicle capabilities. The proposed cooperation
scheme considers only direct cooperation in a 1 to 1 relationship.
The approach is intended as a safe basis for more complex, group-
based interactions, as proposed in [6] and further pursued in the
DFG project CoInCiDE. The next section gives an overview of our
approach and the following sections detail the software modules
involved in realization.

2. Approach

We propose a supervisory module, which enforces safety of
cooperative automated driving by filtering the communication

exchange between vehicles, as well as filtering the driving
commands sent to each vehicle’s actuators.

Fig. 1: Layered vehicle control architecture with Supervisor

We make use of a typical, layered architecture, fig. 1, structured
analogously to the driving tasks defined by Donges [7]. At the lowest
level, the physical vehicle accepts control inputs from a stabilizing
control layer. Higher-level driving skills on the short term guidance /
maneuvering layer as well as the navigation layer are subsumed in a
“black box” termed High-level Behaviors. The contained modules are
thought to handle normal, every-day driving situations by providing
nominal set-points, which lead to a good average-case driving
performance by such measures as duration of travel, fuel
consumption, comfort, etc. We will not focus on the inner workings of
the High-level Behaviors, but rather assume them to be given
according to the state of the art. The black box of High-level
behaviors is expected, but not required to provide new, desired set

points 𝜏𝑑𝑒𝑠 with a fixed rate 1/𝑇𝑝, (we use 𝑇𝑝 = 0.1𝑠). In our specific

application, a set point 𝜏𝑑𝑒𝑠 is a reference trajectory of duration 𝑇𝑝.

The Low-level Controller executes at a fixed rate 1/𝑇𝑐 (e.g. here

using 𝑇𝑐 = 0.005𝑠) and stabilizes the vehicle, by regulating the
vehicle’s deviation from the set point (reference trajectory). The Low-
level Controller is assumed to be a “white box” module with known
equations, as it is submitted to formal analysis in order to compute
bounds on the closed-loop performance of the system, see sec. 3
and sec. 4.
In each vehicle, which is following the presented approach, a
Supervisor module is inserted between High-level Behaviors and

Low-level Controller. Every time frame of length 𝑇𝑝, the Supervisor

tries to find a proof of safety for the current desired set point. If
successful, it passes the desired set point to the Low-Level
Controller. This is defined as the nominal operation. Otherwise it
supplies a surrogate - an emergency set point, for which a proof of
safety is known. This is henceforth referred to as emergency
operation.
To facilitate cooperation between automated vehicles, we assume
that information is passed between the vehicles’ respective High-
level Behaviors via wireless car-to-car messages. A Car-to-car
communication module (C2C) realizes the transmission. We require
the C2C module to guarantee that messages are neither altered nor
faked (e.g. by employing asymmetric encryption). Albeit, a guarantee
for successful or timely transmission is not required, as such a
performance could not be reliably provided by contemporary C2C
protocols such as the ETSI GeoNetworking protocol [8]. Agreements
between vehicles are allowed to be safety critical. Therefore the
message content has to be standardized and known to the
Supervisor and all safety critical messages have to be passed
through the Supervisor. The Supervisor keeps track of incoming
messages and transfers outgoing messages only, if it is able to show
that the contained agreement is safe.

2.1 The Supervisor Module
According to the proposed concept, the Supervisor proves safety of
a desired set point 𝜏𝑑𝑒𝑠 by constructing an emergency maneuver,
which can be appended after execution of 𝜏𝑑𝑒𝑠 and which guides the
vehicle to a safe terminal state, (e.g. stand still in a specific lane or
emergency lane). The central part of the Supervisor, fig. 2, is a
Planner, which constructs the emergency maneuvers as a
concatenation of atomic motion primitives supplied by a Maneuver
Database. The Maneuver Database specifies: (1) A finite set of
motion primitives and their according set points (2) A guaranteed
over-approximation of the 𝑋, 𝑌, 𝑡 occupancy of each motion primitive,

meaning the set of positions in 𝑋, 𝑌, 𝑡, which could be covered by any
part of the vehicle body during execution of the motion primitive. (3)
A graph structure that defines admissible orders of execution of the
motion primitives. (4) Entry conditions for starting an emergency
maneuver. The Planner tests the motion primitives’ 𝑋, 𝑌, 𝑡
occupancies against constraints supplied by the Constraints module
and thus creates a tree of admissible emergency maneuvers.

Eventually it finds a valid chain of motion primitives, which starts with
the nominal set point and leads to a safe state. The chain of

reference trajectories is designated 𝜙𝑖 ≔ (𝜏𝑑𝑒𝑠
𝑖 𝜏𝑒𝑚,1

𝑖 𝜏𝑒𝑚,2
𝑖 … 𝜏𝑒𝑚,𝑘

𝑖).

Fig. 2: Sub-components of the Supervisor

If such a solution 𝜙𝑖 is found, it is passed on to the Dispatcher, a
sub-process of the Supervisor, which runs in parallel to the Planner.
The Dispatcher oversees the correct timing of presenting a validated
set point to the Low-level Control module. If 𝜙𝑖 is available on time,

the Dispatcher will replace its previous 𝜙𝑖−1 with 𝜙𝑖 and send the

new first entry 𝜏𝑑𝑒𝑠
𝑖 to the Low-Level Control. This constitutes the

case of normal operation: Each update, the old desired set point 𝜏𝑑𝑒𝑠
𝑖

is directly succeeded by a new desired set point 𝜏𝑑𝑒𝑠
𝑖+1. The High-level

Behavior’s set points are therefore passed through the Supervisor
module with a delay of 𝑇𝑝 and execution of an emergency maneuver

is regularly postponed. In contrast, the emergency case occurs, if the
Dispatcher does not receive 𝜙𝑖 on time. This could be provoked for
numerous reasons, such as a software or timing error in the High-
level Behaviors, excessive complexity of the scene presented to the
Motion Planner, a software error in the Motion Planner or in general
an unsafe set point 𝜏𝑑𝑒𝑠. In the case of such an emergency, the
Dispatcher continues execution of the previous 𝜙𝑖−1, consequently

transitioning from the last desired set point 𝜏𝑑𝑒𝑠 to the first emergency

set point 𝜏𝑒𝑚,1 and so forth. Accordingly the full 𝜙𝑖 will be executed

until the vehicle has reached the safe terminal state, or until a new
and safe desired set point is available.
The proof of correctness of the Supervisor module hinges on the set
point switching of the Dispatcher: Assuming that at a certain time the
Dispatcher is initialized with a first, valid emergency maneuver, one

can show by induction that the vehicle will subsequently execute only
such set points, which are leading to safe states, as witnessed by the
according emergency maneuver.
Of course, one has to guarantee that an emergency maneuver,
which is based on observations at the beginning of motion planning,
will remain safe during execution of the emergency maneuver up to
reaching its terminal state. Depending on the initial velocity and the
number of required steering actions, environment predictions must
be guaranteed to hold for an interval of several seconds. The
Constraints module makes use of worst-case assumptions based on
physical bounds and simple traffic rules to achieve reliable
predictions, see sec. 5. These predictions are presented as 𝑋, 𝑌, 𝑡-
constraints to the Motion Planner. Furthermore, it has to account for
safety critical agreements between cooperating vehicles: The
observation-based 𝑋, 𝑌, 𝑡-constraints are tightened by constraints
from the Occupied set, which represents promises made by the ego-
vehicle to other cooperating vehicles through an outgoing Promise
message. In a symmetric fashion, Promise messages received by
the ego-vehicle are stored in the Promised set: The Constraints
module relaxes the 𝑋, 𝑌, 𝑡-constraints using the information contained
in the Promised set.
In our approach, vehicles are allowed to build their safety critical
emergency maneuver based on information exchanged with C2C
messages. Therefore Promise messages have to constitute a
contract that may not be violated under any circumstances. While a
High-level Behavior might decide that it is desirable (according to
whichever metric) to answer a Request message with a Promise
message, the Supervisor investigates inside the Contract Validation
module whether a Promise is safe for the ego vehicle and whether it
can be honored under all circumstances. Only then, and after saving
the Promise information in the Occupied set, transmission is allowed,
see sec. 5. Looking closer at fig. 2, it is apparent that the Supervisor
does not handle outgoing Request messages. This is due to the fact
that Requests are not safety critical: High-Level Behaviors are free to
issue Requests in any manner that seems appropriate to them.
In order to create a reliable, deterministic interface to the vehicle
dynamics two steps have to be taken during an offline design phase.
First, a closed loop vehicle model with appropriate disturbance
bounds has to be chosen. In sec. 3 the model is defined and the
choice of bounds in relation to the physical vehicle is described.
Based on the disturbed ego vehicle model, sec. 4 describes

computation of a Maneuver Database, which provides deterministic
action sets for nominal and emergency maneuvers. Online, during
operation of the vehicle, a set of constraints is computed, which
takes vehicle cooperation into account. The interaction and
cooperation scheme is described in sec. 5. A maneuver planner,
briefly covered in sec. 6, computes safe emergency maneuvers,
which avoid intersection with the constraint set.

3. Vehicle Model with Error Bounds

The goal of this section is to provide a validated mathematical model
for the vehicle movement. Given the nature of the physical system,
the relation between system and mathematical model can only be
established by a finite set of examples. Conformance Testing is
employed to find and quantify the differences between model and
system, based on a set of exemplary test drives.
We use a planar bicycle model to describe the vehicle motion. Tire
forces are modeled as linear equations, yet the overall model is
nonlinear in the longitudinal velocity and the kinematic equations.

The vehicle state 𝑥𝜖ℝ6 is chosen as 𝑥 = (𝑋, 𝑌, 𝜓, 𝑣𝑥 , 𝑣𝑦 , 𝜔)
T
,

including the vehicle position, the orientation, the relative longitudinal
and lateral velocity as well as the rotational speed. The input space

is 𝑢𝜖ℝ2, 𝑢 = (𝑎𝑥 , 𝛿)T including the desired longitudinal acceleration
and the steering angle. The parameter vector is
𝑝 = (𝜗, 𝑐𝐹 , 𝑐𝑅, 𝑎, 𝑏, 𝜇𝑔) with 𝜗 = 𝑚/𝐽 the ratio of mass and rotational

inertia, 𝑐𝐹 , 𝑐𝑅 the relative front and rear tire stiffness, 𝑎, 𝑏 the distance
from center of gravity to front and rear axle with 𝐿 = 𝑎 + 𝑏. In the

following, the constants 𝑘𝐹 = −𝜇𝑔𝑐𝐹𝑏/𝐿 and 𝑘𝑅 = −𝜇𝑔𝑐𝑅𝑎/𝐿 are

used. A disturbance acting on the vehicle is defined as 𝑒𝑑 =

(𝑒𝑓𝑥 , 𝑒𝑓𝑦𝐹 , 𝑒𝑓𝑦𝑅)
T

𝜖ℝ3, which contains three error forces divided by the

vehicle mass, 𝑒𝑓𝑥 for combined longitudinal errors and 𝑒𝑓𝑦 and 𝑒𝑓𝑦 for

front and rear lateral error terms.
Def. 3.1: The vehicle’s differential equation is defined as 𝑥̇ =
𝑓(𝑥, 𝑢, 𝑒𝑑) = (𝑓1, … , 𝑓6)T with:

𝑓1 = 𝑣𝑥 cos(𝜓) − 𝑣𝑦 sin(𝜓) , 𝑓2 = 𝑣𝑥 sin(𝜓) + 𝑣𝑦 cos(𝜓), (3.1)

𝑓3 = 𝜔, 𝑓4 = 𝑎𝑥 + 𝑒𝑓𝑥, (3.2)

𝑓5 = 𝑘𝐹 (
𝑣𝑦 + 𝑎𝜔

𝑣𝑥

− 𝛿) + 𝑘𝑅

𝑣𝑦 − 𝑏𝜔

𝑣𝑥

− 𝑣𝑥𝜔 + 𝑒𝑓𝑦𝐹 + 𝑒𝑓𝑦𝑅 , (3.3)

𝑓6 = 𝑎𝜗𝑘𝐹 (
𝑣𝑦 + 𝑎𝜔

𝑣𝑥

− 𝛿) − 𝑏𝜗𝑘𝑅

𝑣𝑦 − 𝑏𝜔

𝑣𝑥

 + 𝑎𝜗𝑒𝑓𝑦𝐹 − 𝑏𝜗𝑒𝑓𝑦𝑅 . (3.4)

The parameter vector has been matched to our physical test vehicle,
by minimizing the error between a test-drive recording (open loop)
and the parametrized model. Fig. 3 shows a comparison between
lateral forces estimated from the recording (blue) and the fitted

relative tire stiffness (red). The parameters 𝜗 = 0.64 𝑚−2, 𝑐𝐹 =
10.8 𝑟𝑎𝑑−1, 𝑐𝑅 = 17.8 𝑟𝑎𝑑−1, 𝑎 = 1.16𝑚, 𝑏 = 1.54𝑚, 𝜇𝑔 = 0.8 ∙
9.81𝑚𝑠−2 are used.

Fig. 3: Cornering stiffness (red) matched to test drive data (blue)

3.1 Low-Level Control

Def. 3.2: A reference trajectory 𝜏: ℝ → ℝ10 is defined as a solution to
the initial value problem (IVP) for an error-free vehicle model (𝑒𝑑 ≡ 0)

with the reference state vector 𝑥𝑟𝑒𝑓 = (𝑋, 𝑌, 𝜓, 𝑣𝑥 , 𝑣𝑦 , 𝜔, 𝑎𝑥 , 𝛿, 𝑤1, 𝑤2)
T

containing the reference input 𝑎𝑥 , 𝛿 and the reference input change

𝑤1, 𝑤2 and with the differential equation 𝑥̇𝑟𝑒𝑓 = 𝑓𝑟𝑒𝑓(𝑥𝑟𝑒𝑓):

𝑓𝑟𝑒𝑓 ≔ (𝑓T, 𝑤1, 𝑤2, 0,0)T (3.5)

Def. 3.3: The feedback control function makes use of a nonlinear
transformation of a control point in front of the vehicle similar to [16].

The control point is located a distance 𝜆 ∈ ℝ2 relative to the vehicle
and a reference control point is located 𝜆 relative to the reference
vehicle. The control error is defined as the difference between both
control points, expressed in the local coordinates of the reference

vehicle, using the rotation matrix 𝑅(𝜓) = (
cos (𝜓) −sin (𝜓)

sin (𝜓) cos (𝜓)
):

𝑒𝑡𝑛 ≔ 𝑅(−𝑥3
𝑟𝑒𝑓

) ∙ (𝑥1:2 − 𝑥1:2
𝑟𝑒𝑓

+ 𝑅(𝑥3) ∙ 𝜆) − 𝜆. (3.6)

Def. 3.4: Including a feed-forward and a linear PD feed-back term,

the control function 𝑢 = 𝑐(𝑥, 𝑥𝑟𝑒𝑓) is defined:

𝑐 ≔ 𝑥7:8
𝑟𝑒𝑓

− 𝐾 (𝑒𝑡𝑛
T , 𝑒̇𝑡𝑛

T)T. (3.7)

Def. 3.5: The closed-loop system used for conformance testing and
reachability analysis is defined as the differential equation 𝑓𝑐 with the

exogenous disturbance 𝑒𝑑 and the measurement error 𝑒𝑚𝜖ℝ6:

𝑓𝑐(𝑡, 𝑥, 𝑒𝑚, 𝑒𝑑) = 𝑓 (𝑥, 𝑐 (𝑥 + 𝑒𝑚, 𝑥𝑟𝑒𝑓(𝑡)) , 𝑒𝑑) (3.8)

3.2 Conformance Testing
The goal of conformance testing is to validate the vehicle dynamics
model and to bound the size of measurement errors 𝑒𝑚 and

disturbance 𝑒𝑑 that have to be expected during closed loop operation
of the vehicle. Given a parametrized vehicle model 𝑓𝑐, the error sets

𝐸𝑚 and 𝐸𝑑 with ∀𝑡: 𝑒𝑚(𝑡) ∈ 𝐸𝑚 ∧ 𝑒𝑑(𝑡) ∈ 𝐸𝑑 and some recordings of
test drives of the actual vehicle, the conformance testing step tries to
invalidate the hypothesis that the combination {𝑓𝑐, 𝐸𝑚 , 𝐸𝑑} suffices to
explain the relevant physical processes. If the hypothesis is falsified,
{𝑓𝑐 , 𝐸𝑚, 𝐸𝑑} has to be adapted in the quest for a reliable model. If the
hypothesis cannot be falsified, a certain degree of confidence in the
model is provided, according to the test cases’ density of coverage of
the operational regime of the vehicle. Roehm et. al. [9] describe
different types of conformance relations between model and physical
process. Here, we make use of trace conformance: Given a

measurement trace 𝑌 ∈ ℝ𝑛×𝑘 containing measurements 𝑦 ∈ ℝ𝑛 at

times 𝑇 ∈ ℝ𝑘, the model is conformant, if traces 𝜀𝑚 ∈ 𝐸𝑚
𝑘 and 𝜀𝑑 ∈ 𝐸𝑑

𝑘
exist, for which holds ∀𝑖 < 𝑘:

(𝑌𝑖+1 − 𝜀𝑚,𝑖+1) = (𝑌𝑖 − 𝜀𝑚,𝑖) + ∫ 𝑓𝑐(𝜏, 𝑥(𝜏), 𝜀𝑚,𝑖 , 𝜀𝑑,𝑖)𝑑𝜏
𝑇𝑖+1

𝑇𝑖
. (3.9)

We formulate and solve a constrained optimal control formulation
with local linearization of 𝑓𝑐, in order to find a valid pair 𝜀𝑚, 𝜀𝑑 for each

𝑌. First results haven achieved on real test-drive recordings,
although these are matched against an open loop vehicle model,
instead of using the ultimately desired closed loop formulation. In this
preliminary formulation, 𝑢 has been replaced by the measured
actuator values. As an exemplary test suite, a double lane change
maneuver has been executed at 10m/s for five times. Fig. 4 displays
the estimated state and actuator measurement error traces as well
as disturbance traces. The error traces are conformant with the test
drive recordings according to the error bounds displayed in red. The
bounds derived for the measurement errors are 𝑒̂𝑋,𝑌 = 0.05𝑚, 𝑒̂𝜓 =

 0.5°, 𝑒̂𝑣𝑥 = 0.1𝑚𝑠−1, 𝑒̂𝑣𝑦 = 0.1𝑚𝑠−1, 𝑒̂𝜔 = 0.8°𝑠−1, 𝑒̂𝑎𝑥 = 0.1𝑚𝑠−2, 𝑒̂𝛿 =

1° and 𝑒̂𝑓𝑥 = 0.049𝑚𝑠−2, 𝑒̂𝑓𝑦𝑓 = 0.028𝑚𝑠−2, 𝑒̂𝑓𝑦𝑟 = 0.021𝑚𝑠−2 for the

disturbance errors.

Fig. 4: Conformant error traces for five executions of a double lane

change maneuver

4. Maneuver Database

In our application, the Maneuver Database is used by the Planner as
a deterministic, offline computed control interface to the originally
non-deterministic motion of the physical vehicle. This is achieved by
selecting a set of short, exemplary motions (reference trajectories)
and using Reachability Analysis [10] to compute an upper bound on
the disturbed vehicle’s maximum possible deviation from a
reference. Adding the extent of the vehicle body to this upper bound
yields the area, which has to be reserved for collision-free execution
of a so called motion primitive. A motion planner may then construct
a sufficiently long emergency maneuver as a concatenation of short,
collision-free motion primitives.

Fig. 5: Parallelotope hull of reachable sets (blue) and covered 𝑋, 𝑌, 𝑡

area, 𝑃𝑖 (black), for an exemplary motion primitive

Def. 4.1: A motion primitive 𝑚𝑖 is a tuple consisting of a reference

trajectory 𝜏𝑖: ℝ → ℝ10, the number of sampled time steps 𝐾𝑖, an

ordered list of reachable state sets 𝑅𝑖[∙], 𝑅𝑖[𝑗] ⊂ ℝ𝑛, with 𝑅𝑖[1] = 𝑅𝑖
𝑆

the start set and 𝑅𝑖[𝐾𝑖] = 𝑅𝑖
𝐹 the final reachable state set of the

motion primitive, with one reachable set per time step, as well as the
motion primitive’s 𝑋, 𝑌, 𝑡-hull 𝑃𝑖 ⊂ ℝ3:

𝑚𝑖 ≔ {𝜏𝑖 , 𝐾𝑖 , 𝑅𝑖[∙], 𝑃𝑖}. (4.1)
An exemplary motion primitive is displayed in fig. 5.
Def. 4.2: A Maneuver Database is defined similar to [11] as a tuple:

𝑀𝐷𝐵 ≔ {𝑀, ∆, 𝑀0, 𝐺}, (4.2)

where 𝑀 = {𝑚1, 𝑚2, … } is a finite set of motion primitives, ∆⊆ 𝑀 × 𝑀

is the set of directed transitions between motion primitives, 𝑀0 ⊆ 𝑀
is the set of possible initial motion primitives and 𝐺 ⊆ 𝑀 is the set of
final motion primitives, which lead to a standstill of the vehicle.
Def. 4.3: The Maneuver Database is sound, if all states contained in

a motion primitive’s final reachable set 𝑅𝑖
𝑓
 continue to be pursued

after a transition to the next motion primitive, i.e. if the first motion’s
final set is completely contained in the second motion’s start set:

 (𝑚𝑖 , 𝑚𝑗) ∈ ∆ ⟹ 𝑅𝑖
𝐹 ⊆ 𝑅𝑗

𝑆 (4.3)

In order to create a sound and useful maneuver database, three
questions have to be answered: How to facilitate the nominal set
point selection from a continuous manifold? How to select the
exemplary motion primitives, given that a finite number is required
with which a maximally diverse set of emergency maneuvers should
be constructible? And how to interconnect the motion primitives, in
order to fulfill eq. (4.3)? These questions will be discussed in the
following.

4.1 Sampling the Nominal Set Point Space
We want the Supervisor module to impose as little constraints as
possible on the High-Level Decision modules. To facilitate operation
in a usual manner, High-Level Decision modules should be allowed
to select nominal set points from a continuous set. It has been shown
previously [11] that a continuous range of reference trajectories may
be considered in the reachability analysis, by incorporating both the
actual vehicle’s state space as well as the reference state space into
the reachability analysis. Instead of following this approach for the
complete MDB, we here allow continuous reference trajectory sets
only for the entry points of the MDB, e.g. the nominal set points.
Def. 4.4: A set point bundle is defined by a set of initial reference

states, 𝑅𝑥𝑟𝑒𝑓
(0) ⊂ ℝ10, where one reference trajectory 𝜏 is the

solution to an IVP with 𝜏(0) ∈ 𝑅𝑥𝑟𝑒𝑓
(0) and 𝜏̇ = 𝑓𝑟𝑒𝑓(𝜏).

In order to keep a grip on the number of bundles, which are required
for a gap-free coverage of the ten-dimensional reference trajectory
space, two observations are useful: First, the dynamics are invariant
to the dimensions 𝑋, 𝑌, 𝜓. Therefore a single sample 𝑋 = 𝑌 = 𝜓 = 0
is sufficient. Second, it is desirable to operate the system near a
steady state surface, which allows constraining 𝑣𝑦 , 𝜔, 𝛿 according to

the choice of 𝑣𝑥 and a steady-state acceleration 𝑎𝑦
𝑆𝑆.

Def. 5.5: Using interval sets 𝐼𝑑 ≔ 𝑑𝑚𝑖𝑛 + {[0, Δ𝑑], [Δ𝑑, 2Δ𝑑], … , [(𝑘𝑑 −
1)Δ𝑑, 𝑘𝑑Δ𝑑]}, a vector set 𝐺 = {𝑔1, … , 𝑔𝑘}, 𝑔 ∈ ℝ10 and ⊕ denoting

Minkovski addition, the total set of trajectory bundles for coverage of
the nominal set point space is defined:

ℜ𝑁𝑀 = {𝑅𝑥𝑟𝑒𝑓

1 (0), … , 𝑅𝑥𝑟𝑒𝑓

𝑁 (0)} ≔ 𝐼𝑣𝑥
× 𝐼𝑎𝑥

× 𝐼𝑎𝑦
𝑆𝑆 × 𝐼𝑤1

× 𝐼𝑤2
⊕ 𝐺 (4.4)

The sampling of 𝐼𝑣𝑥
× 𝐼𝑎𝑦

𝑆𝑆 defines a two-dimensional surface of

steady-states. The set 𝐺 adds a certain width in the dimensions

𝑣𝑦 , 𝜔, 𝛿 to each tile on the surface, in order to allow the nominal set

point to digress slightly from the steady-state. The resulting structure
is visualized in fig. 6.

Fig. 6: Projection of 𝑅𝑥𝑟𝑒𝑓

𝑖 (0) sets (nominal set point sets)

Using the values 𝑣𝑥,𝑚𝑖𝑛 = 10𝑚/𝑠, ∆𝑣𝑥 = 1𝑚/𝑠, 𝑣𝑥,𝑚𝑎𝑥 = 20𝑚/𝑠,

𝑎𝑥,𝑚𝑖𝑛 = −4𝑚/𝑠2, ∆𝑎𝑥 = 1𝑚/𝑠2, 𝑎𝑥,𝑚𝑎𝑥 = 2𝑚/𝑠2, 𝑎𝑦,𝑚𝑖𝑛
𝑆𝑆 = −4𝑚/𝑠2,

∆𝑎𝑦 = 1𝑚/𝑠2, 𝑎𝑦,𝑚𝑎𝑥
𝑆𝑆 = 4𝑚/𝑠2, as well as three intervals for 𝐼𝑤1

, 𝐼𝑤2

each, a cardinality of #ℜ𝑁𝑀 = 6237 nominal set point bundles is
achieved. Thereby the operational region for nominal driving is
constrained to 𝑣𝑥 ∈ [10,20]𝑚/𝑠 for this study. In the current set up, it
is difficult to extend the region to lower velocities, as the dynamic
bicycle model is hard to analyze with reachability analysis for very
low velocities.
To bound the behavior of the disturbed, closed-loop vehicle model,

when tracking any of the set points 𝜏(0) ∈ 𝑅𝑥𝑟𝑒𝑓
𝑖 (0) of the set point

bundle, the initial deviation of the vehicle state from the set-point has
to be defined. We chose an initial tracking-error set 𝐸𝑇0 ⊂ ℝ6. Using
the measurement inaccuracy 𝐸𝑚 (sec. 3.2), the combined initial state

set 𝑅𝑥,𝑥𝑟𝑒𝑓
𝑖 (0) ⊂ ℝ16 is defined as:

𝑅𝑥,𝑥𝑟𝑒𝑓
𝑖 (0) ≔ (

𝑅𝑥𝑟𝑒𝑓,1:6
𝑖 ⊕ 𝐸𝑚 ⊕ 𝐸𝑇0

𝑅𝑥𝑟𝑒𝑓
𝑖

) (4.5)

Reachability analysis is then executed for the combined system

dynamics (𝑓𝑐
T, 𝑓𝑟𝑒𝑓

T)
T
and the initial reachable set 𝑅𝑥,𝑥𝑟𝑒𝑓

𝑖 (0), so that for

each nominal set point tile 𝑅𝑥,𝑥𝑟𝑒𝑓
𝑖 (0) ∈ ℜ𝑁𝑀 a motion primitive 𝑚0

𝑖 is

constructed and placed in the MDB’s set of initial motion primitives
𝑀0. During operation of the vehicle, a nominal set point 𝜏(0) ∈
𝑅𝑥𝑟𝑒𝑓

𝑖 (0) may be selected for execution, if the measured vehicle state

𝑥𝑚 is inside the assumed tracking error bounds, 𝑥𝑚 − 𝜏(0) ∈ 𝐸𝑇0
.

The validity of transitioning from the nominal set point to a
subsequent emergency maneuver is automatically guaranteed by the
following construction of the MDB and does not have to be tested
during operation.
It is important to note that the reference system 𝑓𝑟𝑒𝑓 is not stabilized.

Therefore, the reference trajectories in a set point bundle tend to
spiral away from each other after a short time, leading to increased
reachable sets and difficulties in the reachability analysis.
Fortunately, the necessity to keep the nominal maneuvers short is
mirrored by the High-Level Behaviors’ requirement to fast switching
between desired set points. We are thus using short nominal set
points for a duration of only 0.1 𝑠 each.

4.2 Sampling the Emergency Maneuver Set Point Space
In contrast to the nominal maneuvers, emergency maneuvers are
here defined to use discretely valued (singular) set points and are
thus comparatively simple. We create a discrete graph with vertices

𝑔𝑖 ∈ 𝑉 and directed edges 𝑒 ∈ 𝐸 ⊂ 𝑉2 as a template for the creation

of the maneuver automaton. Each vertex 𝑔𝑖 = (𝑣𝑥,𝑖 , 𝜑𝑖) represents an

operating point at maximum absolute acceleration, allocated to

longitudinal and lateral directions as 𝑎𝑥,𝑖 ≔ −𝑎𝑚𝑎𝑥cos (𝜑𝑖) and

𝑎𝑦,𝑖 ≔ 𝑎𝑚𝑎𝑥sin (𝜑𝑖). An edge (𝑔𝑖 , 𝑔𝑗) ∈ 𝐸 defines a trajectory, which

steers from the operating point (𝑣𝑥,𝑖 , 𝜑𝑖) to (𝑣𝑥,𝑗 , 𝜑𝑗). The idea, which

was already pursued in [12], is to concentrate on maximum
acceleration trajectories, if the number of selectable trajectories has
to be limited. The duration of a trajectory is chosen in order to
respect input change limitations and to comply to the end point
velocity. An edge is created for each source node 𝑔𝑖 and each target
acceleration direction 𝜑𝑗. The velocity of the target node 𝑔𝑗 is chosen

in such a way that the duration of the trajectory is inside a desired
range. For each node below a certain velocity threshold, an edge to

the standstill node (0,0) is inserted. The resulting graph is visualized
in fig. 7.

Fig. 7: Nominal set point tiles (red) and emergency maneuver grid

(blue vertices, blue edges for one example vertex).

To apply the graph structure to the MDB, a function is defined, which
translates an initial reference state 𝜏(0) and a target vertex into a

reference trajectory 𝜏 = 𝑅𝐸𝐹(𝜏(0), 𝑔𝑗) by solving the IVP for 𝑓𝑟𝑒𝑓 with

appropriately chosen, constant 𝑤1 𝑤2. As a concrete parametrization,
an angular range of 𝜑𝑖 ∈ 0.8[−𝜋, 𝜋] with 11 samples and a velocity

range with 𝑣𝑥 ∈ [6,20]𝑚/𝑠 with a ∆𝑣𝑥 = 1𝑚/𝑠 subdivision is used.

4.3 Composition of the Maneuver Database
The main purpose of the maneuver database is to provide fast
access to formal bounds on the space required for set point
execution and the admissible order of set point selection. In the
following offline algorithm this information is assembled. The

algorithm’s core is a procedure 𝑚𝑖 ← REACH(Ri
𝑆, 𝜏𝑖), which computes

the sets of reachable states for the disturbed closed loop system 𝑓𝑐,
as defined in sec. 3, following a reference trajectory 𝜏𝑖. For each
motion primitive, reachability analysis begins with an initial set of

vehicle states Ri
𝑆 ⊂ ℝ6 and then computes the subsequent reachable

sets 𝑅𝑖[𝑘], 1 < 𝑘 < 𝐾𝑖, for all sampled time steps. The resulting

motion primitive 𝑚𝑖 is supplemented with an over-approximation 𝑃𝑖 of

all potentially covered 𝑋, 𝑌 positions, based on the reachable sets.

As defined by eq. (4.3), the choice of the maneuvers’ initial sets Ri
𝑆 is

essential for the connectivity of the resulting MDB. Previously, an
algorithm was proposed, which increased the initial set size
iteratively to re-create the connectivity of a cyclic template graph
[11]. Here, we consider nominal maneuvers and emergency
maneuvers separately and make the assumption that an a-cyclic
graph sufficiently represents possible maneuvers. For nominal
maneuvers, a connectivity check is postponed to online analysis, as
it is not safety critical. For emergency operation we assume that
each motion primitive is a partial braking maneuver, thus always
reducing the vehicle’s velocity and thereby guaranteeing an a-cyclic
structure. The proposed algorithm, alg. 1, receives as input the set of
initial motion primitives 𝑀0, which represent nominal driving as
defined in sec. 4.1, as well as the template graph 𝑉, 𝐸 as defined in
sec. 4.2. Due to the a-cyclic nature of the template graph, alg. 1
computes the total set of motion primitives 𝑀, the set of final motion

primitives 𝐺 and the transition function ∆ in one pass through 𝑉 in the
order of decreasing velocity, (line 2). For a template node 𝑔0, all

incoming motion primitives computed so far are collected, 𝑀𝑖𝑛 (line 3)
and grouped, (line 4). We define a distance metric based on the

center and the interval hull of the end set 𝑅𝑖
𝐹 of a maneuver 𝑚𝑖. The

procedure 𝐶 ← CLUSTER(𝑀𝑖𝑛), 𝐶 ∈ ℕ#𝑀𝑖𝑛 uses k-means clustering to
group the incoming motion primitives according to this metric,
resulting in groups of motion primitives 𝑀𝑖𝑛

𝑐 with similar end sets, (line

6). The vector of indices 𝐶 links a maneuver 𝑚𝑗 to its cluster and the

associated centroid maneuver 𝑚𝐶(𝑗). For a group 𝑀𝑖𝑛
𝑐 , the hull 𝑅0

𝑐 of

the end sets of all associated maneuvers is computed so that

𝑚𝑗 ∈ 𝑀𝑖𝑛
𝑐 ⟹ 𝑅𝑗

𝐹 ⊆ 𝑅0
𝑐 is guaranteed, (line 7). The algorithm then

attempts to create one motion primitive per edge in the template
graph, which starts at 𝑔0: Based on the target velocity and

acceleration direction of the node 𝑔1, REF creates a reference
trajectory as a continuation of the reference trajectory of the group’s
centroid motion primitive, and a new motion primitive 𝑚𝑘 is thus

created, (line 10). If the reachable sets of 𝑚𝑘 guarantee compliance

with all dynamics constraints, as computed by VALIDATE, 𝑚𝑘 is
admitted, (line 11-14). In line 15, connections are created from all
incoming motion primitives of this group, to all valid outgoing motion
primitives, as eq. (4.3) is guaranteed by construction, (line 7).

Goal motion primitives are created based on their reference velocity
at the end point. Further post-processing steps may imbue the MDB
with additional information, as for example a precomputed heuristic
value for the online graph search, or they could enforce that only
motion primitives are contained, which eventually lead to a standstill.
Applying the algorithm to the concrete numbers given above yields a
database with a total number of #𝑀 = 12,434 motion primitives and

#(𝑀\𝑀0\G) = 5,469 intermediate motion primitives.

 𝐂𝐎𝐌𝐏𝐔𝐓𝐄_𝐌𝐃𝐁(𝑉, 𝐸, 𝑀0)

1 𝑀 ← 𝑀0
2 For each 𝑔0 ∈ 𝑉, ordered by 𝑣𝑥(𝑔0), decreasing

3 𝑀𝑖𝑛 ← {𝑚𝑗 ∈ 𝑀 | 𝑒𝑛𝑑𝑠𝐴𝑡(𝑚𝑗, 𝑔0)}

4 𝐶 ← CLUSTER(𝑀𝑖𝑛)

5 For each unique 𝑐 ∈ 𝐶

6 𝑀𝑖𝑛
𝑐 ← {𝑚𝑗 ∈ 𝑀𝑖𝑛|𝐶(𝑗) = 𝑐}

7 𝑅0
𝑐 ← HULL({𝑅𝑗

𝐹| 𝑚𝑗 ∈ 𝑀𝑖𝑛
𝑐 })

8 𝑀𝑜𝑢𝑡
𝑐 ← { }

9 For each 𝑔1 ∈ 𝑉, if (𝑔0, 𝑔1) ∈ 𝐸, then

10 𝑚𝑘 ← REACH (𝑅0
𝑐 , REF(𝜏𝑐(𝑡𝐾𝑐

), 𝑔1))

11 If VALIDATE(𝑚𝑘), then
12 𝑀𝑜𝑢𝑡

𝑐 ← 𝑀𝑜𝑢𝑡
𝑐 ∪ {𝑚𝑘}

13 𝑀 ← 𝑀 ∪ {𝑚𝑘}
14 If 𝑣𝑥(𝑔1) ≤ 𝑣𝑚𝑖𝑛, then 𝐺 ← 𝐺 ∪ {𝑚𝑘}
15 ∆ ← ∆ ∪ 𝑀𝑖𝑛

𝑐 × 𝑀𝑜𝑢𝑡
𝑐

Alg. 1: Computes a maneuver database based on an a-cyclic
template graph structure and a set of initial motion primitives.

5. Constraints: Interaction and Cooperation

The purpose of the Constraints module is to supply information to the
planner, which allows discriminating between admissible and
inadmissible motions of the vehicle, according to the current traffic

situation. A set 𝐹 ⊂ ℝ3 has to be computed, which describes the
forbidden 𝑋, 𝑌, 𝑡 region. Besides static constraints resulting from lane
boundaries, it is especially interesting to consider the forbidden
region resulting from possible actions of other traffic participants as
well as the exchange of guarantees between cooperating vehicles,
which either decrease or increase the size of 𝐹. The following sec.

5.1 defines 𝐹 in a non-cooperative setting, where vehicles do not
exchange information, but may nonetheless interact without colliding
(merge into gaps) based on static assumptions. Sec. 5.2 defines a
cooperation scheme based on contracts between vehicles, as well
as the changes to 𝐹, which are required to represent the contracts.
Sec. 5.3 proposes a C2C-message based realization of the
cooperation scheme for automated vehicles and 5.4 proposes a
realization based on implicit communication, in order facilitate a
certain degree of cooperation between vehicles, where no direct
communication channel is available, (e.g. between automated
vehicles and human drivers).

5.1 Conservative Predictions
It is certainly possible to find conservative bounds on the behavior of
other traffic participants by considering physically imposed
acceleration limits only. But, as can be readily imagined, the
exclusive use of acceleration bounds results in huge reachable sets,
which cover the entire drivable area after short time. A remedy is to
introduce additional constraints, as for example in [13], which may
include speed limits or non-intersection constraints between third-
party vehicles or third-party vehicles and static environment features,
(e.g. lane boundaries), as well as legal constraints, to structure the
possible behavior of other traffic participants. For the presented
approach acceleration limits are further restricted by considering lane
assignments and road traffic regulations.
According to §7 (5) StVO, a lane change may only be executed if no
other traffic participants are endangered and if the lane change has
been timely and clearly indicated. Interpreting that a vehicle
executing a lane change has to guarantee safety of the lane change,
admits the assumption that other vehicles either stick to their lane or
are already certain about the safety of their lane change. In the
following, the standard prediction is therefore that vehicles stick to
their lane, if they do not indicate and if they have not yet begun
leaving their lane.
Def. 5.1: A lane with index 𝑘 out of all lanes 𝐾 is defined to have a

shape parametrized by the distance 𝑠 along the lane center 𝑐𝑘: ℝ →

ℝ2 and a lateral offset 𝑛𝑘(𝑠) ∈ ℝ2 with 𝑛𝑘(𝑠) ⊥
𝜕𝑐𝑘(𝑠)

𝜕𝑠
, which extends

to the lane boundary. A cross section through the lane at 𝑠 is:

𝐿𝑘(𝑠) ≔ 𝑐𝑘(𝑠) ⨁ [−1,1] ∙ 𝑛𝑘(𝑠) (5.1)
Def. 5.2: A vehicle of possible initial positions 𝑆0 ⊂ ℝ, initial velocities

𝑑𝑆0 ⊂ ℝ, with length 2𝑙, predicted after 𝑡0 along a lane 𝑘, reserves a

space 𝑋̂𝐿𝑘
(𝑡) at time 𝑡, if a set of additional constraints Γ = {C1, 𝐶2 … }

is applied:

𝑋̂𝐿𝑘
(𝑡; 𝑡0, 𝑆0, 𝑑𝑆0, Γ) ≔ {𝐿𝑘(𝑠(𝑡)⨁ [−𝑙, 𝑙])| 𝑡 > 𝑡0 ⋀ Ci ∈ Γ

𝑖

} (5.2)

We use the following constraints, in order to fix the initial state and to
bound the acceleration:

𝐶0: 𝑠(𝑡0) ∈ 𝑆0 ∧ 𝑠̇(𝑡0) ∈ 𝑑𝑆0 (5.3)
𝐶𝑎: 𝑎𝑚𝑖𝑛 ≤ 𝑠̈(𝑡) ≤ 𝑎𝑚𝑎𝑥 (5.4)

Predictions of type 𝑋̂𝐿𝑘
(𝑡; 𝑡0, 𝑆0, 𝑑𝑆0, {C0, 𝐶𝑎}) extend along the lane

ad infinitum and thereby prevent any lane changes of the ego vehicle
to a lane occupied by following, non-communicating or human-
steered cars: Their prediction would invalidate any emergency
maneuvers reaching 𝑣 = 0 in the target lane. In order to resolve this
issue, we demand that each traffic participant maintains an
emergency maneuver, which could bring it to a standstill under a
velocity dependent time bound and furthermore that the traffic
participant must be able to detect a lane change onto its lane early
enough to react by applying a moderate deceleration 𝑎𝑏. Therefore
the following, additional constraint on the velocity is defined, using a
reaction delay 𝑇𝑟, a local speed limit 𝑣𝑚𝑎𝑥(𝑠) and the moderate

braking capability 𝑎𝑏 < 0 with 𝑎𝑚𝑖𝑛 < 𝑎𝑏:

𝐶𝑣: 𝑠̇(𝑡) ≤ max(0, 𝑣𝑚𝑎𝑥(𝑠(𝑡)) + 𝑎𝑏 ∙ 𝑚𝑎𝑥(0, 𝑡 − 𝑡0 − 𝑇𝑟)) (5.5)

An interesting question is which values are acceptable for interaction
with human drivers: Using a high 𝑇𝑟 and small |𝑎𝑏| leads to a

conservative vehicle automation behavior, whereas low 𝑇𝑟 and

higher |𝑎𝑏| might overestimate human driving capabilities.

Def. 5.3: A vehicle 𝑖 is matched to a lane, if any part of the vehicle
body intersects with the lane area. Matched lane indices are
collected in the set 𝐾𝑖 ⊂ 𝐾.

Def. 5.4: If the state measurement 𝑠𝑖
𝑚, 𝑣𝑖

𝑚 of a vehicle 𝑖 is attained at

time 𝑡𝑖
𝑚 with a bounded uncertainty 𝐸𝑠 ⊂ ℝ, 𝐸𝑣 ⊂ ℝ, we define the

initial sets 𝑆𝑖,0 ≔ 𝑠𝑖
𝑚 ⊕ 𝐸𝑠 and 𝑑𝑆𝑖,0 ≔ 𝑣𝑖

𝑚 ⊕ 𝐸𝑣.

Def. 5.5: If vehicle 𝑖 is matched to multiple lanes 𝐾𝑖, the total
prediction set assumed by vehicle 𝑗 is the union of the lane based

predictions, excepting the lane behind vehicle 𝑗:

𝑋̂𝑖(𝑡; 𝑡𝑖
𝑚) ≔ ⋃ {

∅ if 𝑘 ∈ 𝐾𝑗 ∧ 𝑠𝑖
𝑚 < 𝑠𝑗

𝑋̂𝐿𝑘
(𝑡; 𝑡𝑖

𝑚, 𝑆𝑖,0, 𝑑𝑆𝑖,0, {C0, 𝐶𝑣 , 𝐶𝑎}) otherwise
𝑘∈𝐾𝑖

 (5.6)

To satisfy the StVO, we require the ego vehicle to use its indicator
for a duration of 𝑇𝑖 before it is allowed to traverse to another lane.

After 𝑇𝑖, 𝑘𝑒𝑔𝑜 + 1 or 𝑘𝑒𝑔𝑜 − 1 are added to 𝐾𝑒𝑔𝑜. If the indicator is

switched off before entering the adjacent lane, or after leaving the
previous lane, indices are obviously also removed.

Fig. 8: A lane change without cooperation requirement: Vehicle 𝑣2

can safely merge into the gap between 𝑣1 and 𝑣3, as an emergency

maneuver (2) exists, which is non-intersection with predicted sets 𝑋̂𝑣1

(1) and 𝑋̂𝑣3
 (3).

Def. 5.5: From the perspective of the ego vehicle with index 𝑗, the

drivable lane area 𝐷 and its complement, the forbidden region 𝐹𝐷 are
defined as:

𝐷(𝑡) ≔ ⋃{𝐿𝑘(𝑠)|𝑠 ≥ 𝑠𝑗(𝑡)}

𝑘∈Kj

, 𝐹𝐷(𝑡) ≔ ℝ3\𝐷(𝑡) (5.7)

Def. 5.6: The total, non-cooperative constraint set used by vehicle 𝑗
for planning an emergency maneuver, which starts at 𝑡0 is therefore
defined as:

𝐹𝑁𝐶
𝑗 (𝑡; 𝑡0) ≔ FD(𝑡0) ⋃ 𝑋̂𝑖(𝑡; 𝑡𝑖

𝑚)

𝑖∈𝑉\{𝑗}

; with ∀𝑖 ∈ 𝑉: 𝑡0 > 𝑡𝑖
𝑚

(5.8)

This particular definition facilitates non-cooperative lane changes. It
is based on a global requirement induced by the constraint 𝐶𝑣, which
limits the size of prediction sets. Depending on the driving
performance that can be expected from other traffic participants,
(reaction time and deceleration), the tightness of possible lane
change maneuvers varies. Fig. 8 shows the prediction sets for
vehicles 1 and 3 on a lane 𝑘, which allow vehicle 2 to make a lane

change to lane 𝑘.

5.2 Cooperation
In order to facilitate cooperation between vehicles, the terms
reservation, promise, occupied set and promised set are introduced.

The non-cooperative forbidden set 𝐹𝑁𝐶 is then augmented with
constraints, which guarantee safety of vehicle cooperation.

Def. 5.7: A reservation 𝜌𝑟,𝑖 is a tuple consisting of the reservation id

𝑟, the reserving vehicle id 𝑖, the target lane id 𝑘, a reservation start

time 𝑡𝑟,0, acceleration bounds 𝑎𝑟,𝑚𝑖𝑛 and 𝑎𝑟,𝑚𝑎𝑥 used to refine 𝐶𝑎, an

initial position set 𝑆0 and an initial velocity set 𝑑𝑆0:

𝜌𝑟,𝑖 ≔ {𝑟, 𝑖, 𝑘, 𝑡𝑟,0, 𝑎𝑟,𝑚𝑖𝑛 , 𝑎𝑟,𝑚𝑎𝑥 , 𝑆𝑟,0, 𝑑𝑆𝑟,0} (5.9)

A reservation 𝜌𝑟,𝑖 is dual to vehicle 𝑖 claiming an option on the space

on lane 𝑘, which is accessible to it at time 𝑡 according to its latest

state at time 𝑡𝑖
𝑚.

Def. 5.8: At first, the preliminary reservation 𝑋̂𝑖
𝑟0 is defined, using a

lane-based prediction with the modified constraint set Γr =

{𝐶0, 𝐶𝑣 , 𝐶𝑎(𝑎𝑟,𝑚𝑖𝑛 , 𝑎𝑟,𝑚𝑎𝑥)}:

𝑋̂𝑖
𝑟0(𝑡) ≔ 𝑋̂𝐿𝑘

(𝑡; 𝑡𝑟,0, 𝑆𝑟,0, 𝑑𝑆𝑟,0, Γr) (5.10)

Subsequently, a disjunction is applied, in order to shrink the
reservation area with newer observations of the vehicle state: If,
according to the usual lane based prediction, a vehicle 𝑖 is no longer

able to attain certain states covered by 𝑋̂𝑖
𝑟0, these states do not have

to be held free by others.
Def.: Considering a vehicle state measurement at time 𝑡𝑖

𝑚 and a

prediction based on constraints Γ = {𝐶0, 𝐶𝑣 , 𝐶𝑎}, the area dedicated to

a reservation with index 𝑟 is:

𝑋̂𝑖
𝑟(𝑡; 𝑡𝑖

𝑚) ≔ 𝑋̂𝑖
𝑟0(𝑡) ∩ 𝑋̂𝐿𝑘

(𝑡; 𝑡𝑖
𝑚, 𝑠𝑖(𝑡𝑖

𝑚), 𝑣𝑖(𝑡𝑖
𝑚), Γ) (5.11)

Def. 5.9: The occupied set 𝑂𝑗 of a vehicle 𝑗 is a set of reservations,

which the vehicle 𝑗 is going to honor:

𝑂𝑗 = {𝜌1,1, 𝜌2,1, 𝜌1,2, … } (5.12)

A vehicle 𝑗 promises not to plan any emergency maneuvers starting

at a time 𝑡0, which would conflict with reservation sets defined by
reservations in 𝑂𝑗. In order to maintain invariant safety, a vehicle,

which wants to add a reservation to its occupied set, has to make
sure first that it can still construct an emergency maneuver inside the
augmented forbidden set.
Def. 5.10: A promise is a tuple consisting of a reservation and the id
𝑗 of a vehicle, which promises to honor the reservation:

𝑝𝑗,𝑟,𝑖 ≔ {𝑗, 𝜌𝑟,𝑖} (5.13)

Def. 5.11: The set 𝑃𝑖 of a vehicle 𝑖 keeps track of received promises,

which describe that it is known to vehicle 𝑖 that other vehicles 𝑗, ℎ, …

will honor a certain reservation of vehicle 𝑖:

𝑃𝑖 = {𝑝𝑗,𝑟,𝑖 , 𝑝ℎ,𝑟,𝑖 , … } (5.14)

It must be certain, that vehicles 𝑗, ℎ, … honor the reservation:

{𝑗, 𝜌𝑟,𝑖} ∈ 𝑃𝑖 ⟹ 𝜌𝑟,𝑖 ∈ 𝑂𝑗 (5.15)

Given a state of the set 𝑃𝑗 of vehicle 𝑗, the constraint set used to

predict vehicle 𝑖 can be refined:

𝑋̂𝑖(𝑡; 𝑡𝑖
𝑚, 𝑃𝑗) ≔ 𝑋̂𝑖(𝑡; 𝑡𝑖

𝑚) \ ⋃ 𝑋̂𝑗
𝑟(𝑡, 𝑡𝑗

𝑚)

𝑝𝑖,𝑟,𝑗∈𝑃𝑗

 (5.16)

The cooperation-based forbidden set used by vehicle 𝑗 for planning

an emergency maneuver starting at 𝑡0 is therefore defined as:

𝐹𝐶
𝑗
(𝑡; 𝑡0, 𝑂𝑗 , 𝑃𝑗) ≔ FD(t) ⋃ 𝑋̂𝑖(𝑡; 𝑡𝑖

𝑚, 𝑃𝑗)

𝑖∈𝑉{𝑗}

⋃ 𝑋̂𝑖
𝑟(𝑡, 𝑡𝑖

𝑚)

𝜌𝑟,𝑖∈𝑂𝑗

 (5.16)

An example of a refined prediction is given in fig. 9: The tighter gap
between vehicle 1 and 3 becomes accessible to vehicle 2, if vehicle
1 positively answers the reservation request of vehicle 2.

Fig. 9: A lane change with cooperation requirement: In order to allow
vehicle 𝑣2 to safely merge into the smaller gap between 𝑣1 and 𝑣3, a

reservation 𝜌𝑟,2 (1) has to be defined. If 𝜌𝑟,2 ∈ 𝑂1, then {1, 𝜌𝑟,2} ∈ 𝑃2 is

admissible, so that 𝑣2 may plan an emergency maneuver based on

(2), the augmented prediction 𝑋̂1(𝑡; 𝑡1
𝑚, 𝑃2) = 𝑋̂1(𝑡; 𝑡1

𝑚)\𝑋̂2
𝑟(𝑡, 𝑡0).

5.3 Cooperation based on C2C Communication

It is possible to explicitly transmit intentions between vehicles, which
are automated and equipped with a C2C module. Therefore a
realization of the cooperation strategy described in sec. 5.2 is
straightforward. For the message protocol, we define two types of
messages, Request and Promise. A Request message contains the
information of a reservation as defined in eq. (5.9). A vehicle sends a
Request message via broadcast to all vehicles in its vicinity. Each
vehicle is assumed to be known by a unique id and is able to keep
track of all request identifiers, it has been using so far. Therefore the
combination of request id and vehicle id (𝑟, 𝑖), is unique. Recipients

of a Request message have the option to ignore the Request, or to
answer it with a Promise message. A request message is not
answered, if the recipient cannot or does not want to guarantee
integrity of the reservation. E.g. vehicle 𝑣3 in fig. 9 could prefer to be
uncooperative, in order to maintain a steep emergency maneuver.
A Promise message is realized as a data structure containing the
three ids (𝑗, 𝑟, 𝑖). If a recipient of a Request decides to reply with a
Promise message, it has to test first, whether the continued
existence of at least one emergency maneuver is guaranteed under
the tightened constraints. The question can be decided by re-
planning the emergency maneuver under the tightened constraints,
yet this could incur unwanted computational demands if many
Requests are received. In our approach we opt to test for
intersection between the current emergency maneuver and the
reservation to determine whether they are compatible. The test is
carried out by the Contract Validation module, see fig. 2. This simpler
test is guaranteeing correctness, but is more conservative and less
cooperative than re-planning. Before a Promise message is issued,
the Supervisor module assures that an entry is made in the
Occupied set. In this way, eq. (5.15) and therefore safety of the
cooperation is guaranteed, irrespective of the performance of the
communication layer. Due to the possibility of message loss, eq.
(5.15) is not an equivalence relationship. The proposed protocol is
guaranteeing safety and is also resilient to misuse, as reservations
are limited in space and are only relevant with respect to the
reserving vehicle’s actual state.

5.4 Implicit Cooperation

Usually, human drivers initiate cooperation using gestures and the
vehicle’s indicators. Easily observable and interpretable to the
automated vehicle is probably only the indicator. Yet even the
indicator is an implicit form of communication, as relevant details
considering start time, start velocity or intended accelerations of a
lane change cannot be unambiguously derived. In order to
nonetheless show a degree of cooperation towards unequipped
vehicles, we create reservation requests, when an active indicator is
observed: If an unequipped vehicle indicates a lane change ahead of
the automated vehicle, the automated vehicle creates a virtual
Request message addressed to itself. The reservation is set to the
earliest lane-change, which is compatible with the current emergency
maneuver.

6. Planning

We use an anytime weighted A* algorithm based on [14], which
builds a search tree from the motion primitives in the Maneuver
Database. The concept has been evaluated in [12] and is only
sketched here. The root node of the search tree is created by

selecting the nominal set point bundle 𝑅𝑥𝑟𝑒𝑓
𝑖 , which contains the

High-level behavior’s desired set point 𝜏𝑑𝑒𝑠. The entry-point into the
MDB is thereby defined. To create edges in the search tree, motion
primitives are chosen from the transition function ∆ according to their

predecessor. A motion primitive’s 𝑋, 𝑌, 𝑡-hull is translated and rotated
according to the progress made by its predecessors. The
transformed hull is then tested for intersection with the forbidden set
𝐹𝑐, using hierarchically applied separating axis tests [15]. In case of
any intersection, the edge is marked invalid and is discarded. As
soon as a valid edge with a motion primitive from the goal set 𝐺 is
explored, a safe emergency maneuver and therefore a proof of
safety for the set point 𝜏𝑑𝑒𝑠 has been found.

Fig. 10: Example of a valid emergency maneuver (green)

under consideration of a forbidden set 𝐹 (red).

The anytime extension is used, in order to give the search a depth-
first bias, as the primary goal is to find any kind of safety proof. While
the current 𝑇𝑝 time slice is not at its end, the planner refines the

solution, in order to provide better results in case the emergency
maneuver should be selected for execution after the next time slice.
If the planner cannot find a valid emergency maneuver in the current
time slice, it will break off searching and not provide any update to

the Dispatcher. The Dispatcher will then automatically switch to
execution of the previously computed emergency maneuver.
An example for an emergency maneuver is shown in fig. 10. In the
given traffic situation, one car is stopped in the lane in front of the
ego vehicle, and one car is moving in the adjacent (right) lane. The
maneuver planner is able to compute a valid emergency maneuver,
which brings the ego-vehicle to a standstill in the adjacent lane.

7. Conclusion and Outlook

Validation approaches for automated vehicles, which are based
solely on testing or offline verification are difficult to realize. We
present a detailed description of an approach to safety analysis for
cooperative, automated driving, which is based on a combination of
testing, offline- as well as online-verification. A Supervisor module
makes use of offline pre-computed results, relates them to the
current traffic situation and shows whether set points or cooperation
agreements are safe. While an agreement between two cooperating,
automated vehicles is rather straight-forward, the cooperation with
human drivers is difficult: There are no legal guidelines, which driving
performance can be expected from a human driver, (e.g. reaction
times). Furthermore, without a direct communication channel, no
certainty about the intent of human drivers can exist. It is worthwhile
to further investigate human capabilities as well as implicit
cooperation based on conservative predictions. The presented
approach, as well as similar ones, which are making use of over-
approximations are necessarily restrictive on the vehicle behavior. It
is interesting to further quantify the limitations, which are resulting
from over-approximative reachability analysis, the finiteness of
sampled motion primitive sets and the conservative environment
prediction.

8. Acknowledgements

The authors gratefully acknowledge financial support by the
European Commission project UnCoVerCPS under grant number
643921.

References

[1] Kalra, N., Paddock, S., Driving to Safety: How Many Miles of Driving Would It
Take to Demonstrate Autonomous Vehicle Reliability? RAND Corporation,
Santa Monica, 2016.

[2] Colombo, A., Del Vecchio, D., Least Restrictive Supervisors for Intersection
Collision Avoidance: A Scheduling Approach, IEEE Transactions on Automatic
Control, vol. 60, no. 6, pp. 1515-1527, 2015.

[3] Loos, M. S., Platzer, A., Nistor, L., Adaptive Cruise Control: Hybrid, Distributed,
and now Formally Verified, Proc. of the 17th International Symposium on Formal
Methods, pp. 42-56, 2011.

[4] Damm, W., Peter, H. J., Rakow, J., Westphal, B., Can we build it: Formal
synthesis of control strategies for cooperative driver assistance systems,
Mathematical Structures in Computer Science, vol. 23, pp. 676-725, 2013.

[5] Althoff, M., Dolan, J. M., Online Verification of Automated Road Vehicles Using
Reachability Analysis, IEEE Transactions on Robotics, vol. 30, no. 4, pp. 903-
918, 2014.

[6] Jain, V., Heß, D., Löper, C., Frankiewicz, T., Hesse, T.: Hierarchical Approach
for Safety of Multiple Cooperating Vehicles. Symposium
Automatisierungssysteme, Assistenzsysteme und eingebettete Systeme für
Transportmittel, (AAET), Feb. 8./9., Braunschweig, 2017.

[7] Donges, E., Aspekte der Aktiven Sicherheit bei der Führung von
Personenkraftwagen. Automobil-Industrie 27, pp. 183-190, 1982.

[8] Final draft EN 302-636-4-1 v1.2.1, Intelligent Transport Systems (ITS); Vehicular
Communications; GeoNetworking; Part4: Geographical addressing and point-to-
multipoint communications; Sub-part 1: Media-Independent Functionality. ETSI
2014.

[9] Roehm, H., Oehlerking, J., Woehrle, M., Althoff, M., Reachset Conformance
Testing of Hybrid Automata, Proc. of Hybrid Systems: Computation and Control,
pp. 277-286, 2016.

[10] Althoff, M., An Introduction to CORA 2015, Proc. of the Workshop on Applied
Verification for Continuous and Hybrid Systems, 2015.

[11] Heß, D., Althoff, M., Sattel, T., Formal Verification of Maneuver Automata for
Parameterized Motion Primitives, Proc. of the IEEE/RSJ International
Conference on Intelligent Robots and Systems, pp. 1474-1481, 2014.

[12] Salvado, J., and Heß, D., Contingency planning for automated vehicles. Proc. of
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
2016.

[13] Althoff, M., Heß, D., Gambert, F., Road Occupancy Prediction of Traffic
Participants, Proc. of the 16th International IEEE Conference on Intelligent
Transportation Systems, pp. 99-105, 2013.

[14] Hansen, E. A., Zhou, R., Anytime Heuristic Search, Journal of Artificial
Intelligence Research, vol. 28, pp. 267-297, 2007.

[15] Gottschalk, S., Ming, C. L., Manocha, D., OBBTree: A hierarchical structure for
rapid interference detection. Proc. of the 23rd annual conference on Computer
graphics and interactive techniques. ACM, 1996.

[16] Werling, M., Ein neues Konzept für die Trajektoriengenerierung und -
stabilisierung in zeitkritischen Verkehrsszenarien. Schriftenreihe des Instituts für
Angewandte Informatik / Automatisierungstechnik, KiT, Band 34, 2010.

