
 

 

Master’s Thesis 
 DLR-IB-RM-OP-2017-17 
 

 

 

 

 

 

 

Tube-based Model Predictive 
Control for the Approach 
Maneuver of a Spacecraft to a 
free-tumbling Target Satellite 
 
 

 
Caroline Buckner 
 
DLR German Aerospace Center 
Robotics and Mechatronics Center 
 
Weßling 

 





 

 

 
 

 

 

 

 

 

 Freigabe: Der Bearbeiter: Unterschriften 

 

 

 Caroline Elizabeth Buckner  

 

 Betreuer: 

 

 Roberto Lampariello 

 

 

 Der Institutsdirektor 

 

 Dr. Alin Albu-Schäffer  

 

 

 Dieser Bericht enthält  206 Seiten,  55  Abbildungen und 5 Tabellen 

 

 BJ.: 2017 

 IB.Nr.: DLR-IB-RM-OP-2017-17 

 

 Institut für Robotik und Mechatronik 

Ort: Oberpfaffenhofen   Datum: 26.01.2017   Bearbeiter: Caroline Elizabeth Buckner   Zeichen:  

MASTERARBEIT 

 

TUBE-BASED MODEL PREDICTIVE 

CONTROL FOR THE APPROACH 

MANEUVER OF A SPACECRAFT TO A 

FREE-TUMBLING TARGET SATELLITE 

 

 





 

i 

 

Declaration 

This thesis is a presentation of my original research work. Wherever contributions of others are involved, every 

effort is made to indicate this clearly, with due reference to the literature, and acknowledgement of collaborative 

research and discussions.  

 

 

Munich, ………………………    ….………………………….  
         (Date)      (Author’s signature) 

 

 

 

 

 

 

 





 

iii 

 

Acknowledgements 

I would first like to thank my thesis supervisor, Roberto Lampariello, for his patience, support, guidance, and 

help in channelling my sometimes very scattered thoughts. His encouragement and feedback has been 

invaluable. I am genuinely looking forward to continuing to work with him. 

 

I would also like to thank my family. Nik, Rufus, Sophie, and Anni, have provided me with a constant 

environment of love and support, stayed up the long nights with me, and, kept me in coffee and chocolate. 

Thank you for doing this with me. This would not have been possible without you. To my parents, my brothers, 

and Hartmut and Heidi, thank you for your constant support, in its various forms, and interest in my work. I love 

you all. 

 

  

 





 

v 

 

Abstract 

Rendezvous and proximity maneuvers are historically critical operations. Such maneuvers include the 

approach and docking of a transport vessel to the International Space Station or the recovery of a tumbling 

satellite. Numerous control approaches have been proposed in recent decades for handling such maneuvers. 

In the past decade, many of these approaches have been based in Model Predictive Control. In this work, a 

tube-based robust model predictive controller is proposed for the robust control of a rendezvous maneuver.  

 

In the first part of this thesis, the theory for rendezvous and proximity maneuvers and for nominal and tube-

based robust model predictive control is presented. Tube-based robust model predictive control is then applied 

to the well-studied double pendulum problem. The design methodology and controller are implemented in 

software, and the controller is simulated to reproduce the results presented for the application of this control 

method to the double pendulum problem in literature.  

 

In the second part of this thesis, the tube-based robust model predictive control framework is applied to a 

rendezvous maneuver with the unresponsive, tumbling Envisat. Uncertainty is introduced to this application of 

robust model predictive control through the uncertainty in the motion of the Envisat satellite. The chaser 

spacecraft will be required to successfully rendezvous with Envisat while tracking a pre-determined optimal 

trajectory and robustly satisfying the system constraints.  

 

Keywords: tube-based robust model predictive control, satellite, tumbling, rendezvous, reference tracking  

 

 

 

 





 

vii 

 

Contents 

 

Declaration ........................................................................................................................................................... i 

Acknowledgements ............................................................................................................................................ iii 

Abstract ............................................................................................................................................................... v 

Contents ........................................................................................................................................................... vii 

List of figures ..................................................................................................................................................... xi 

List of tables ................................................................................................................................................... xi 

List of figures ................................................................................................................................................. xi 

List of symbols ................................................................................................................................................. xiii 

A. General ................................................................................................................................................ xiii 

B. Rendezvous maneuvers ...................................................................................................................... xiii 

C. MPC theory .......................................................................................................................................... xiii 

D. Tube-based robust MPC theory ........................................................................................................... xv 

E. Problem formulation and control strategy ............................................................................................ xvi 

Nomenclature ................................................................................................................................................. xvii 

1 Introduction ................................................................................................................................................ 1 

1.1 Background and motivation ............................................................................................................... 1 

1.2 Study objectives and contributions of this thesis ............................................................................... 1 

1.3 Software packages ............................................................................................................................ 2 

1.4 Plan of development .......................................................................................................................... 3 

1.5 Literature Review ............................................................................................................................... 3 

Part 1: Theoretical Background ......................................................................................................................... 7 

2 Spacecraft Rendezvous and Proximity Operations ................................................................................... 9 

2.1 Spacecraft rendezvous and docking ................................................................................................. 9 

2.2 RPO maneuvers and dynamics ....................................................................................................... 12 

2.3 Control of RPO maneuvers .............................................................................................................. 15 

3 Model Predictive Control .......................................................................................................................... 17 

3.1 The receding horizon ....................................................................................................................... 17 

3.2 Regulation vs Tracking .................................................................................................................... 18 

3.3 Prediction ......................................................................................................................................... 19 

3.3.1 Dynamic modelling .................................................................................................................. 19 

3.3.2 Linearity of the model .............................................................................................................. 21 

3.3.3 Prediction modelling ................................................................................................................ 22 



viii  Contents 

DLR-IB-RM-OP-2017-17 

3.4 Objective function ............................................................................................................................ 23 

3.5 Optimization ..................................................................................................................................... 24 

3.6 Reference tracking problem ............................................................................................................. 24 

3.6.1 The reference tracking problem ............................................................................................... 25 

3.6.2 Nominal MPC for tracking ........................................................................................................ 25 

3.6.3 Offset problem in the presence of uncertainty ......................................................................... 26 

3.7 Implementation of the receding horizon .......................................................................................... 27 

3.7.1 Prediction horizon selection ..................................................................................................... 27 

3.7.2 Control horizon selection ......................................................................................................... 28 

3.8 Sampling time .................................................................................................................................. 28 

3.9 Constraint handling .......................................................................................................................... 28 

3.9.1 Hard and soft constraints ......................................................................................................... 29 

3.9.2 Common constraints ................................................................................................................ 29 

3.9.3 Incorporating input and state constraints ................................................................................. 29 

4 Tube-based Robust Model Predictive Control ......................................................................................... 31 

4.1 Uncertainty modelling ...................................................................................................................... 32 

4.2 Robust positively invariant sets ....................................................................................................... 33 

4.3 Tube-based robust MPC for regulation ........................................................................................... 33 

4.3.1 The system definition ............................................................................................................... 35 

4.3.2 The robust control strategy ...................................................................................................... 35 

4.3.3 The cost function ..................................................................................................................... 36 

4.3.4 The nominal optimal control problem ...................................................................................... 37 

4.3.5 The robust controller ................................................................................................................ 38 

4.4 The state-feedback tube-based robust MPC for tracking ................................................................ 39 

4.4.1 The system definition ............................................................................................................... 40 

4.4.2 Set point characterization ........................................................................................................ 40 

4.4.3 The nominal controller ............................................................................................................. 41 

5 A practical exposition of Tube-based Robust MPC for tracking: The double pendulum ......................... 45 

5.1 Defining the problem ........................................................................................................................ 45 

5.2 The tube of trajectories .................................................................................................................... 46 

5.2.1 The disturbance rejection gain ................................................................................................. 47 

5.2.2 The mRPI set 𝒵 ....................................................................................................................... 50 

5.2.3 Construction of the tube ........................................................................................................... 52 

5.2.4 The tightened constraints 𝕏 and 𝕌 .......................................................................................... 53 

5.3 Set point parameterization and the artificial steady state ................................................................ 54 

5.4 The terminal set and constraints ..................................................................................................... 54 

5.4.1 LQR gain and terminal weight ................................................................................................. 55 

5.4.2 Terminal set 𝕏𝑓 ........................................................................................................................ 55 

5.5 Nominal model predictive controller ................................................................................................ 57 

5.6 Controller simulation ........................................................................................................................ 58 

Part 2: Application of tube-based robust MPC to a satellite rendezvous maneuver ....................................... 63 



Contents   ix 

DLR-IB-RM-OP-2017-17 

6 Platform and RPO formulation ................................................................................................................. 65 

6.1 The target satellite ........................................................................................................................... 66 

6.2 The chaser satellite .......................................................................................................................... 67 

6.3 The rendezvous model .................................................................................................................... 68 

6.4 Rendezvous constraints .................................................................................................................. 69 

6.5 Uncertainty characterization ............................................................................................................ 70 

6.5.1 Uncertainty boundary ............................................................................................................... 70 

6.5.2 Disturbances applied to the system ......................................................................................... 74 

7 Controller formulation .............................................................................................................................. 77 

7.1 The system ...................................................................................................................................... 77 

7.2 Minimal robust positively invariant set ............................................................................................. 80 

7.3 Nominal constraints ......................................................................................................................... 81 

7.4 Invariant set for tracking and admissible sets .................................................................................. 82 

7.5 Tube-based robust model predictive controller ............................................................................... 86 

8 Simulation ................................................................................................................................................ 89 

8.1 Simulator formulation ....................................................................................................................... 89 

8.2 Common simulation components .................................................................................................... 91 

8.3 Simulation results and analysis ....................................................................................................... 92 

8.3.1 Nominal operation .................................................................................................................... 93 

8.3.2 Robust operation with successful rendezvous ........................................................................ 94 

8.3.3 Testing the limits of the implemented controller .................................................................... 105 

8.3.4 On characterizing the limits of the controller ......................................................................... 115 

8.3.5 Validation ............................................................................................................................... 117 

8.3.6 Timing statistics ..................................................................................................................... 120 

9 Conclusion ............................................................................................................................................. 121 

10 References......................................................................................................................................... 123 

Appendix: Software ........................................................................................................................................ 127 

A. Double Pendulum .............................................................................................................................. 127 

B. Satellite Rendezvous controller design ............................................................................................. 139 

C. Satellite Rendezvous simulator ......................................................................................................... 153 

D. Validation ........................................................................................................................................... 186 

 





 

xi 

 

List of figures 

List of tables 

Table 5-1 Double pendulum simulation parameters ........................................................................................................ 61 

Table 7-1 Nominal state and input constraints ................................................................................................................ 82 

Table 7-2 Nominal predictive controller design parameters ............................................................................................ 87 

Table 7-3 Additional robust controller design parameters............................................................................................... 88 

Table 8-1 Timing metrics for 600 s reference trajectory, from 100 simulations ............................................................ 120 

 

List of figures 

Figure 2-1 Phases of spacecraft rendezvous and docking procedure, adapted from [43] ............................................... 10 

Figure 2-2 Definition of reference frames and vectors..................................................................................................... 13 

Figure 3-1 Jogger scenario ................................................................................................................................................ 17 

Figure 3-2 Receding horizon: horizon length 5 time steps ............................................................................................... 18 

Figure 3-3 System disturbances ........................................................................................................................................ 20 

Figure 4-1 State trajectories and state tube, adapted from [14] ...................................................................................... 34 

Figure 4-2 Outer bounding tube centered on nominal response ..................................................................................... 34 

Figure 5-1 Minimal Robust Positively Invariant Set .......................................................................................................... 52 

Figure 5-2 Tightened constraints ...................................................................................................................................... 53 

Figure 5-3 Invariant set for tracking projected onto X-space ........................................................................................... 57 

Figure 5-4 Controlled evolution pendulum system .......................................................................................................... 59 

Figure 5-5 Input evolution of pendulum system .............................................................................................................. 60 

Figure 6-1 Effect of uncertainty in motion of the target on the position of the docking point ........................................ 65 

Figure 6-2 Envisat [68] ...................................................................................................................................................... 66 

Figure 6-3 Grasping point proposals under the e.Deorbit Phase A, adapted from [69] ................................................... 68 

Figure 6-4 Nominal and disturbed motion ....................................................................................................................... 71 

Figure 6-5 Propagation of uncertainty .............................................................................................................................. 73 

Figure 6-6 Position disturbance at time k ......................................................................................................................... 74 

Figure 7-1 Disturbance bound, (left) dimensions 1-3, (right) dimensions 4-6 .................................................................. 79 

Figure 7-2 Determination of appropriate 𝜆 for minimization of 𝛾 ................................................................................... 80 

Figure 7-3 Minimal Robust Positively Invariant set for the rendezvous maneuver, (left) dimensions 1-3 corresponding to 
relative position, (right) dimensions 4-6 corresponding to relative velocity ........................................................... 81 

Figure 7-4 Block diagram of the robust controller ............................................................................................................ 87 

Figure 8-1 Block diagram for simulation in Simulink ........................................................................................................ 90 

file:///D:/Uni/Thesis/BucknerCE_MasterThesis.docx%23_Toc471745745
file:///D:/Uni/Thesis/BucknerCE_MasterThesis.docx%23_Toc471745752
file:///D:/Uni/Thesis/BucknerCE_MasterThesis.docx%23_Toc471745754


xii  List of Figures 

DLR-IB-RM-OP-2017-17 

Figure 8-2 Simulation of the nominal system, (left) relative position states, (right) relative velocity states, (below) control 
inputs ....................................................................................................................................................................... 93 

Figure 8-3 Set points used in simulations with successful rendezvous ............................................................................ 94 

Figure 8-4 Simulated trajectories for steady state (0,0,4.6662,0,0,0) .............................................................................. 95 

Figure 8-5 Relative position timeseries for steady state (0,0,4.6662,0,0,0) ..................................................................... 95 

Figure 8-6 Location of the trajectories within the tube, (left) radial/along-track dynamics, (right) along-track/cross track 
dynamics, steady state (0,0,4.6662,0,0,0) ............................................................................................................... 96 

Figure 8-7 Velocity tracking for steady state (0,0,4.6662,0,0,0) ....................................................................................... 96 

Figure 8-8 Control action for steady state (0,0,4.6662,0,0,0) ........................................................................................... 97 

Figure 8-9 Additional acceleration from disturbance rejection term for steady state (0,0,4.6662,0,0,0) ....................... 97 

Figure 8-10 Simulated trajectories for steady state (1,1,4.446,0,0,0) .............................................................................. 98 

Figure 8-11 Relative position timeseries for steady state (1,1,4.446,0,0,0) ..................................................................... 99 

Figure 8-12 Location of the trajectories within the tube, (left) radial/along-track dynamics, (right) along-track/cross track 
dynamics, steady state (1,1,4.446,0,0,0) ................................................................................................................. 99 

Figure 8-13 Velocity tracking for steady state (1,1,4.446,0,0,0) ..................................................................................... 100 

Figure 8-14 Control action for steady state (1,1,4.446,0,0,0) ......................................................................................... 100 

Figure 8-15 Additional acceleration from disturbance rejection term for steady state (1,1,4.446,0,0,0) ..................... 101 

Figure 8-16 Simulated trajectories for steady state (0, -4.6662,0,0,0,0) ........................................................................ 102 

Figure 8-17 Location of the trajectories within the tube, (left) radial/along-track dynamics, (right) along-track/cross track 
dynamics, steady state (0,-4.6662,0,0,0,0) ............................................................................................................ 102 

Figure 8-18 Relative position timeseries for steady state (0,-4.6662,0,0,0,0) ................................................................ 103 

Figure 8-19 Velocity and input tracking for steady state (0,-4.6662,0,0,0,0) ................................................................. 103 

Figure 8-20 Additional acceleration from disturbance rejection term for steady state (0,-4.6662,0,0,0,0) .................. 104 

Figure 8-21 Set points used in limitations of the controller simulations ........................................................................ 106 

Figure 8-22 Trajectory contained within tube, failed rendezvous .................................................................................. 107 

Figure 8-23 Actuation time series for a point in the tube, but not on the sphere ......................................................... 107 

Figure 8-24 Trajectory departs from tube ...................................................................................................................... 108 

Figure 8-25 Simulated trajectories for steady state (-1.97,0,-4.23,0,0,0) ...................................................................... 108 

Figure 8-26 Control inputs without tube constraint ....................................................................................................... 109 

Figure 8-27 Trajectory remains in tube .......................................................................................................................... 110 

Figure 8-28 Trajectory for set point (-1.97,0,-4.23,0,0,0) ............................................................................................... 110 

Figure 8-29 Control action with the tube constraint ...................................................................................................... 111 

Figure 8-30 Actuation for a shortened simulation time ................................................................................................. 114 

Figure 8-31  Intersection of tube with sphere drawn by the uncertainty of target motion for the nominal set point 
(1.97,0,4.23,0,0,0) .................................................................................................................................................. 116 

Figure 8-32 Actuation and disturbance rejection series obtained from inverse dynamics ............................................ 118 

Figure 8-33 Analytical solution trajectories .................................................................................................................... 119 

 

 

file:///D:/Uni/Thesis/BucknerCE_MasterThesis.docx%23_Toc471745788
file:///D:/Uni/Thesis/BucknerCE_MasterThesis.docx%23_Toc471745790
file:///D:/Uni/Thesis/BucknerCE_MasterThesis.docx%23_Toc471745791


 

xiii 

 

List of symbols 

A. General 

𝟎  zero matrix of the appropriate dimensions 

𝟏  ones matrix of the appropriate dimensions 

𝐈  identity matrix of the appropriate dimension 

 

B. Rendezvous maneuvers 

𝐅 = [𝐹𝑥, 𝐹𝑦, 𝐹𝑧]  applied forces 

 

𝑚𝑐  mass of the chaser 

𝜇  gravitational constant, Earth 

 

𝑛  rate of orbit 

 

𝜔𝑝  angular velocity of the target 

 

𝛅𝐫 = [𝛿𝑥, 𝛿𝑦, 𝛿𝑧] relative position of the chaser to the target 

𝑟𝑡 radius of the target 

𝐑𝐜 position vector of the chaser from the center of the Earth, the origin of the 

inertial frame  

𝐑𝐭  position vector of the target from the center of the Earth, the origin of the 

inertial frame 

𝑅t  modulus of 𝑅𝑡 

 

𝐮 = [𝑢𝑥, 𝑢𝑦 , 𝑢𝑧]  acceleration of the chaser 

 

C.  MPC theory 

𝐴  system matrix 

 

𝐵  input matrix 

 

𝐶  output matrix 



xiv  List of symbols 

DLR-IB-RM-OP-2017-17 

 

𝐷  feedthrough matrix 

 

𝛋𝐍(∙) MPC control law 

 

𝑙(∙,∙)  stage cost function 

 

𝑚  input dimensions 

 

𝑛  state dimension 

𝑁  prediction horizon length 

 

𝑃  terminal weighting matrix, solution of the Riccati equation 

𝑝  output dimension 

 

𝑄  state weighting matrix 

 

𝑅  control weighting matrix 

 

𝑇𝑠 sample time 

 

𝕌  control constraint set 

𝐮  sequence of control inputs 

𝑢, 𝑢(𝑘) control inputs, discrete time 

𝑢(𝑡)  control inputs, continuous time 

 

𝑉𝑓(∙)  terminal cost function 

𝑉𝑁(∙)  cost function 

 

𝕏  state constraint set 

𝕏𝑓  terminal constraint set 

𝑥, 𝑥(𝑘) current state, discrete time 

𝑥(𝑘 + 1)  next state, discrete time 

𝑥(𝑘 + 𝑖|𝑘)  estimated state at sample step k + i as determined at sample k 

𝑥(𝑡)  current state, continuous time 

 

𝑦, 𝑦(𝑘) output, discrete time 

𝑦(𝑡)  output, continuous time 

 

 



List of symbols   xv 

DLR-IB-RM-OP-2017-17 

D. Tube-based robust MPC theory 

 

𝐴𝑒 state matrix for the extended state 

 

𝜖 percentage error bound 

 

𝐾𝑑𝑟 disturbance rejection gain 

𝐾𝑙𝑞𝑟 LQR gain 

𝐾𝜃 closed loop gain 

 

 

Ω RPI set for the perturbed system 

Ωe Maximal robust positively invariant set 

 

𝕌 robust input constraint 

𝕌̅ nominal input constraint 

𝑢    perturbed system actuation 

 

v nominal actuation 

 

𝒲 set of disturbances 

𝑤 unknown, bounded input disturbance 

 

𝕏 robust state constraint  

𝕏̅ nominal state constraint 

𝑥 perturbed system state 

𝑥+ successive perturbed system state 

𝑥𝑒 the extended state incorporating the state and 𝜃 

 

𝑦 system output 



xvi  List of symbols 

DLR-IB-RM-OP-2017-17 

 

𝒵 mRPI set 

𝑧 nominal system state 

𝑧+ successive nominal state 

E. Problem formulation and control strategy 

𝐴 state matrix, discretized 

𝐴𝑐 state matrix, continuous time 

 

𝐵 control matrix, discretized 

𝐵𝑐 control matrix, continuous time 

 

𝐹 force applied by thruster 

 

𝑚𝑐 mass of chaser 

𝜇 gravitational constant of Earth 

 

𝑛 orbital rate 

 

𝐫𝐝 position of docking port 

𝑟𝑡 radius of target sphere 

 

𝑇𝑠 sampling time 

 

𝕌 robust input constraint 

𝕌̅ nominal input constraint 

 

𝕏 robust state constraint  

𝕏̅ nominal state constraint 

 

𝒵 mRPI set 



 

xvii 

 

Nomenclature 

CWH  Clohessy-Wiltshire-Hill equations 

 

DLTI discrete linear time invariant system 

DOF Degree(s) of freedom 

 

HDRM Hold Down Release Mechanism  

 

LAR Launch Adapter Ring 

LEO low Earth orbit 

LMI linear matrix inequality 

LQP linear-quadratic problem 

LQR linear-quadratic regulator 

LTI linear time invariant 

 

MPC Model Predictive Control 

MPI maximal positively invariant set 

MPT, MPT3 Multi-Parametric Toolbox, v 3 

mRPI minimal robust positively invariant set 

 

RPI robust positively invariant set 

RPO rendezvous and proximity operations 

 

 

 

 





 

1 

 

1 Introduction 

1.1 Background and motivation 

Rendezvous and proximity maneuvers are historically critical operations. Such maneuvers include the 

approach and docking of a transport vessel to the International Space Station or the recovery of a tumbling 

satellite. Numerous control approaches have been proposed in recent decades for handling such maneuvers. 

In the past decade, many of these approaches have been based in Model Predictive Control. 

 

It is important to consider sources of uncertainty and their management when controlling a system. In a 

rendezvous maneuver, there are at least two bodies for which uncertainties need be considered. As the 

maneuver is governed by relative dynamics, the uncertainty in the motion of one participant will have a direct 

impact on the uncertainty in the state of the second participant. Robust control methods are needed to account 

for this uncertainty.  

 

The goal of this work is therefore to robustly conduct a rendezvous maneuver while tracking a provided optimal 

trajectory. A tube-based robust model predictive controller is proposed for the control of the maneuver. 

 

1.2 Study objectives and contributions of this thesis 

The first objective of this work is to demonstrate the use of the tube-based robust model predictive control 

methodology. A review of model predictive control and tube-based robust model predictive control is first 

presented. This theory is then applied to the well-studied double-pendulum control problem, which is a 

frequently used sample problem in literature – for example in [1-4]. In literature, the results are presented with 

some discussion, but with little or no exposition to the design process other than the strictly theoretical definition 

of the control methodology. In this work, the results for the double pendulum sample problem from literature 

are reproduced through an implementation in software.   

 



2  Chapter 1 

DLR-IB-RM-OP-2017-17 

The second objective of this work is to apply the proposed control methodology to a satellite rendezvous 

maneuver. In this rendezvous problem, the goal is to bring a chaser spacecraft from its initial position in space 

to a docking point on a target spacecraft along a provided reference trajectory while robustly satisfying 

actuation constraints. The target spacecraft is taken to be travelling on a circular orbit about the Earth; the 

relative motion between the spacecraft is then appropriately described using the Clohessy-Wiltshire-Hill 

equations. The Hill frame is centered on the center of mass of the target spacecraft revolving at a rate equal 

to the orbital rate, effectively equivalent to the target orbital reference frame. The target spacecraft is tumbling, 

and the target body frame follows this same motion. As is typical to the rendezvous phase of rendezvous and 

proximity operations maneuvers, the chaser and target spacecraft are assumed to be located within the same 

orbit. These concepts will be revisited in chapter 2. 

 

The reference trajectory is provided by a motion planner, which makes use of a selected inertia and rotational 

velocity state for the target to determine the trajectory optimized to a set of costs. The motion planner devises 

a relative trajectory between the two spacecraft with respect to the target orbital frame. However, there is an 

amount of uncertainty in the motion of the target spacecraft resultant from uncertainty in the inertia or spin 

state of the target craft. In the orbital frame, the uncertainty in the motion of the docking point on the target can 

be described by a spherical shell, or the upper most bound of a scaled unitary ball ℬ𝑛 = {𝑏 ∈ ℝ𝑛: ‖𝑏‖𝑝 ≤ 1}, 

centered on the center of mass of the target satellite. This uncertainty must be accounted for in the robust 

control of the chaser to the docking point. This uncertainty shall be more thoroughly considered in chapter 6. 

 

Fortunately, the reference trajectory is defined relatively with respect to the two spacecraft, and, under robust 

reference tracking control methods, it can be validly tracked irrespective of the actual position of the docking 

point in the target orbital frame, permitting that the actuation constraints are not violated. As the boundary of 

the uncertainty is characterizable, there exist robust control methods which will allow the reference trajectory 

to be tracked within this uncertainty bound and actuation constraints. The development and simulation of such 

a robust controller is conducted and the results of the simulation presented and analysed in pursuit of this 

second objective.  

 

1.3 Software packages 

The controller for the sample double pendulum problem and the rendezvous task are to be designed, 

implemented, and evaluated using a combination of MATLAB and Simulink.  

 

In the design phase, the CVX and Multi-parametric toolboxes are utilised in the MATLAB environment. The 

CVX toolbox is an open-source toolbox specifically built for the solution of disciplined convex programs [5, 6]. 

The toolbox is specifically targeted for linear, quadratic, and semi-definite programs. While MATLAB has a 

native functionality for handling matrix inequalities in optimization problems, the CVX toolbox applies a more 

intuitive matrix interpretation to these inequalities, providing for a more natural implementation. The Multi-



Introduction   3 

DLR-IB-RM-OP-2017-17 

parametric toolbox (MPT) is an open-source toolbox for MATLAB designed for parametric optimization, 

computational geometry, and model predictive control [7]. The most recent version of the toolbox, often 

referred to as MPT3, relies on an additional open-source MATLAB toolbox called YALMIP [8]. The inclusion 

of YALMIP into MPT3 allows the latter to handle custom nominal model predictive control scenarios. 

 

In the simulation phase, the Model Predictive Control Toolbox is used [9-11]. The toolbox provides MATLAB 

functions and Simulink blocks for the construction, tuning, simulation, and evaluation of model predictive 

controllers. This is a paid-toolbox available through Mathworks.   

 

For more information on these toolboxes, the reader is referred to the documentation cited with the toolbox.  

 

1.4 Plan of development 

The rendezvous maneuver to be conducted brings a chaser craft to the launch adapter ring on the ESA Envisat 

satellite. The control is conducted in the target orbital frame, and the chaser is required to track a reference 

trajectory provided by a motion planner. The relative orbital dynamics are described by the Clohessy-Wiltshire-

Hill equations. The considered uncertainty is introduced to the system through an uncertainty in the inertia and 

angular velocity characteristics of the target spacecraft. A tube-based robust model predictive controller is 

designed taking into account this uncertainty as a state disturbance. The controller is designed in so far as 

possible so as to not limit the generality of the control algorithm so that it might be applied to other rendezvous 

maneuvers and is evaluated by simulation in Simulink. In the subsequent chapters of this work, these concepts 

will be presented and discussed. 

 

In the next section, a brief review will be presented on the literature pertaining to the control of satellite 

rendezvous maneuvers with a focus on model predictive control methods. Then, in Part 1, the necessary 

theoretical background in rendezvous maneuvers and model predictive control methods are presented. A 

practical example of the tube-based robust model predictive control is offered in preparation for the rendezvous 

control task. In Part 2, the system to be controlled is characterized, a tube-based robust model predictive 

controller is designed for the task, and finally evaluated.  

 

1.5 Literature Review 

Spacecraft rendezvous maneuvers came onto the research scene in the late 1950’s. The study of manual and 

automatic rendezvous maneuvers conducted by the NASA Langley Research Center lead to the development 

of low Earth orbit and Lunar rendezvous maneuvers. Goodman presents a detailed history of rendezvous and 

proximity maneuvers in [12], from the Mercury program to Space Shuttle rendezvous with the International 

Space Station. The reader is directed to [12], and the references within, for a detailed review of the history and 

literature pertaining to the satellite rendezvous and proximity maneuvers. This remainder of this literature 



4  Chapter 1 

DLR-IB-RM-OP-2017-17 

review is dedicated to the control of rendezvous maneuvers using model predictive control and the 

development of tube-based robust model predictive control. 

 

Model predictive control (MPC) [13, 14] was developed in the 1970’s and is now considered a mature technique 

for linear and slow systems, like those found in process control [15]. There are of course many other 

applications than process control, such as solar technology and flight control, for which MPC methodologies 

are suitable [15-18]. In 2003, Richards and How analysed the performance of MPC in rendezvous maneuvers 

as compared to other methods in [18].     

 

Various nominal and robust model predictive control methods have been proposed for the control of 

rendezvous maneuvers. In [18], a variable horizon method is proposed in which a mixed-integer linear program 

is required to be solved in each control cycle. This work was extended in [16], to develop what was termed 

failure-safe trajectories, and in [19] with rubber-band MPC, which makes use of a decreasing horizon. In [20, 

21], an approach for the control of relative motion maneuvers using linear quadratic MPC with dynamically 

reconfigurable constraints was developed in two-dimensions. In this method, the model and constraints are 

re-evaluated online at each control step to determine an optimal control sequence to a stationary, rotating, or 

tumbling target platform while avoiding obstacles over a finite horizon. In [22], this method was extended to 

include the third spatial dimension, taking into account the cross-track dynamics, and in [23] the rendezvous 

maneuver is integrated with a docking maneuver with the same control method, but with distinct requirements, 

constraints, and sampling rates. In [15], it was shown that conventional MPC is not capable of handling additive 

disturbances (refer to chapter 4.1). Gavilan et al. used a min-max worst-case disturbance method and an 

estimate of the disturbance bounds to robustly satisfy constraints; producing a method robust to additive and 

multiplicative disturbances as well as unmodelled dynamics. In [24], a robust dual control MPC method is 

proposed which guarantees constraint satisfaction for simultaneous identification and control of uncertain 

systems.  

 

The concepts of Tube-based robust MPC first appeared in [25], but [26] is widely said to be the formal birth of 

the framework. The basis of the methodology is to robustly control an uncertain system through its nominal 

dynamics and an additional feedback term which rejects a bounded additive disturbance. Further research 

was conducted for the linear regulator and presented in [27-30]. The method was adapted for tracking in [1, 3, 

4, 31-33] and for non-linear systems in [34-36]. To the best of the author’s knowledge, there exist only two 

publications, [37] and [38], on the use of tube-based robust model predictive control to control rendezvous and 

proximity operations maneuvers. In these two works, the satellites are taken to be travelling on elliptical orbits 

and the uncertainty was derived from navigation and thruster timing errors, respectively.  

 

 



Introduction   5 

DLR-IB-RM-OP-2017-17 

In [37], ideas taken from tube-based robust model predictive control are used to control a rendezvous with the 

participants travelling on eccentric orbits. The goal of the work is to steer the chaser spacecraft from an initial 

relative state to a neighbourhood about a desired set point in the presence of navigation uncertainty. The 

uncertainty comes from error injected into the measurements of relative position by the sensor. The costs 

considered are the minimization of fuel and minimizing the size of the arrival set. The study claims to improve 

on efficiency and infeasibility problems in the application of classical MPC, as repeated re-computations are 

not necessary to achieve robustness. The method does, however require some online estimation of 

disturbance terms, which is counter-indicative of tube-based robust model predictive control.  

 

In [38], tube-based robust model predictive control is used as a part of a guidance algorithm robust to thrusting 

errors to best guarantee precision performance under propulsion uncertainties. The authors show that the 

robust algorithm is able to preclude the spread of error while following a strict fuel budget. They also found that 

the polytopic uncertainty set definition may result in a more conservative controller than necessary for this 

specific situation.  

 

In this work, the rendezvous maneuver will be controlled through an implementation of tube-based robust 

model predictive control for tracking. The two implementations cited above are regulation implementations, 

foregoing the tracking steps. This difference will become clear in chapters 3 and 4. Another difference of this 

work to the two works discussed above, the uncertainty is introduced through the target, rather than the chaser.  

 





 

7 

 

Part 1: Theoretical Background 





 

9 

 

 

2 Spacecraft Rendezvous and Proximity 

Operations 

A historically critical stage in many spacecraft missions is that of the rendezvous and proximity operations 

(RPO), which have received substantial consideration in literature (see [15, 18, 20-24, 37-43], and the 

references therein). Such maneuvers include the approach and docking of a transport vessel to the 

International Space Station or the recovery of a tumbling satellite. Numerous control approaches have been 

proposed in recent decades for handling RPOs; however none has yet emerged as universally successful [15]. 

 

Subsequently, this chapter will outline the overall rendezvous and docking process, followed by a description 

of the close-range rendezvous relative motion of the spacecraft and the related dynamics.  

 

2.1 Spacecraft rendezvous and docking 

Spacecraft rendezvous and docking is an interactive absolute or relative motion problem, commonly between 

two space vehicles. While it is normally possible for both spacecraft to maneuver, there are circumstances 

where only one of the vehicles is maneuverable. It is common, therefore, to consider one vehicle as active and 

the other passive [42]. The passive spacecraft is often referred to as the target, platform, or client, while the 

active vehicle is frequently termed the servicer or chaser. These terms are often used interchangeably in 

literature, as demonstrated in the literature cited in this chapter. This work will refer to the active and passive 

vehicles as chaser and target, respectively. 

 

The rendezvous process is considered in a series of stages, as indicated in the following figure. 

 



10  Chapter 2 

DLR-IB-RM-OP-2017-17 

 

Figure 2-1 Phases of spacecraft rendezvous and docking procedure, adapted from [43] 

 

The procedure begins with the vehicles at a remote distance, out of sight of each other [42]. The spacecraft 

will rendezvous from two initial, separate orbits. In this Phasing stage, the chaser is brought from its initial orbit 

into the orbit of the target [43]. With careful planning, the process can begin at the launch of the chaser 

spacecraft, possibly drastically reducing the maneuver time [44-46]. However, this is not required. It is required, 

however, that the chaser knows the approximate orbit of itself and the target [42]. The orbits can be assumed, 

found using a navigation package, or through ground tracking methods [42, 47, 48]. Using the orbit information, 

orbit transfer maneuvers are calculated to maneuver the chaser into the same orbit as the target.   

 

The second phase therefore begins with the spacecraft on the same orbit. However, the chaser is often 

inserted into the target orbit a fair way away from and still out of sight of the target and allowed to drift toward 

it. This is called a drift orbit [42]. The relative insertion positon of the chaser is chosen to be suitable for docking, 

typically in a fairly straight line to the docking port. That is, for example, if the chaser is to dock to the aft of the 

target, the chaser would preferably be inserted into the platform’s orbit behind the platform; or if the chaser is 

to approach the target from below, the chaser may be inserted into a slightly lower orbit and behind the target 

[42].  

 

There are some clear advantages to transferring to a drift orbit. Such an orbit avoids collision of the vehicles. 

Additionally, aiming to place the chaser short of the target guarantees that correction burns will be in the same 

direction as the preceding burn, this avoids wasting energy and propellant by having to maneuver in the 

opposite direction [42]. 

 

As the chaser travels along the drift orbit, it will approach the horizon at which it will begin to be able to have 

direct spacecraft-to-spacecraft viewing and communication. This horizon distance is typically 3,000 to 10,000 

km for spacecraft in low Earth orbits (LEO) [42]. The chaser is said at this point to have entered Drift Orbit B 

or the homing obit. The chaser is then in the first stage of so called close-range rendezvous maneuvers [43].  



Spacecraft Rendezvous and Proximity Operations   11 

DLR-IB-RM-OP-2017-17 

While in the homing orbit, it is possible for the chaser to use position information communicated by a 

cooperative target spacecraft to navigate, or the chaser can use the target as a point of light relative to the 

background of stars for relative navigation [42]. The chaser closes in on the target using this navigation 

information by simply drifting or through a series of decreasing thruster fires. At a distance of about 100 to 1 

km, the chaser is often placed into a parking obit, so that the correct timing, geometry, and lighting conditions 

can be obtained for rendezvous and proximity operations [42, 46].  

 

The proximity operations are divided into two phases based on the distance of the chaser from the target at 

which they are performed. The first phase, closing, is typically conducted using a relative navigation and/or 

docking sensor(s) with the chaser located between 1 km and approximately 100 m from the chaser. Depending 

on implemented control methods, the series of very small thruster fires used to approach the target can be 

computed on- or offline, and executed at a rate which allows navigation to be corrected for between firings. 

These maneuvers are typically designed to bring the chaser to the target along either the chaser’s velocity 

vector (V-bar) or the radial vector (R-bar) [42, 46, 49]. 

 

The second part of the rendezvous phase, often called the terminal rendezvous phase [39], commonly begins 

between 10 and 100 m from the target. The remainder of the process is dependent on if the chaser is intended 

to dock with the target or simply undertake an inspection mission of it. In the docking case, the chaser is 

maneuvered to the docking port of the target using a series of very small thruster fires or allowed to drift toward 

the target, exploiting the small differences in the orbital elements of the two vehicles [42]. This procedure will 

usually make use of a docking sensor to provide relative position and attitude information [42]. This present 

work is concerned with docking missions and the remainder will discount inspection missions.  

 

The process in which the chaser physically attaches to the target is called Docking. The key to a successful 

docking is a compliant capture mechanism which can: compensate for small differences in attitude, position, 

velocity or even acceleration; capture the target using a gripping or grasping mechanism; couple the target 

and chaser, effectively into a rigid, single spacecraft, in what is called a hard dock [42].  

 

The now joint spacecraft may maneuver together for an arbitrary amount of time, where relative motion 

between the constituent vehicles is no longer the subject of navigation. The dynamic properties of the joint 

spacecraft are determined and the orbit adjusted for continued safe and efficient maneuvering [42]. On 

completion of these joint maneuvers, if the mission parameters dictate, the chaser undocks from the target 

and the vehicles separate. After escape, the spacecraft continue normal operations as dictated by their mission 

parameters. The functions after escape are similar to those during rendezvous, except it is possible now for 

the target to do the maneuvering [42]. It is, of course, possible for one or both of the vehicles to be parked into 

a graveyard orbit or the orbit(s) allowed to decay and the satellite(s) to re-enter the atmosphere [42]. 

 



12  Chapter 2 

DLR-IB-RM-OP-2017-17 

While these maneuvers have been thoroughly studied and docking maneuvers conducted by crewed missions 

with cooperative targets since the early days of space travel, the current challenge is to perform such 

procedures completely autonomously, possibly out of contact with any ground station, and with ever more 

complex mission goals – including interaction with non-cooperative targets. 

 

2.2 RPO maneuvers and dynamics 

Recall the terminal rendezvous phase which brings the chaser to within a small distance to the order of a few 

meters of the docking port. Traditionally, this relative motion problem is considered separately from the final 

docking process which physically tethers the two spacecraft [15, 20, 21, 37]. To this end, the chaser is brought 

within a mission dependent margin of the docking port from an initial position some tens of meters distant 

through V-bar or R-bar approach RPO maneuvers. 

 

An experience base of rendezvous mission planning and execution during the Gemini-era turned rendezvous 

theory into a reality. Goodman lists the achievements of the mission which came to robustly define the practical 

theory in [12]. Rendezvous maneuvers became a well-practiced art under the Apollo missions [12]. In the nine 

years of the program, rendezvous systems and piloting techniques were successfully exercised, permitting 

such feats as the lunar missions, and the maneuvers made more efficient under study. The techniques 

developed still form the basis of RPO maneuvers today. 

 

As indicated previously, the critical problem inherent to these maneuvers is the relative navigation.  The 

characterization of the dynamics of this problem depend largely on the nature of the orbits of the involved 

spacecraft, in particular if they are taken to be circular or elliptical, and if the reference frame is inertial or 

rotating [39]. Furthermore, the problem is typically defined such that: the relative dynamics can be investigated 

within the confines of the orbital plane, defining the problem in the 2 degrees of freedom (DOF) corresponding 

the radial and along-track directions in translation; the cross-track dynamics are incorporated to define the 

problem in 3 DOF, while considering only the positional dynamics; or attitude can be additionally accounted 

for to expand the problem definition into 6 DOF. However, it is common for the position and attitude to be 

modelled separately, so the first two options are more common in literature.  This work considers the case of 

circular orbits and 3 DOF dynamics. These dynamics will now be explored. 

 

When the distance between a pair of spacecraft is large, as in the Phasing or Homing stages (see above in 

section 2.1), their relative dynamics are typically described in an Earth-centered inertial frame; when the 

distance is small, as in the Closing stage (again, refer above), the relative motion is typically described in a 

target-centered reference frame [43]. In the terminal rendezvous phase, the distance between the target and 

chaser is relatively small. Consider the situation illustrated in the following figure. 

 



Spacecraft Rendezvous and Proximity Operations   13 

DLR-IB-RM-OP-2017-17 

 

Figure 2-2 Definition of reference frames and vectors 

The center of mass of the target is located on a circular orbit with a radius 𝑅𝑡 [m] measured from the center of 

the Earth in the inertial frame {𝑂𝐼 , 𝒆⃗ }, with its origin fixed to the center of the Earth, giving a location of the 

target with respect to the center of the Earth by 𝐑𝐭. The orbital frame {𝑂𝑂 , 𝒙⃗⃗ 𝑶} and the target body frame {𝑂𝑏 , 𝒙⃗⃗ 𝒃} 

are each centered on the center of mass of the target. Similarly, the center of mass of the chaser is located 

by 𝐑𝐜, where the chaser body frame is {𝑂𝑐 , 𝒙⃗⃗ 𝒄} is centered.  

 

Let the target tumble at an angular velocity 𝜔𝑡 ≥ 0 [rad/s]. The chaser is represented as a point mass and is 

in an orbit close to that of the target. The relative position between the chaser and target is defined by 𝛅𝐫 =

[𝛿𝑥, 𝛿𝑦, 𝛿𝑧]. For the ease of describing the dynamics, consider the target as a sphere of sufficient radius 𝑟𝑡 [m] 

to over-bound its structure. The docking point is located in the target body frame by 𝐫𝐝
𝐛 = [𝑟𝑑𝑥

𝑏 , 𝑟𝑑𝑦
𝑏 , 𝑟𝑑𝑧

𝑏 ] [m].  

 

The relative dynamics can now be expressed. In the situation where satellites travelling relative to each other 

on circular orbits, the relative dynamics can be expressed using the Clohessy-Wiltshire-Hill (CWH) equations 

[15, 21, 39, 43, 49], as demonstrated in the following. First, consider the circular orbit of the target at radius 𝑅0 

[m] from the Earth. The target has an orbital rate of 𝑛 = √𝜇 𝑅0
3⁄  [rad/s] where 𝜇 [m3/s2] is the gravitational 

constant of Earth. The reference Hill frame centers on the target’s center of mass and revolves with orbital rate 

𝑛 with respect to the inertial frame. 

 



14  Chapter 2 

DLR-IB-RM-OP-2017-17 

Now, let the position of the target’s center of mass can be re-written as  

𝐑𝐭 = 𝑅0𝑥̂
𝑂 (2-1) 

and the relative positon of the chaser as  

𝛅𝐫 = 𝛿𝑥𝑥̂𝑂 + 𝛿𝑦𝑦̂𝑂 + 𝛿𝑧𝑧̂𝑂 (2-2) 

where 𝛿𝑥, 𝛿𝑦, 𝛿𝑧 are components of the relative position of the chaser with respect to the center of the target. 

Therefore, the position of the chaser in the inertial frame is characterized by 

𝐑𝐜 = 𝐑𝐭 + 𝛅𝐫
𝐫 

                                                     = (𝑅0 + 𝛿𝑥)𝑥̂
𝑂 + 𝛿𝑦 𝑦̂𝑂 + 𝛿𝑧 𝑧̂𝑂 (2-3) 

 

The equations of motion for spacecraft in a circular orbit are given by 

𝐑̈ = −𝜇
𝐑𝐜

𝑅𝑐
3 +

1

𝑚𝑐
𝐅 (2-4) 

where 𝑚𝑐 [kg] is the mass of the spacecraft and 𝐅 the applied forces. Substituting 𝑅𝑐 =

√(𝑅𝑡 + 𝛿𝑥)
2 + 𝛿𝑦2 + 𝛿𝑧2 [m] into the equations of motions, making a Taylor series expansion, and taking only 

the first order terms, the three dimensional CWH equations are obtained [49]: 

𝛿𝑥̈ − 3𝑛2𝛿𝑥 − 2𝑛𝛿𝑦̇ =
𝐹𝑥
𝑚𝑐

= 𝑢𝑥 
 

𝛿𝑦̈ + 2𝑛𝛿𝑥̇ =
𝐹𝑦

𝑚𝑐
= 𝑢𝑦 

 

𝛿𝑧̈ − 3𝑛2𝛿𝑧 =
𝐹𝑧
𝑚𝑐

= 𝑢𝑧 
(2-5) 

 

where 𝑢𝑥, 𝑢𝑦 , and 𝑢𝑧 [m/s2] are the components of the acceleration of the spacecraft in the 𝑥, 𝑦, and 𝑧 directions 

induced by the thrust forces 𝐅 = [𝐹𝑥, 𝐹𝑦 , 𝐹𝑧]. Some research groups are considering higher order terms of the 

Taylor series expansion in the hopes that more accurate modelling and less control effort are possible [40]. 

 

Despite the apparent simplicity of a system which these linearized equations of motion might suggest, the 

docking port may exhibit complex motion if the target is spinning, tumbling, or exhibiting unpredictable 

behaviour. A non-cooperative or incompletely characterized cooperative target may introduce additional 

difficulties to the rendezvous and/or docking processes as the precise position of the docking point is more 

complex to determine.  

 

It should thus also be noted that RPO maneuvers are customarily subject to state and control constraints in 

order to aid and allow for successful docking procedures [20]. These constraints often include, but are not 

limited to: 



Spacecraft Rendezvous and Proximity Operations   15 

DLR-IB-RM-OP-2017-17 

 LOS constraint: in the Closing maneuvers, the chaser spacecraft and the docking or grasping point on 

the target must remain within the line-of-sight (LOS) of each other. This is often so that the chaser 

remains within the view of a docking port antenna used to identify the relative location of the docking 

point in real-time, however this is only useful in the case of a cooperative target with predictable 

dynamics.   

 Soft-docking constraint: the velocity of the SC at rendezvous should match the velocity of the docking 

port.  

It is also generally desirable that collisions with debris and other objects in the path of the chaser be avoided 

[21]. These requirements necessitate the consideration of the spacecraft state and control pointwise-in-time 

[20]. 

 

2.3 Control of RPO maneuvers 

Relative motion maneuvers, like the SC rendezvous problem, have traditionally been performed using open 

loop maneuver planning with ad hoc error correction. More recently, research has been more focused on the 

application of model predictive control (MPC) to the control problem presented [22]. Sun et al. provide a brief 

survey of the steps taken from the early considerations of constraint in autonomous rendezvous and terminal 

rendezvous autonomous guidance laws, through disturbance handling, to parametric control methods and 

finally constrained MPC methods in [41].  

 

More pointedly, though, it has been demonstrated in [15, 20, 21] that a spacecraft can be suitably controlled 

with MPC to approach rotating, non-rotating, and tumbling targets while avoiding debris. Robustness of 

conventional MPC to disturbances has also been evaluated. It has additionally been shown that if a spacecraft 

approaches a non-rotating target along a known LOS cone, an explicit MPC approach does not require on-

board optimization. [22] 

 

Further works and their advances relevant to RPO control by MPC include the following: In [22], the orbital 

plane was departed from, and the problem considered in 3 dimensions. The MPC implementations in [15, 20-

22] consider situations where a set of initial and final conditions in relative space are set, and the controller 

provides the acceleration (or forces) required from the thrusters to optimally reach the docking port in a classic 

MPC regulation problem. Other papers propose a “rubber band” MPC approach, which makes use of a varying 

horizon. 

 



16  Chapter 2 

DLR-IB-RM-OP-2017-17 

Recently, Robust MPC methods have also been applied to the rendezvous problem. In [15], it was shown that 

conventional MPC is not capable of handling additive disturbances (see section 4.1) and introduces robust 

satisfaction of system constraints. Gavilan et al. used a min-max worst-case disturbance method and an 

estimate of the disturbance bounds to robustly satisfy constraints; producing a method robust to additive and 

multiplicative disturbances as well as unmodelled dynamics. In [24], Weiss and Di Cairano present an adaptive 

implementation of Robust Dual Control MPC, which guaranteed constraint satisfaction. This method re-

identifies the system and updates the prediction model at each time step to define an up-to-date nominal 

problem and employed a robust dual-control MPC method.  

 

In [37, 38], Tube-based robust MPC were applied to regulation of the rendezvous problem. In each of these 

paper, different uncertainty sources are investigated. In these two works, the satellites are taken to be travelling 

on elliptical orbits and the uncertainty was derived from navigation and thruster timing errors, respectively. In 

[37], some ideas taken were adopted from tube-based robust model predictive control to steer the chaser 

spacecraft from an initial relative state to a neighbourhood about a desired set point in the presence of 

navigation uncertainty. The uncertainty comes from error injected into the measurements of relative position 

by the sensor. In [38], tube-based robust model predictive control is used as a part of a guidance algorithm 

robust to thrusting errors to best guarantee precision performance under propulsion uncertainties.  

 

The remainder of this review will first outline Model Predictive Control, then robust control elements will be 

introduced, finally leading up to the proposed control method of Tube-base Robust MPC.



 

17 

 

3 Model Predictive Control 

MPC can be thought of as a form of optimal control specifically for dynamic systems with the goal of robust 

stability. An MPC controller typically makes use of a linear or linearized model and its constraints to compute 

the optimal control sequence from the current conditions up to a finite horizon (at a future point in time). The 

first element of this sequence is applied to the system. The process repeats itself at each sampling instant. 

The model can, of course, be nonlinear, but this results in a more complex optimization process. [13, 50-53] 

 

All model predictive control algorithms come in three parts: a prediction model, an objective function, and the 

formation of the control law [13]. The following sections will endeavour to express the concepts at the core and 

the mathematical basis of the MPC formulation. 

 

3.1 The receding horizon 

Before delving into the formal formulation of MPC, it is important to understand the concept of the receding 

horizon. Consider the following scenario [53]: 

There are two joggers attempting to maintain a path between two lines painted on the ground. One of the 

joggers is jogging in reverse – that is, the jogger’s back is facing the direction in which they are running – and 

the other is jogging facing forward.  

 

Figure 3-1 Jogger scenario 



18  Chapter 3 

DLR-IB-RM-OP-2017-17 

The forward-facing jogger has all the benefits of sensing the environment ahead of them – they can see the 

lines demarcating the path ahead, within which they must remain, and make decisions based on terrain and 

obstacles – while the reverse-facing jogger can only see where they currently are and what they have already 

past. The reverse-facing jogger essentially has two choices: the jogger can (a) always be extra cautious and 

therefore slow, or (b) go fast and handle any accidents as they occur. The forward-facing jogger, on the other 

hand, can approach the coming obstacles with the requisite speed and appropriate level of caution. 

 

The forward-facing jogger seems the logically superior option. There is one caveat to note: the forward-facing 

jogger can only see so far into future circumstances; they will only know what is within their horizon. As the 

jogger moves forward, they will be able to see further ahead with respect to the starting point, but the same 

fixed-distance away.  

 

Figure 3-2 Receding horizon: horizon length 5 time steps 

The horizon can be thought of as continuously moving forward as the jogger advances. This is called the 

receding horizon. The above figure illustrates this concept: at the current step, for example 𝑘 = 2, the jogger 

can see only 5 steps in the future, or only as far as step 6.  

 

Like the forward-facing jogger, MPC methods use future information up to a given horizon which recedes with 

time. This feature is an important aspect which sets MPC apart from other optimal and parametric control 

methods [53]. In some systems, for example a robotic manipulator, the future is well planned out, and it is thus 

intuitive to take advantage of this information when determining control actions. In other systems, future 

information may not be available, so some form of estimation of the future of the system must be used to assist 

in determining the control action. 

 

3.2 Regulation vs Tracking 

There are two umbrella forms MPC problem: regulation problems and tracking problems. In the regulation 

problem, the objective is to optimally steer the state(s) of the system with respect to some cost, or performance 

measure, to the origin while satisfying input, output, and state constraints at all times. The tracking problem 

takes on the engineering task of optimally tracking a given output reference trajectory while ensuring the 



Model Predictive Control   19 

DLR-IB-RM-OP-2017-17 

constraints are satisfied. The problems operate under the basic assumptions that the system is controllable 

and the constraints satisfiable. [2, 14] 

 

For ease of explanation, the control process will first be described in terms of the regulation problem. After 

this, the few necessary differences will be explained for reference tracking. 

 

3.3 Prediction 

The estimation mentioned above is the prediction part of MPC. In this step, a model of the system – including 

past and present error, disturbance, input and output parameters – are used to estimate the possible states of 

the system in the near future [53]. The accuracy of the model has a heavy influence on the closed loop 

performance of the control law. Or quite simply: misinformation leads to erroneous decision making. 

 

3.3.1 Dynamic modelling 

The model is the bedrock of MPC: the future response is predicted using a dynamic model of the system. The 

design of the model should be complete enough to capture the system dynamics and allow predictions of the 

future system state to be calculated, while also being intuitive and permitting analysis [13].  It is common to 

form the dynamic model using state space, as this is said to be the most intuitive way to model system 

dynamics. In some fields, though, it is common to define the model in the form of a transfer function [13, 14, 

53]. For the intuitiveness in explanation and the prevalence in the field of RPO research, the state space 

representation will be presented here.  

 

The major advantages of the state space formulation in MPC are related to the control stability, its usefulness 

in both mono- and multivariate systems, and that such a formulation can be easily extended to nonlinear 

processes [13]. 

 

In state space modelling, a system is represented by differential equations decomposed into a set of first order 

differential equations. Each system has a set of internal variables, or states. The states and the output of the 

system evolve with time as a function of the present values of the states and any present inputs. The 

representation in continuous time is of the form 

𝑑

𝑑𝑡
𝑥(𝑡) = 𝐟𝑥(𝑥(𝑡), 𝑢(𝑡)) 

 

𝑦(𝑡) = 𝐟𝐲(𝑥(𝑡), 𝑢(𝑡)) (3-1) 



20  Chapter 3 

DLR-IB-RM-OP-2017-17 

where 𝐟𝑥 is the set of functions of the states 𝑥(𝑡) ∈ ℝ𝑛 and inputs 𝑢(𝑡) ∈ ℝ𝑚 and 𝑦 ∈ ℝ𝐩, 𝐟𝑦 set of functions 

determining the outputs of the system, with 𝑡 indicating the instant in time. The first equation is called the state 

equation and the second the output equation. These functions, in the undisturbed continuous time case, take 

the form 

𝑑

𝑑𝑡
𝑥(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡) 

 

𝑦(𝑡) = 𝐶𝑥(𝑡) (3-2) 

where 𝐴 ∈ ℝ𝑛×𝑛, 𝐵 ∈ ℝ𝐧×𝐦, and 𝐶 ∈ ℝ𝒑×𝒏 are the system, input, and output matrices, respectively. 

 

While it is possible to model the system in continuous time, MPC is typically implemented digitally, and it is 

therefore more conducive to model the system in, or convert the model to, discrete time [14, 52]. In this case, 

the system takes the form 

𝑥(𝑘 + 1) = 𝐴𝑥(𝑘) + 𝐵𝑢(𝑘)  

𝑦(𝑘) = 𝐶𝑥(𝑘)  (3-3) 

Now, 𝑘 indicates the time step under consideration and the matrices 𝐴, 𝐵,  and 𝐶 are the discretized versions 

of their continuous time counterparts.  

 

The prediction for this model has the form [13]  

𝑦̃(𝑘 + 𝑖|𝑘) = 𝐶𝑥̃(𝑘 + 𝑖|𝑘) = 𝐶 [𝐴𝑖𝑥(𝑘) +∑𝐴𝑗−1𝐵𝑢(𝑘 + 𝑖 − 𝑗|𝑘)

𝑖

𝑗=1

] (3-4) 

Here the notation 𝑥̃(𝑘 + 𝑖|𝑘) indicates a predicted value 𝑥̃ for prediction step (𝑘 + 𝑖) calculated at time step 𝑘. 

This prediction is part of the iterative prediction process which derives the estimated states and outputs on the 

prediction horizon, and will be revisited in section 3.3.3. 

 

State space incorporates disturbances relatively simply. In a state space system, disturbances can occur at 

the input, output, along the measurement path, or in some internal variable of the system as illustrated in the 

following figure [53]. 

 

Figure 3-3 System disturbances 

 



Model Predictive Control   21 

DLR-IB-RM-OP-2017-17 

These disturbances can be included in the system model and estimated using an observer. A future 

disturbance takes the form 

𝑑(𝑘 + 1) = 𝑑(𝑘) + 𝛾(𝑘) (3-5) 

where 𝛾(𝑘) is the variation of the disturbance from the current time step 𝑘 to the future step 𝑘 + 1. The 

incorporation of the disturbance into the system model depends on the position in the system of the present 

disturbance. In this work, only additive or state disturbances are of interest and will be outlined in the following 

[53].  

 

Let the state disturbance present be of the form 𝐧(𝑘 + 1) = 𝐧(𝑘) + 𝛾(𝑘) within a system 

𝑥(𝑘 + 1) = 𝐴𝑥(𝑘) + 𝐵𝑢(𝑘) + 𝐿𝑛(𝑘)  

𝑦(𝑘) = 𝐶𝑥(𝑘) + 𝐷𝑢(𝑘) (3-6) 

 

When posed as a state, the disturbance can also be estimated, and the state space representation of the 

system becomes 

[
x(k + 1)
n(k + 1)

] = [
A L
0 I

] [
x(k)
n(k)

] + [
B
I
] [
u(k)
γ(k)

] 
 

y(k) = [C 0] [
x(k)

n(k)
] + Du(k) (3-7) 

 

3.3.2 Linearity of the model 

There are, of course, a wide variety of forms that the system models may take.  Systems can be linear or 

nonlinear, discrete or continuous in time. The prediction modelling may be deterministic, stochastic, or fuzzy.  

The rest of this section will distinguish the handling of linear from nonlinear system prediction. 

Linear plant models 

In a linear system, the predictions of the states 𝑥(𝑘) has a linear dependence on the control input 𝑢(𝑘) [52]. A 

quadratic prediction cost will then be a quadratic function of the control inputs. The input and state constraints 

linearly imply a constraint on the control inputs. 

Nonlinear plant models 

In a nonlinear system, there is a nonlinear dependence of the prediction of states on the control inputs. This 

results in a considerably more difficult optimization problem. In such a nonlinear programming problem, there 

is no general guarantee that the optimization solver will converge to a global extremum [13]. 

 

 

 

 



22  Chapter 3 

DLR-IB-RM-OP-2017-17 

3.3.3 Prediction modelling 

The prediction process is an iterative application of the plant dynamic model on the predicted or, if possible, 

measured control parameters in an effort to predict the possible future control parameter. Using the dynamic 

model characterized in the preceding, an estimation can be formed to predict the system’s future states, 

disturbances, and control inputs. There are two main methods of prediction in the state space formulation. 

Camacho and Bordons explain the incremental model in [13], and with the aid of reference, explain a method 

based on (3-4). To explain this process, consider the following system: 

𝑥(𝑘 + 1) = 𝐴𝑥(𝑘) + 𝐵𝑢(𝑘)  

𝑦(𝑘) = 𝐶𝑥(𝑘) (3-8) 

Of course, if disturbances are present, they must be taken into account by augmenting the system as 

described. For a constrained system, the constraints 𝑥(𝑘) ∈ 𝕏 and 𝑢(𝑘) ∈ 𝕌 are applicable to the states and 

inputs, respectively. The control constraint set 𝕌 ⊂ ℝ𝑚 is convex and compact, the state constraint set 𝕏 ⊂ ℝ𝑛 

is convex and closed, and both contain the origin.  

Now, prediction of the future state of the system is achieved by iteratively considering the state equation, 

starting with the initial state 𝑥(𝑘|𝑘) = 𝑥(𝑘) and with a terminal constraint 𝑥(𝑘 + 𝑁|𝑘) ∈ 𝕏𝑓, where 𝕏𝑓 is the 

terminal set of the prediction. Given a sequence of predicted control inputs 𝐮̃(𝑘), a sequence of predicted 

states 𝐱̃(𝑘) can be generated by simulating the model forward over the prediction horizon of 𝑁 sampling 

intervals. This series of predictions takes the following form [53]: 

𝑥̃(𝑘 + 1|𝑘) = 𝐴𝑥(𝑘) + 𝐵𝑢̃(𝑘|𝑘)                                                                                                                                        

𝑥̃(𝑘 + 2|𝑘) = 𝐴𝑥̃(𝑘 + 1|𝑘) + 𝐵𝑢̃(𝑘 + 1|𝑘) = 𝐴2𝑥(𝑘) + 𝐴𝐵𝑢̃(𝑘|𝑘) + 𝐵𝑢̃(𝑘 + 1|𝑘)                                          

𝑥̃(𝑘 + 3|𝑘) = 𝐴𝑥̃(𝑘 + 2|𝑘) + 𝐵𝑢̃(𝑘 + 2|𝑘) = 𝐴3𝑥(𝑘) + 𝐴2𝐵𝑢̃(𝑘|𝑘) + 𝐴𝐵𝑢̃(𝑘 + 1|𝑘) + 𝐵𝑢̃(𝑘 + 2|𝑘)       

…                                                                                                                                                                               

𝑥̃(𝑘 + 𝑁|𝑘) = 𝐴𝑥̃(𝑘 + 𝑁 − 1|𝑘) + 𝐵𝑢̃(𝑘 + 𝑁 − 1|𝑘)                                                                                                 

            = 𝐴𝑁𝑥(𝑘) + 𝐴𝑁−1𝐵𝑢̃(𝑘|𝑘) + 𝐴𝑁−2𝐵𝑢̃(𝑘 + 1|𝑘) + 𝐴𝑁−3𝐵𝑢̃(𝑘 + 2|𝑘) + ⋯+ 𝐴𝑁−𝑛𝑢−1𝐵𝑢̃(𝑘 + 𝑛𝑢|𝑘) 

  (3-9) 

where 𝑛𝑢 indicates the control horizon. In this notation, (𝑘 + 𝑖|𝑘) indicates a prediction of the value at time step 

𝑘 + 𝑖 made at time step 𝑘. In matrix form, the prediction progression becomes [14, 52, 53]  

[
 
 
 
 
𝑥̃(𝑘 + 1|𝑘)
𝑥̃(𝑘 + 2|𝑘)

𝑥̃(𝑘 + 3|𝑘)
…

𝑥̃(𝑘 + 𝑁|𝑘)]
 
 
 
 

=

[
 
 
 
 
𝐴
𝐴2

𝐴3

…
𝐴𝑁]
 
 
 
 

𝑥(𝑘) +

[
 
 
 
 

𝐵 0 0 … 0
𝐴𝐵 𝐵 0 … 0
𝐴2𝐵 𝐴𝐵 𝐵 … 0
… … … … …

𝐴𝑁−1𝐵 𝐴𝑁−2𝐵 𝐴𝑁−3𝐵 … 𝐴𝑁−𝑛𝑢−1𝐵]
 
 
 
 

[
 
 
 
 

𝑢̃(𝑘|𝑘)

𝑢̃(𝑘 + 1|𝑘)
𝑢̃(𝑘 + 2|𝑘)

…
𝑢̃(𝑘 + 𝑛𝑢|𝑘)]

 
 
 
 

 (3-10) 

The associated output predictions are similarly represented by 

[
 
 
 
 
ỹ(k + 1|k)
ỹ(k + 2|k)

ỹ(k + 3|k)
…

ỹ(k + N|k)]
 
 
 
 

=

[
 
 
 
 
CA
CA2

CA3

…
CAN]

 
 
 
 

x(k) +

[
 
 
 
 

CB 0 0 … 0
CAB CB 0 … 0
CA2B CAB CB … 0
… … … … …

CAN−1B CAN−2B CAN−3B … CAN−nu−1B]
 
 
 
 

[
 
 
 
 

ũ(k|k)

ũ(k + 1|k)
ũ(k + 2|k)

…
ũ(k + nu|k)]

 
 
 
 

 (3-11) 

 



Model Predictive Control   23 

DLR-IB-RM-OP-2017-17 

It is often desirable to cast the prediction in terms of the estimated state and the current and preceding control 

input. The output predictions are then of the form [13] 

[

ỹ(k + 1|k)
ỹ(k + 2|k)

…
ỹ(k + N|k)

] = [

CA
CA2

…
CAN

] x̃(k) +

[
 
 
 
 

CB
CA2B
…

∑ CAiB
N−1

i=0 ]
 
 
 
 

u(k − 1) +

[
 
 
 
 

B … 0
C(B + AB) … 0

… ⋱ …

∑ CAiB
N−1

i=0
… ∑ CAiB

N−nu

i=0 ]
 
 
 
 

u(k) (3-12) 

The second term, however has no effect on the optimization, as it does not contain the decision variable.  

 

3.4 Objective function 

As a precursor to the optimization process, a critical control aspect needs to be introduced: the objective or 

cost function. While each of the various MPC algorithms and many authors suggest different cost functions for 

obtaining the control law, the general idea is that the future output of the system within the horizon should 

follow a reference signal while the control effort to do so should be penalized.  

 

Harkening back to the basis of MPC in optimal control, the general form of the cost function is as follows [2, 

14] 

𝑉𝑁(𝐱(𝑘), 𝐮(𝑘)) = ∑ 𝑙(𝑥̃(𝑘 + 𝑖|𝑘), 𝑢̃(𝑘 + 𝑖|𝑘))

𝑘+𝑁−1

𝑖=𝑘

+ 𝑉𝑓(𝑥(𝑘 + 𝑁|𝑘)) (3-13) 

where the stage cost function 𝑙(∙,∙) is a positive definite function  

𝑙(𝑥̃(𝑘 + 𝑖|𝑘), 𝑢̃(𝑘 + 𝑖|𝑘)) = ‖𝑥𝑖‖𝑄
2 + ‖𝑢𝑖‖𝑅

2  (3-14) 

satisfying 𝑙(𝟎, 𝟎) = 02. The notation in the stage cost function ||𝑥||
𝑄

2
= 𝑥𝑇𝑄𝑥 and ||𝑢||

𝑅

2
= 𝑢𝑇𝑅𝑢 indicates the 

squared weighted Euclidean norms, where 𝑥 and 𝑢 are the current state and control inputs, respectively. The 

second term in (3-13), 𝑉𝑓(∙), is the terminal cost function and also positive definite. The terminal cost must 

satisfy 𝑉𝑓(𝟎) = 0 and is frequently of the form 𝑉𝑓(𝑥(𝑘 + 𝑛𝑦)) = ||𝑥(𝑘 + 𝑁|𝑘)||
𝑃

2
, where 𝑃 is the solution to the 

Riccati equation. When coupled with the typical linear model described in the preceding sections, this forms 

the basis of the so-called Linear-Quadratic optimal control problem (LQP). A regulator controller which makes 

use of the LQP is referred to a Linear Quadratic Regulator (LQR). 

 

It can be noted that the implied reference in (3-13) and (3-14) is the origin. The deviation is then between the 

estimated (or measured) value and the desired reference of 0: that is ‖𝑥𝑖‖𝑄
2  implies ‖𝑥𝑖 − 0‖𝑄

2 , and so on. The 

regulation problem can therefore be thought of as a special case of reference tracking where the point to be 

tracked is the same for all points on the prediction horizon and the desired terminal state is the same for each 

prediction horizon. As the input or state values can come from estimation or measurement, the tilde in the 

notation can be dropped in future, and the notation for a non-zero reference will be made clear.  

 



24  Chapter 3 

DLR-IB-RM-OP-2017-17 

3.5 Optimization 

Now that the cost function has been characterized, the optimization process can be undertaken. First, a few 

more properties of the system should be defined. 

 

Let   

𝚽(𝑖; 𝑥, 𝐮) (3-15) 

be the solution of (3-8) at time 𝑖, controlled by a series of inputs 𝐮 when the initial state at time 0 is 𝑥 – i.e. 

𝚽(0; 𝑥, 𝐮) = 𝑥. Additionally, for a given state 𝑥, let the set of admissible control sequences 𝐮 be denoted by  

𝒰𝑁 = {𝐮|𝑢𝑖 ∈ 𝕌,𝚽(𝑖; 𝑥, 𝐮) ∈ 𝕏 for 𝑖 = 0,1, … ,𝑁 − 1,𝚽(𝑁; 𝑥, 𝐮) ∈ 𝕏𝑓} (3-16) 

Furthermore, let the set of initial states for which the set of admissible control sequences is non-empty, known 

as the region of attraction of the controller, be defined by 

𝒳𝑁 = {𝑥|𝒰𝑁(𝑥) ≠ ∅} (3-17) 

This is also equal to the domain of the value function 𝑉𝑁
∗(∙). 

 

If the current state 𝑥 is known, then the sequence of optimal predicted control inputs 𝐮∗(𝑥) is obtained through 

the minimization of (3-13). This process is denoted by ℙ𝑁(𝑥): 

𝑉𝑁
∗(𝑥) = min

𝐮
{𝑉𝑁(𝑥, 𝐮)| 𝐮 ∈ 𝒰𝑁(𝑥)} (3-18) 

𝐮∗(𝑥) = argmin
𝐮
{𝑉𝑁(𝑥, 𝐮)|𝐮 ∈ 𝒰𝑁(𝑥)} (3-19) 

The optimization problem ℙ𝑁(𝑥) is solved online at each sampling instant and the first element of 𝐮∗(𝑥), 𝑢0
∗(𝑥), 

is applied to the system [2, 14].  

 

The repeated execution of measuring the state, computing the prediction and optimal control input, and 

applying it to the plant is regarded as the implicit Model Predictive Control law 𝜅𝑁(∙) of the form 𝜅𝑁(𝑥) = 𝑢0
∗(𝑥) 

[2]. Under such a law, the closed loop dynamics of the system can be expressed by 

𝑥(𝑘 + 1) = 𝐴𝑥(𝑘) + 𝐵κ𝐍(x)  

𝑦(𝑘) = 𝐶𝑥(𝑘) (3-20) 

 

3.6 Reference tracking problem 

Now that the basis of MPC has been set, the tracking problem can be revisited. For the purposes of this 

section, assume that no disturbance or uncertainty is present. Following from [2]. 

 

 

 



Model Predictive Control   25 

DLR-IB-RM-OP-2017-17 

3.6.1 The reference tracking problem 

Let there exist a reference set point 𝑦𝑟 with a corresponding terminal state (𝑥𝑟 , 𝑢𝑟), where the subscript 𝑟 refers 

to the reference tracking versions of these variables. Consider first a prediction horizon of a single time step. 

To be able to track the reference signal without exhibiting an offset, there must exist a feasible terminal state 

(𝑥𝑟 , 𝑢𝑟) ∈ 𝕏×𝕌 for the reference set point 𝑦𝑟, satisfying 

𝑥𝑟(𝑘 + 1) = 𝐴𝑥𝑟(𝑘) + 𝐵𝑢𝑟(𝑘)  

𝑦𝑟(𝑘) = 𝐶𝑥𝑟(𝑘) (3-21) 

where the matrices and vectors are the same quantities as previous and have the same dimensions as the 

regulation problem. 

 

In a linear discrete-time system, the reference state is reachable without an offset  

𝑟𝑎𝑛𝑘 [
𝐼 − 𝐴 −𝐵
𝐶 0

] = 𝑛 + 𝑝 (3-22) 

where 𝑛 and 𝑝 are the dimensions of the input and output vectors, respectively. That is to say, if this condition 

in not met, the system will not be able to reach the set point precisely, but some other stable point in the 

vicinity. However, if this condition is met, the terminal state is not necessarily unique for the given set point. A 

method commonly used to ensure a unique terminal state is arrived at is to compare the current system to a 

unique reference state. This artificial determination basically compares the current state and/or input to a 

reference value. For a single prediction step, this boils down to the following quadratic optimization is solved  

(x𝑟
∗(𝑘), u𝑟

∗(𝑘)) = arg min
𝐱𝒓(𝑘),𝒖𝒓(𝑘)

(xr − xrt)
𝑻𝐐𝐫(xr − xrt) + (ur − urt)

𝑻𝐑𝐫(ur − urt)    

𝐬. 𝐭.    𝒙𝒓(𝑘 + 1) = 𝐴𝑥𝑟(𝑘) + 𝐵𝑢𝑟(𝑘)  

𝑦𝑟(𝑘) = 𝐶𝑥𝑟(𝑘)    

𝑥𝑟(𝑘) ∈ 𝕏        

𝑢𝒓(𝑘) ∈ 𝕌       (3-23) 

where urt is the desired reference value. On the other hand, if the problem is rank deficient, a feasible steady 

state can be determined such that the output tracking error is minimised in the least squares sense by solving 

the quadratic program 

(x𝑟
∗(𝑘), u𝑟

∗(𝑘)) = arg min
x𝑟(𝑘),𝑢𝑟(𝑘)

(yr(𝑘) − Cxrt(𝑘))
𝑇Qr(yr(𝑘) − Cxrt(𝑘))    

𝐬. 𝐭.    xr(𝑘 + 1) = Axr(𝑘) + Bur(𝑘)  

yr(𝑘) = Cxr(𝑘)    

xr(𝑘) ∈ 𝕏        

u𝑟(𝑘) ∈ 𝕌       (3-24) 

 

3.6.2 Nominal MPC for tracking 

The concept presented in the preceding can be extended to cover the full horizon. Assuming (3-22) is satisfied 

for the pair (𝑥𝑟(𝑘, 𝑦𝑟(𝑘)), 𝑢𝑟(𝑘, 𝑦𝑟(𝑘))) for the desired reference point, a tracking model predictive controller is 

realized by solving the modified optimal control problem ℙ𝑁(xr(𝑘), 𝑦𝑟) 



26  Chapter 3 

DLR-IB-RM-OP-2017-17 

𝑉𝑁
∗(𝑥𝑟 , 𝑦𝑟) = min

𝐮
{𝑉𝑁(𝑥𝑟 , 𝑦𝑟 , 𝐮𝐫)| 𝐮𝐫 ∈ 𝒰𝑁(𝑥𝑟 , 𝑦𝑟)} (3-25) 

𝐮𝐫
∗(𝑥𝑟 , 𝑦𝑟) = argmin

𝐮
{𝑉𝑁(𝑥𝑟 , 𝑦𝑟 , 𝐮𝐫)|𝐮𝐫 ∈ 𝒰𝑁(𝑥𝑟 , 𝐲𝐫)} (3-26) 

in which the cost function and the set of admissible states is now dependent on the reference point 

𝑉𝑁(𝐱𝐫(𝑘), 𝐲𝐫(𝑘), 𝐮𝐫(𝑘)) = ∑ 𝑙(𝑥𝑟(𝑘 + 𝑖|𝑘) − 𝑥𝑟𝑡(𝑘), u(𝑘 + 𝑖|𝑘) − 𝑢𝑟𝑡(𝑘))

𝑁−1

𝑖=0

+ 𝑉𝑓(𝑥𝑟(𝑘 + 𝑁|𝑘) − 𝑥𝑟𝑡(𝑘)) 

  (3-27) 

𝒰𝑁(𝐱𝐫(𝑘), 𝑦𝑟(𝑘)) = {𝐮|𝑢𝑖 ∈ 𝕌,𝚽(𝑖; 𝑥, 𝐮) ∈ 𝕏 for 𝑖 = 0,1,… , 𝑁 − 1,𝚽(𝑁; 𝑥, 𝐮) ∈ 𝕏𝑓(𝑦𝑟(𝑘))} (3-28) 

 

The terminal and stage cost functions are defined as previously. 

 

The terminal set is also dependent on the set point value of the reference 𝕏𝑓(𝑦𝑠). If the system is linear, this 

can simply be shifted from the origin using   

𝕏𝑓(𝑦𝑠) = {𝑥𝑟(𝑦𝑠)}⨁𝕏𝑓 ⊂ 𝕏 (3-29) 

The additional constraint that all states within the shifted terminal set must also be contained in 𝕏 limits the set 

points that can be tracked to   

𝒴𝑠 = {𝑦𝑠|𝑥𝑟(𝑦𝑠)⨁𝕏𝑓 ∈ 𝕏, 𝐮𝐫(𝑦𝑠) ∈ 𝕌} (3-30) 

For this set of admissible set points, the region of attraction of the tracking controller is 

𝒳𝑁(ys) = {𝑥 | 𝒰N(x, ys) ≠ ∅} (3-31) 

 

Employing the receding horizon and applying only the first element of the predicted sequence of control inputs, 

the implicit MPC law is given by 

𝛋𝐍(𝑥, 𝑦𝑟) = 𝐮
∗(𝑥, 𝑦𝑟) (3-32) 

 

It is often not possible to simply shift the set point reference from the origin without introducing offset to the 

terminal state. However, when the method is applied, constraint (3-29) must be satisfied. This requirement 

may result in a small region of admissible steady states. If the size of 𝕏𝑓 is limited by the state constraints, 

then constraint (3-29) can only be satisfied for steady states 𝐱𝐬 close to the origin. 

 

3.6.3 Offset problem in the presence of uncertainty 

In the previous section, disturbances and errors were ignored. In this nominal case, if a feasible steady state 

exists for the given output setpoint, offset-free tracking is achieved. However, in real-world applications, perfect 

models do not exist and the system will always be subject to external disturbances. If there is a non-vanishing 

disturbance present in the environment of the system, the conventional MPC methods described so far – both 

regulator and tracking – will generally exhibit an offset from the desired outputs.[2] 



Model Predictive Control   27 

DLR-IB-RM-OP-2017-17 

 

The predominant approach to handling this offset is to augment the system states with fictitious integrating 

disturbances (see [2] and the references therein). If the external disturbance is asymptotically constant, then 

under the correct conditions, this method will allow offset-free MPC to be achieved.  

 

3.7 Implementation of the receding horizon 

In conventional MPC, the prediction horizon 𝑁 has a static length, but receding as explained previously in 

section 3.1. As the state prediction and optimal input sequence depend on the current state measurement, 

feedback is introduced into the MPC law [52]. This affords a degree of robustness to modelling errors and 

uncertainty and implies that MPC is an inherently closed loop control method. Furthermore, the advance of the 

horizon with the current sample point compensates for the truncated infinite horizon, making it seem as if it 

were infinite. 

 

The linear feedback form of the problem is anticipated in the expected LQ problem. The classic definition of 

the LQP specifies an infinite horizon. This is, however, impractical in a real-world application where a process 

has a finite duration. The horizon is truncated to a finite length and becomes the indicated finite prediction 

horizon 𝑁.  

 

Furthermore, in the optimal control definition of the problem, there is no difference between the optimal 

predicted input sequence and the receding horizon in the absence of disturbances and model errors. Here, 

though, there can be significant discrepancy between the prediction values and the closed loop responses. 

This discrepancy increases with reducing horizon length. The horizon, therefore, needs to be long enough to 

return predictions as close to the closed loop response as possible while still short enough to be feasible. [52] 

 

3.7.1 Prediction horizon selection 

The constraints on the horizon may seem rough and there does not appear to be any set rule on how to select 

the prediction horizon. The recommended practice is to select the prediction horizon size early in the design 

and to leave it fixed. The size of this horizon should not be used as a tuning parameter. Instead, increasing 

the sample time or cost function weights or modifying the control horizon or terminal weights should be 

considered [54]. 

 

 

 

 



28  Chapter 3 

DLR-IB-RM-OP-2017-17 

3.7.2 Control horizon selection 

It is also prudent to outline the guidelines for selecting the control horizon 𝑛𝑢 - the number of control inputs to 

be optimized at the current sample step.  Recall that regardless of the size of this horizon, only the first element 

in the optimized sequence will be applied to the system and the rest are ignored. Typically, 𝑛𝑢 is chosen so 

that the 2 ≤ 𝑛𝑢 ≪ 𝑁, for the following reasons [54]:  

 Choosing a smaller 𝑛𝑢 means that fewer future control values need to be optimized at each step, 

possibly drastically reducing the computational effort at each step. 

 A smaller 𝑛𝑢 promotes, but does not guarantee, an internally stable controller. 

 If delays are present in the plant model, a small 𝑛𝑢 is imperative as some control inputs might not have 

time before the end of the prediction horizon to apply any affect to the plant outputs. This would result 

in a singular Hessian matrix in the quadratic problem – i.e. the minimization of the cost function. A 

small 𝑛𝑢 means that fewer computations must be conducted at each time step, resulting in a faster 

response.  

 

3.8 Sampling time  

As shown in the preceding section, the receding horizon implementation is dependent on the selection of the 

sampling time. As in the case of the prediction horizon, it is recommended to select the sampling time 𝑇𝑠 early 

in the design of the controller and hold the value constant; unlike the prediction horizon, once the initial design 

steps are undertaken, this is relaxed and 𝑇𝑠 becomes a tuning parameter [54]. If the parameter changes, 

though, other parameters are also likely to need re-tuning. Decreasing the size of 𝑇𝑠 may yield better 

disturbance rejection characteristics in the controller. However, there is a limit to the improvement in 

disturbance rejection, and eventually reducing the sampling time further will make no difference to this 

characteristic in the system response. The value of 𝑇𝑠 at which performance in terms of disturbance rejection 

plateaus is dependent on the dynamic characteristics of the plant. It should also be kept in mind that as 𝑇𝑠 

decreases, the computational effort increases. For process control, 𝑇𝑠 ≫ 1 𝑠 is common; in other applications, 

like aerospace, circumstances may call for 𝑇𝑠 < 1 𝑠 [54].  

 

3.9 Constraint handling 

In practice, all processes are subject to constraints. For example, actuators have a limited range of action and 

have a limited slew rate, or thrusters have a limited range of force, saturating at each end of the range. 

Constraints come in two major umbrella types [13, 52, 53]: equality and inequality constraints. In MPC, equality 

constraints typically are those which state that the states and control inputs should satisfy model dynamics 

and are handled implicitly; inequality constraints on the control inputs and the states are imposed explicitly by 

the online optimization problem. Only the inequality constraints need be briefly enumerated, following [52, 53].  

 

 



Model Predictive Control   29 

DLR-IB-RM-OP-2017-17 

3.9.1 Hard and soft constraints 

All constraints are either hard or soft. A hard constraint is one which must always be satisfied. If a hard 

constraint is not feasible, then the problem is infeasible. A soft constraint is one which may be violated if 

necessary so as to permit the problem to remain feasible.  

 

3.9.2 Common constraints 

Input saturation constraints 

Saturation refers to the inability of the magnitude of a signal to go beyond the minimum or maximum of the 

permissible range. Input saturation is reached at the boundaries of the input constraint: 𝐮𝑚𝑖𝑛 ≤ 𝐮(𝑘) ≤ 𝐮𝑚𝑎𝑥.  

  

Input slew rates 

In this case, slewing refers to the rate of change of the input. Input slew is therefore the input rate constraint: 

𝚫𝐮𝒎𝒊𝒏 ≤ 𝐮(𝒌) − 𝐮(𝒌 − 𝟏) ≤ 𝚫𝐮𝒎𝒂𝒙. 

 

State constraints 

State constraints ensure that the states are constrained to the region of attraction. Linear state constraints 

have the general form 𝐱𝐦𝐢𝐧 ≤ 𝐱 ≤ 𝐱𝐦𝐚𝐱 and are active during transient and steady state operation.  

 

Output constraints: saturation, overshoot, and monotonicity 

Output saturation is much like input saturation, placing upper and lower bounds on the system output, and are 

of the form 𝐲𝐦𝐢𝐧 ≤ 𝐲 ≤ 𝐲𝐦𝐚𝐱. Constraining the output can be used to prevent overshoot in the system response; 

while setting either the upper of lower limit to zero results in the output being monotonic.   

 

3.9.3 Incorporating input and state constraints 

To incorporate linear input and state constraints into the control law, they must be re-written in the form 𝐀𝐜𝐮 ≤

𝐛𝟎 + 𝐁𝐱𝐱(𝑘) which will be more suitable for inclusion into the optimization problem. To explain this, first 

consider the example of the input constraints.  

 

The first step is to separate the constraint into its upper and lower constraints: 

𝐮𝐦𝐢𝐧 ≤ 𝐮 (3-33) 

 𝐮 ≤ 𝐮𝐦𝐚𝐱 (3-34) 

Reorganizing this into matrix form, the constraint becomes 



30  Chapter 3 

DLR-IB-RM-OP-2017-17 

[
−𝐈 𝐮m𝐢𝐧
𝐈 −𝐮m𝐚𝐱

] [
𝐮
𝟏
] ≤ 𝟎 

(3-35) 

 

For the state constraints, first consider the state to be of the form 𝐱 = 𝚯𝐮 + 𝜃, or the input plus some variation. 

Then, in matrix form the constraint becomes 

[
−𝚯
𝚯
]𝐮 ≤ [

−𝐱𝐦𝐢𝐧
𝐱𝐦𝐚𝐱

] + [
𝜃
−𝜃
] = [

−𝐱𝐦𝐢𝐧
𝐱𝐦𝐚𝐱

] + [ 𝐀
𝑖

−𝐀𝑖
] 𝑥(𝑘) 

(3-36)  

Combining (3-35) and (3-36) gives the constraints expressed in the desired form,  

𝐀𝐜𝐮 ≤ 𝐛𝟎 + 𝐁𝐱𝐱(𝑘) (3-37) 

where the constant matrices 𝐀𝐜, 𝐛𝟎, and 𝐁𝐱 can be determined offline.   

 

The optimization problem then becomes the minimization described in (3-18)-(3-19) or (3-25)-(3-26) subject to 

(3-37). 

 



 

31 

 

4 Tube-based Robust Model Predictive Control 

The preceding chapter discussed conventional, nominal MPC, which provides strong theoretical results 

pertaining to nominal stability and feasibility. Nominal MPC, however, does not consider what happens when 

the predicted evolution of the system differs from the actual system behaviour due to disturbances or modelling 

errors. Robust MPC builds on nominal MPC to account for these. Open loop frameworks of robust MPC 

methodologies are generally overly conservative while the closed loop predictions often result in a large spread 

of predicted trajectories resulting in a controller with a relatively high computational complexity [2]. A 

formulation of robust MPC which aims to reduce this online complexity is tube-based robust MPC.  

 

Tube-based robust MPC was first proposed by Langson et al. in [25], but [26] by Mayne et al. is widely 

considered to be the formal birth of the framework. The work conducted by these groups centers on the robust 

state-feedback regulation problem. It can be understood that Tube-based robust MPC separates the 

constrained optimal control problem from the problem of ensuring robustness to uncertainty, while the 

underlying concept of tubes permits extension of the methodology to other problem types [2]. Further work 

was conducted by Alvarado et al. [31, 32], Limon et al. [3, 33], and Mayne et al. [27, 28, 34, 35] expanding the 

concept into robust output-feedback, tracking, and nonlinear problems. 

 

Tube-base robust MPC builds on the theory of robust positively invariant (RPI) sets with the aim to solve the 

nominal MPC problem whilst constraining the discrepancy between the nominal and uncertain system states. 

By solving this problem under suitably tightened state and control constraints, the uncertain system can be 

guaranteed to evolve within a tube of trajectories centered on the predicted or reference nominal trajectory. 

The nominal system should then be controllable in such a way that the original constraints are satisfied at all 

times [2]. It is important to make the distinction that the nominal system refers here to the unperturbed plant 

dynamics with no uncertainty or error present. 

 

Amongst the various derivative forms of linear Tube-based robust MPC, the common feature is the form of the 

control law 

𝑢 = 𝑣 + 𝐾𝑑𝑟(𝑥 − 𝑧) (4-1) 



32  Chapter 4 

DLR-IB-RM-OP-2017-17 

The control law is an LTI feedback controller, where the second term is a disturbance rejection controller with 

disturbance rejection gain 𝐾𝑑𝑟 and a bounded deviation of the real system 𝑥 from the nominal 𝑧. This boundary 

is a robust positively invariant set 𝒵, the selected size and shape of which influences the adjustment of the 

original constraints 𝕏 and 𝕌 and the terminal set 𝕏𝑓. The implementation then becomes a slightly modified 

conventional MPC for the nominal system [2, 26], accompanied by a cluster of additional parameters which 

permit the reduction in online computational effort. This reduction in complexity is a major selling point to Tube-

based robust MPC.  

 

In the succeeding sections, the remaining necessary background theory is outlined, followed by the linear 

regulation framework as was initially proposed. Subsequently, the state-feedback methodology extensions for 

tracking is as needed for tracking a reference trajectory. This exposition follows mainly from  [1-4, 25, 26, 29, 

31-33]. 

 

4.1 Uncertainty modelling 

No mathematical model of a real process is able to plan for every aspect of reality. The most straight-forward 

approach to handling uncertainties presented in literature is to rely on the inherent robustness of model 

predictive control and simply ignore any uncertainty or error [14, 25, 55]. Remember from section 3.7 that the 

receding horizon control strategy introduces feedback into the controller through the cyclic prediction and 

optimization, which leads to a degree of robustness against perturbation, even if the controller has not been 

explicitly designed for this. It would make sense that this quality would also be present in model predictive 

control methods. However, the constrained nature of the model predictive control strategy presented in the 

previous chapter and the implicit form of the control law make robustness and stability analysis a very difficult 

task [2, 56]. There are stark few approaches to analysing nominal MPC robustness and stability presented in 

literature [2]. 

 

Clearly, then, simply ignoring uncertainty and error in MPC problem formulation is generally a bad idea. In 

order to account for the discrepancies between the model and the real response, it is necessary to obtain an 

adequate model of the uncertainty. The way in which the uncertainty is modelled often depends on the 

technique used to design the controller [13]. In this work, only bounded additive input disturbances are relevant. 

 

In the case of bounded additive input disturbances, the system model is taken to be accurate, but with unknown 

bounded disturbances acting upon it as follows  

𝑥(𝑘 + 1) = 𝐴𝑥(𝑘) + 𝐵𝑢(𝑘) + 𝑤  

𝑦(𝑘) = 𝐶𝑥(𝑘) (4-2) 



Tube-based Robust Model Predictive Control  33 

DLR-IB-RM-OP-2017-17 

The state disturbance 𝑤 directly affects the evolution of the states and includes external disturbances, 

parameter uncertainty, and unmodelled dynamics. The set 𝒲 containing these disturbances are most 

commonly taken as polytopic. While this is not a strict requirement, polytopic sets can result in a lower 

computational complexity and cost.  

 

4.2 Robust positively invariant sets 

Robust positively and control invariant sets play an important role in robust MPC, appearing in numerous 

robust methods, see [2, 15, 25, 41, 56] for examples. The actual use of the term RPI has a tendency to vary 

from author to author. However, in the field of Tube-based robust MPC, the use is consistent in meaning 

disturbance invariant [2]. This implies that the set is invariant to the realization of the bound disturbance. In 

this section, the concept of these types of sets will be defined. 

 

Consider a system which is acted upon by an exogenous disturbance 

𝑥(𝑘 + 1) = 𝐴𝑥(𝑘) + 𝐵𝑢(𝑘) + 𝑤(𝑘) (4-3) 

where the disturbance 𝑤 ∈ 𝒲 and 𝒲 is a compact set. Then, a set Ω is robust positively invariant for the 

system if for every initial state 𝑥(0) ∈ Ω and all 𝑤 ∈ 𝒲 the solution at 𝑘 > 0 is 𝑥(𝑘) ∈ Ω [57].  The minimal 

robust positively invariant (mRPI) set ℱ∞ is an RPI set contained in every closed RPI set of system (4-3), that 

is 𝐹∞ ⊆ Ω [58]. The exact set 𝐹∞ is only determinable under certain circumstances. An approximation 𝒵 of the 

mRPI set is made in practice. It is advantageous, when the system constraints are defined as polytopes, to 

determine the mRPI in such a way that it is also polytopic. This places certain demands on its determination 

[26], which will explored later in section 5.2.2. 

 

4.3 Tube-based robust MPC for regulation 

The solution of a robust MPC optimization problem is dependent on the specific realization of the generic 

uncertainty. Tube-based robust MPC is motivated by the observation that both the open- and closed loop 

formulations of the robust control problem in the presence of uncertainty generate a tube of trajectories where 

each trajectory in the bundle corresponds to a particular realization of the uncertainty [14], illustrated by the 

following.  

 



34  Chapter 4 

DLR-IB-RM-OP-2017-17 

 

Figure 4-1 State trajectories and state tube, adapted from [14] 

 

In Figure 4-1, certain trajectories of a one-dimensional system are emulated for 3 time steps. The central 

trajectory, labelled z, corresponds to the nominal trajectory along which the system would evolve with no 

disturbance present, the extreme plots are the upper and lower bounding trajectories of the bundle of 

trajectories, and the purple trajectory, labelled x, is the trajectory corresponding to some realization of the 

system uncertainty. It is important to keep in mind that in the robust framework the state and control constraints 

must be satisfied at all times by every trajectory within the bundle.  

 

Tube-base robust MPC is a compromise between optimality and simplicity. The uncertain system control 

problem can be thought of as the nominal model predictive control of a tube, rather than individual trajectories. 

The center of the tube will be coincident with the nominal system response, when the disturbance is absent. 

The boundary of the tube then encloses the collective bundle of all trajectories satisfying all of the constraints 

imposed in the optimization procedure, discussed in the subsequent sections. Through suitable design of the 

tube, satisfaction of the constraints can be guaranteed for every disturbance realization which will yield a 

trajectory residing within this bundle [14]. This design process will be discussed later in this chapter and 

demonstrated in the next chapter. 

 

Figure 4-2 Outer bounding tube centered on nominal response 



Tube-based Robust Model Predictive Control  35 

DLR-IB-RM-OP-2017-17 

The entire tube, an example of which is illustrated above, need not be considered for each prediction step. As 

a result of the design process discussed later, the outer boundary of the tube is known at each time step. The 

step-wise consideration of this boundary means that at the end of the control process the boundary of the 

entire tube will have been accounted for. 

 

The idea behind Tube-based robust MPC for regulation is then fairly simple: the nominal trajectory at the center 

of the tube is found using conventional MPC as described in chapter 3 using appropriately tightened constraints 

and restricting the size of the tube using feedback elements to steer all trajectories within the tube to the 

nominal [14]. The resultant controller is in two degrees of freedom – the first DOF consisting of the conventional 

MPC control in an inner loop called the nominal controller and the second a disturbance rejection controller in 

an outer loop restricting the deviation of the actual trajectory from the nominal. The rest of this section is 

dedicated to the description of this framework following from [2, 25-30]. 

 

4.3.1 The system definition 

Consider the constrained linear, discrete-time system (DLTI) (4-3), which is simplified here for ease of 

exposition to 

𝑥+ = 𝐴𝑥 + 𝐵𝑢 + 𝑤  

𝑦 = 𝐶𝑥 (4-4) 

where 𝑥 ∈ ℝ𝑛 is the current system state, 𝑢 ∈ ℝ𝑚 the control action, 𝑥+ is the successor state, and 𝑦 is the 

system output. The unknown, bound disturbances 𝑤 ∈ ℝ𝑛 are contained in the convex and compact set 𝑊 ⊂

ℝ𝑛, and (𝐴, 𝐵) ∈ ℝ𝑛×𝑛×ℝ𝑛×𝑚 is assumed controllable. The system is subject to hard system and control 

constraints 

𝑥 ∈ 𝕏 ⊆ ℝ𝑛 , 𝑢 ∈ 𝕌 ⊆ ℝ𝑚 (4-5) 

which are polyhedral and polytopic sets, respectively, and both contain the origin. The corresponding nominal 

system is 

𝑧+ = 𝐴𝑧 + 𝐵𝑣 (4-6) 

where 𝑧 ∈ ℝ𝑛 is the current nominal system state, 𝑣 ∈ ℝ𝑚 the current control action, and 𝑧+ the successive 

nominal state. The nominal control sequence is of the form 𝐯 = {𝑣0, 𝑣1, … , 𝑣𝑁−1} and the predicted nominal 

states 𝐳 = {𝑧0, 𝑧1, … , 𝑧𝑁−1}. Furthermore, the control input and disturbances are the sequences 𝐮 =

{𝑢0, 𝑢1, … , 𝑢𝑁−1} and 𝐰 = {𝑤0, 𝑤1, … , 𝑤𝑁−1}, respectively, and 𝚽(𝑖; 𝑥, 𝐮,𝐰) is the solution of (4-4) at time step 𝑖 

controlled by 𝐮 when the initial state at 𝑖 = 0 is 𝑥. 

 

4.3.2 The robust control strategy 

As mentioned previously, the control strategy is two-fold: a feedforward conventional MPC element for the 

control input computed for the nominal problem and an ancillary linear feedback controller acting on the 

discrepancy between the actual state 𝑥 and predicted nominal state 𝑧. Let this error be signified by  



36  Chapter 4 

DLR-IB-RM-OP-2017-17 

𝑒 = 𝑥 − 𝑧 (4-7) 

and the feedback controller has the form 

𝑢 = 𝑣 + 𝐾𝑑𝑟𝑒 (4-8) 

where 𝐾𝑑𝑟 ∈ ℝ
𝑚×𝑛 is a linear disturbance rejection controller and is chosen such that 𝐴𝑘 = 𝐴 + 𝐵𝐾𝑑𝑟  is stable 

[26].  

 

Now, let Ω ∈ ℝ𝑛 be an RPI set for the perturbed system 

𝑥+ = 𝐴𝑘𝑥 + 𝑤 (4-9)  

such that  

𝐴𝐾𝒵⨁𝑊 ⊆ 𝒵 ⊆ Ω (4-10) 

is satisfied. Recall from the introduction of this chapter that 𝒵 represents the RPI set which defines the tube 

boundary. The operator ⨁ indicates the Minkowski set addition. Then, if the current perturbed system state  

 𝑥 ∈ {𝑧}⨁𝒵 (4-11) 

and control law (4-8) is applied, it follows that the successor state 𝑥+ ∈ {𝑧+}⨁𝒵 for all admissible disturbance 

sequences [26]. This implies that if this control law is employed, the uncertain system states 𝑥(𝑖) = 𝚽(𝑖; 𝑥, 𝐮,𝐰) 

will be kept close to the predicted states 𝑧(𝑖) = 𝚽̅(𝑖; 𝑧, 𝐯) of the nominal system for all admissible disturbances 

𝑤 and that, if the nominal control problem is solved with tightened constraints, the consistent constraint 

satisfaction for the uncertain system is ensured.   

 

It is advisable to choose 𝒵 as small as possible so as to reduce the conservativeness of the problem. It would 

also make sense to choose the disturbance rejection gain 𝐾𝑑𝑟 to be large, however that would result in a large 

mapping of 𝐾𝑑𝑟𝒵 and therefore a small tightened constraint set 𝕌̅. There is thus a design trade-off in the 

determination of 𝒵 and 𝐾𝑑𝑟.  

 

4.3.3 The cost function 

The cost function of the nominal problem has the same general form as the cost function outlined in section 

3.4. Define the cost function for a trajectory of the nominal system thus as 

𝑉𝑁(𝑧, 𝐯) = ∑ 𝑙(𝑧𝑖 , 𝑣𝑖) + 𝑉𝑓(𝑧𝑁)

𝑁−1

𝑖=0

  (4-12) 

with the stage cost  

𝑙(𝑧𝑖 , 𝑣𝑖) = ||𝑧𝑖||𝑄
2
+ ||𝑢𝑖||𝑅

2
 (4-13) 

  

and terminal cost  

𝑉𝑓(𝑧𝑁) = ||𝑧𝑁||𝑃
2
 (4-14) 



Tube-based Robust Model Predictive Control  37 

DLR-IB-RM-OP-2017-17 

 where 𝑄, 𝑅, and 𝑃 are positive definite weighting matrices.  

 

The terminal cost function and constraint sets are commonly chosen to satisfy typical MPC stability 

assumptions. As such, the following characteristics hold. The tightened terminal constraint set 𝕏𝑓 is a 

constraint admissible RPI set 𝕏𝑓 ⊂ 𝕏̅ for the closed loop system 𝑧+ = 𝐴𝑧 + 𝐵𝜅𝑓(𝑧), and it holds that 𝑧+ ∈ 𝕏𝑓 

and 𝜅𝑓(𝑧) ∈ 𝕌̅ for all 𝑧 ∈ 𝕏𝑓. By requiring the terminal set to be contained in the set of tightened state constraints 

ensures that the terminal state 𝑥𝑓 of the uncertain trajectory is also contained within the tightened constraint 

set. Now, the terminal cost is defined by a local control Lyapunov function 𝑧+, satisfying the condition 

𝑉𝑓 (𝐴𝑧 + 𝐵𝜅𝑓(𝑧)) + 𝑙 (𝑧, 𝜅𝑓(𝑧)) ≤ 𝑉𝑓(𝑧), ∀𝑧 ∈ 𝕏𝑓 (4-15) 

The subject of the function 𝑉𝑓 in the first term is the successive nominal state 𝑧+. This condition means that 

the cost of the terminal state in the next step will be smaller than the terminal state cost of the current state 

and the system driven toward an equilibrium point of minimum cost. It should also be noted that the infinite 

horizon controller 𝜅𝑓 and the disturbance rejection controller 𝐾𝑑𝑟 need not necessarily be the same, but since 

𝐾𝑑𝑟 is intended to provide disturbance rejection and not to yield an optimal cost, it can be optimized with respect 

to 𝜅𝑓.  

 

4.3.4 The nominal optimal control problem 

Now, let the initial state of the nominal system coincide with the actual system state, 𝑧0 = 𝑥0. Then, the 

conventional optimization problem for the nominal controller ℙ𝑁
𝑟0(𝑥) is as follows 

𝑉𝑁
𝑟0(𝑥) = min

𝐯
{𝑉𝑁(𝑥, 𝐯) | 𝐯 ∈ 𝓤𝑁(𝒙)} (4-16) 

𝐯𝐫𝟎(𝒙) = argmin
𝐯
{𝑉𝑁(𝑥, 𝐯) | 𝐯 ∈ 𝓤𝑁(𝑥)} (4-17) 

 with  

𝒰𝑁(𝑥) = {𝐯 | 𝑣𝑖 ∈ 𝕌̅, 𝚽̅(𝑖; 𝑥, 𝐯) ∈ 𝕏̅ 𝑓𝑜𝑟 𝑖 = 0,1, … ,𝑁 − 1, 𝚽̅(𝑁; 𝑥, 𝐯) ∈ 𝕏𝑓} (4-18) 

and a region of attraction  

𝒳̅𝑁 = {𝑥 | 𝒰𝑁(𝑥) ≠ ∅} (4-19) 

 

As in conventional MPC, the solution to this optimization problem are sequences of predicted optimal control 

actions and predicted optimal state trajectory 𝐯𝐫𝟎(𝑥) = {𝑣0
0(𝑥), 𝑣1

0(𝑥), … , 𝑣𝑁−1
0 (𝑥)} and 𝑧𝑟0(𝑥) =

{𝑧0
0(𝑥), 𝑧1

0(𝑥), … , 𝑧𝑁−1
0 (𝑥)}, and 𝑧𝑖

𝑟0(𝑥) = 𝚽̅(𝑖; 𝑥, 𝐯𝐫𝟎(𝑥). The implicit state-feedback control law for the closed 

loop nominal system 𝑧+ = 𝐴𝑧 + 𝐵𝜅𝑁
𝑟0(𝑧) is of the form 

𝜅𝑁
𝑟0(𝑥) = 𝑣0

𝑟0(𝑥) (4-20) 

 

 



38  Chapter 4 

DLR-IB-RM-OP-2017-17 

4.3.5 The robust controller 

The conventional state-feedback formulation of MPC suggests that a state-feedback robust controller would 

be the simplest option for regulation. While further work has derived other frameworks for the Tube-based 

robust regulator, only the state-feedback version will be considered now.  

 

In the preceding, it was assumed that the initial state of the nominal system is the same as the current state 

of the actual system. This is, however, not required. The control strategy only enforces the actual and predicted 

states to be “close”. The constraint expressed in (4-11) describes close to be within the bound of the RPI set 

super-imposed on the nominal state. It is also not necessarily true that the cost (4-12) does not decrease along 

the actual uncertain state trajectory as required by (4-15). This means that is not possible to control the 

uncertain system using the conventional model predictive controller outlined in the previous chapter as it would 

not be possible to establish an exponentially stable robust set Ω. Exponential stability is one of the metrics for 

assessing stability of model predictive controllers, mentioned in section 4.1. 

 

Thus, these preceding assumptions are departed from, allowing for a different nominal initial state to be chosen 

by casting it as a decision variable 𝑧0 [26]. This is permissible as the states of the nominal system do not have 

an immediate effect on the actual disturbed system. The rest of this section is devoted to retooling the 

optimization problem to incorporate the new decision variable.  

 

The modified optimal control problem ℙ𝑁
𝑟∗(𝑥) is, at its base, of the same general form as the conventional 

problem, while including the new decision variable: 

𝑉𝑁
𝑟∗ = min

𝑧0,𝐯
{𝑉𝑁(𝑧0, 𝐯)| 𝐯 ∈ 𝒰𝑁(𝑧0), 𝑧0 ∈ {𝑥}⨁(−𝒵)} (4-21) 

(𝑧0
𝑟∗(𝑥), 𝐯𝐫∗(𝑥)) = argmin

z0,𝐯
{𝑉𝑁(𝑧0, 𝐯)| 𝐯 ∈ 𝒰𝑁(𝑧0), 𝑧0 ∈ {𝑥}⨁(−𝒵)} (4-22) 

where this additional variable is constrained by 

𝑧0 ∈ {𝑥}⨁(−𝒵) (4-23) 

Note that the original and tightened state and control constraints still apply to this controller, unchanged from 

the nominal problem. Further, as these and the RPI set 𝒵 are all polytopic and convex, they can be expressed 

as a finite set of linear inequality constraints and applied as briefed in section 3.9. 

 

Now, similarly to the preceding problems, the predicted optimal control sequence is 𝐯𝑟∗(𝑥) =

{𝑣0
𝑟∗(𝑥), 𝑣1

𝑟∗(𝑥), … , 𝑣𝑁−1
𝑟∗ (𝑥)}, the predicted optimal nominal state trajectory 𝐳𝐫∗(𝑥) = {𝑧0

𝑟∗(𝑥), 𝑥1
𝑟∗(𝑥), … , 𝑥𝑁−1

𝑟∗ (𝑥)} 

obtained in the solution of the optimization problem ℙ𝑁
𝑟∗(𝑥) such that 𝑧𝑖

𝑟∗ = 𝚽̅(𝑖; 𝑧0
𝑟∗, 𝐯𝑟∗(𝑥). The region of 

attraction for this problem is given by 

𝒳𝑁 = {𝑥 | ∃ 𝑧0 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑧0 ∈ {𝑥}⨁(−𝒵),𝒰𝑁(𝑧0) ≠ ∅} (4-24) 

 



Tube-based Robust Model Predictive Control  39 

DLR-IB-RM-OP-2017-17 

Finally, the modified implicit state-feedback MPC law as applied to the uncertain system at the current state 𝑥 

is of the form 

𝜅𝑁
𝑟∗(𝑥) = 𝑣0

𝑟∗ + 𝐾𝑑𝑟(𝑥 − 𝑧0
𝑟∗(𝑥)) (4-25) 

The controller clearly relies on nominal states and control actions as predicted online by the optimization 

problem at each time step. Additionally, as the decision variable nominal state is in this case generally different 

from the actual current state, the applied control move 𝜅𝑁
𝑟∗is also generally different from the first control action 

in the sequence 𝐯𝑟∗(𝑥), as indicated by the inclusion of the additional feedback term 𝐾𝑑𝑟(𝑥 − 𝑧0
𝑟∗(𝑥)). This term 

is responsible for counteracting the influence of the disturbance sequence to drive the current actual system 

state 𝑥 toward the predicted nominal system. The system trajectory is thus maintained within the sequence of 

sets  

{ℱ(0),ℱ(1), ℱ(2), … } (4-26) 

ℱ(𝑘) = 𝑧0
𝑟∗(𝑥(𝑘))⨁𝒵 (4-27) 

which describes the desired tube of trajectories. 

 

4.4 The state-feedback tube-based robust MPC for tracking 

As motivated for engineering reasons, the tracking problem is of greater relevance to this work, and will be the 

topic of the remainder of this review.  

 

The first problem in the tracking of a reference is to determine a suitable set point. This could be done using 

the optimization problem presented in section 3.6, however there remains the same problem as in the 

regulation controller that the conventional tracking MPC controller will be unable to handle the uncertain 

system. A further difficulty is introduced if the target point is arbitrarily shifted off of the origin, which requires 

the terminal set to be re-computed for each new steady state in order to ensure feasibility. The work by 

Alvarado et al. [31, 32] and Limon et al. [3, 4, 33] developed a Tube-based robust model predictive controller 

for tracking which moves this determination online and introduced an artificial steady state as an additional 

optimization problem decision variable. The tracking offset is limited by an additional penalizing term in the 

optimization problem and the terminal set re-computation is avoided using an invariant set for tracking [32]. 

 

The state-feedback case for tracking will be outlined in this section, following from [2-4, 31-33]. A practical 

implementation is conducted for a sample problem in the next chapter to describe how this theory is put to 

use.  

 

 

 

 



40  Chapter 4 

DLR-IB-RM-OP-2017-17 

4.4.1 The system definition 

Consider for this problem the system modelled by the following 

𝑥+ = 𝐴𝑥 + 𝐵𝑢 + 𝑤  

𝑦 = 𝐶𝑥 + 𝐷𝑢 (4-28) 

where, as before, 𝑥 ∈ ℝ𝑛 are the current perturbed system states, 𝑢 ∈ ℝ𝑚 are the control actions, 𝑤 ∈ ℝ𝑛 are 

the unknown, bound disturbances acting on the system input, 𝑦 ∈ ℝ𝑝 are the system outputs, and 𝑥+ is the 

successor state. The matrices 𝐴, 𝐵, 𝐶, and 𝐷 are the appropriately dimensioned state, input, output, and 

feedthrough matrices, respectively, and pair (𝐴, 𝐵) is assumed to be controllable. The following constraints are 

again applicable 

𝑥 ∈ 𝕏, 𝑢 ∈ 𝕌 (4-29) 

𝑤 ∈ 𝒲 ⊂ ℝ𝑛 (4-30) 

where 𝕏 ⊆ ℝ𝑛 is polyhedral and 𝕌 ⊆ ℝ𝑚 is polytopic.  

 

4.4.2 Set point characterization 

It is common to parameterize the system such that for a given set point 𝑦𝑠,  any permissible terminal state 𝑧𝑠 =

(𝑥𝑠, 𝑢𝑠) must satisfy 

[
𝐴 − 𝐼𝑛 𝐵
𝐶 𝐷

] [
𝑥𝑠
𝑢𝑠
] = [

0𝑛,1
𝑦𝑠
] (4-31) 

or in compact form 

𝐸𝑧𝑠 = 𝐹𝑦𝑠 (4-32) 

The controllability of the matrix pair (𝐴, 𝐵) is necessary to ensure that the solution to (4-32) is non-trivial. 

Parameterizing this solution yields  

𝑧𝑠 = 𝑀𝜃𝜃 (4-33) 

𝑦𝑠 = 𝑁𝜃𝜃 (4-34) 

where the vector 𝜃 ∈ ℝ𝑛𝜃 is a parameter vector characterizing any solution and 𝑀𝜃 and 𝑁𝜃 are suitably chosen 

matrices. In [2, 33], it is advocated that 𝑀𝜃 and 𝑁𝜃 be defined using the singular value decomposition (SVD) 

of 𝐸. This is, of course, just one acceptable method of determining these matrices, but it does have the benefit 

of generally producing a characterization in which 𝜃 has as few parameters as necessary.  

 

If the SVD of 𝐸 is defined by 𝐸 = 𝑈Σ𝑉, where 𝑈 ∈ ℝ(𝑛+𝑝)×𝑟  , Σ ∈ ℝr×r, and 𝑉 ∈ ℝ(𝑛+𝑚)×𝑟 are defined in the usual 

manner, then the matrices 𝑀𝜃 and 𝑁𝜃 are defined as 

𝑀𝜃 = {
[𝑉Σ−1𝑈𝑇𝐹𝐺 𝑉⊥] 𝑖𝑓 𝑟 < 𝑛 + 𝑚

      𝑉Σ−1𝑈𝑇𝐹𝐺       𝑖𝑓 𝑟 = 𝑛 +𝑚
 (4-35) 

𝑁𝜃 = {
[𝐺 0𝑝,𝑛+𝑚−𝑟] 𝑖𝑓 𝑟 < 𝑛 + 𝑚
            𝐺             𝑖𝑓 𝑟 = 𝑚 + 𝑛

 (4-36) 

with 



Tube-based Robust Model Predictive Control  41 

DLR-IB-RM-OP-2017-17 

𝐺 = {
𝐈𝑝 𝑖𝑓 𝑟 = 𝑛 + 𝑝

(𝐹𝑇𝑈⊥)⊥ 𝑖𝑓 𝑟 < 𝑛 + 𝑝
 (4-37) 

The subscript ⊥ indicates that the associated parameter is chosen such that, for example, 𝑉𝑇𝑉⊥ = 0 and 

[𝑉 𝑉⊥] is non-singular. 

4.4.3 The nominal controller  

Now consider, similarly to the regulator case, that the nominal controller disregards the perturbations 

𝑧+ = 𝐴𝑧 + 𝐵𝑣  

𝑦̅ = 𝐶𝑧 + 𝐷𝑣 (4-38) 

the control law is of the form 

𝑢 = 𝑣 + 𝐾𝑑𝑟(𝑥 − 𝑧) (4-39) 

and there exists an RPI set 𝒵 for the perturbed system controlled by (4-39). The determination of the set 𝒵 will 

be thoroughly explored in the next chapter. 

 

Tightened constraints 

The tightened state and input constraints for the nominal system are defined by the Pontryagin set difference 

of the robust constraint and the minimal robust positively invariant set 𝒵 or 𝒵 scaled by the disturbance 

rejection gain, respectively  

𝕏̅ = 𝕏⊖𝒵, 𝕌̅ = 𝕌⊖𝐾𝑑𝑟𝒵 (4-40) 

where the operator ⊖ indicates the Pontryagin set difference. Then, any admissible steady state 𝑧𝑠 must satisfy 

the constraints 

𝑧𝑠 = 𝑀𝜃𝜃 = (𝑥𝑠, 𝑢𝑠) ∈ 𝕏̅×𝕌̅ = ℤ̅ (4-41) 

After the application of these constraints, the set of admissible steady states in (𝑥, 𝑢)-space is given by 

ℱ𝑠 = {𝑧𝑠 = 𝑀𝜃𝜃 | 𝑀𝜃𝜃 ∈ ℤ̅} (4-42) 

However, the steady states need to be defined in 𝑥-space. This projection is defined by 

𝒳𝑠 = 𝑃𝑟𝑜𝑗𝑥(ℱ𝑠) = {𝑥 ∈ ℝ
𝑛  | ∃ 𝑦 ∈ ℝ𝑘   𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 [

𝑥
𝑦] ∈ ℱ𝑠} (4-43)  

where ℱ𝑠 ⊆ ℝ
𝑛+𝑘. Similarly, the set of admissible control actions  

𝒰𝑠 = 𝑃𝑟𝑜𝑗𝑢(ℱ𝑠) (4-44) 

is projected into 𝑢-space. Finally, the set of admissible set points 

𝒴𝑠 = {𝑦𝑠 = 𝑁𝜃𝜃 | 𝑀𝜃𝜃 ∈ ℤ̅} (4-45) 

 

Alternatively, 𝒳𝑠 and 𝒰𝑠 can be defined in terms of the set of admissible parameters 𝜃. In this case, it is 

important to note that  

Θ𝑠 = {𝜃| 𝑀𝜃𝜃 ∈ ℤ̅} (4-46) 



42  Chapter 4 

DLR-IB-RM-OP-2017-17 

to achieve the admissible sets 

𝒳𝑠 = 𝑀𝑥Θ𝑠 (4-47) 

𝒰𝑠 = 𝑀𝑢Θ𝑠 (4-48) 

where 

𝑀𝑥 = [𝐈𝐧 𝟎𝐧,𝐦]𝑀𝜃 (4-49) 

𝑀𝑛 = [𝟎𝐦,𝐧 𝐈𝐦]𝑀𝜃 (4-50) 

This parameterization of all of the admissible sets solves the uniqueness issue outlined in section 3.6 in that 

each 𝜃 is associated with exactly one output value [2]. 

 

The Invariant Set for Tracking 

In the most simplistic formulation of the robust controller, the disturbance rejecting controller is a linear 

feedback controller of the form 𝑢 = 𝐾𝑥 where 𝐾 is a gain – for example LQR gain – and the terminal set is RPI. 

The more general tracking problem for arbitrary set points is more complex. [2] 

 

To achieve the goal of maintaining the uncertain system within the neighbourhood of a reference admissible 

terminal state 𝑧𝑠 the control law has the form common to Tube-based robust MPC, mildly adjusted to meet its 

goal 

𝑢 = 𝑢𝑠 + 𝐾Ω(𝑥 − 𝑥𝑠) (4-51) 

Selecting a larger 𝐾Ω results in a larger domain of attraction, and thereby a larger invariant set for tracking. It 

is common to choose 𝐾Ω to be the LQR gain 𝐾𝑙𝑞𝑟 [33].  

 

Furthermore, as the system is constrained, the steady state cannot simply be shifted from the origin of the 

regulation problem to some other non-zero steady state set. The terminal constraint set therefore needs to be 

reformulated as an invariant set for tracking [2, 32]:  

With some abuse of notation, define an extended state for the closed loop dynamics 

𝑥𝑒 = (𝑥, 𝜃) ∈ ℝ𝑛+𝑛𝜃 (4-52) 

and a control gain  

𝐾Ω ∈ ℝ
𝑚×𝑛 (4-53) 

such that 𝐴 + 𝐵𝐾Ω is Hurwitz. Also let 

𝐾𝜃 = [−𝐾Ω 𝐈𝑚]𝑀𝜃 (4-54) 

 

Then, a set 

 Ω𝑘
𝑒 ⊂ ℝ𝑛×𝑛𝜃 (4-55) 

is an admissible invariant set if for all   



Tube-based Robust Model Predictive Control  43 

DLR-IB-RM-OP-2017-17 

 (𝑥, 𝜃) ∈ Ω𝑘
𝑒  (4-56) 

 it holds that  

𝑥 ∈ 𝕏̅, 𝐾Ω𝑥 + 𝐾𝜃𝜃 ∈ 𝕌̅ (4-57) 

((𝐴 + 𝐵𝐾Ω)𝑥 + 𝐵𝐾𝜃𝜃, 𝜃) ∈ Ω𝑡
𝑒 (4-58) 

 

This means simply that for any initial state, the trajectory of the unperturbed system controlled by (4-51) will 

satisfy 𝑥(𝑖) ∈ 𝑃𝑟𝑜𝑗𝑥(Ω𝑘
𝑒), and that the use of an invariant set for tracking results in an optimization problem 

which does not require re-computation of the terminal set if the setpoint changes. The constrained optimal 

control problem and the robust constraint satisfaction can therefore be handled independently. 

 

The objective function 

Recall for the introduction of section 4.4 that the tube-base robust tracking problem makes use of an artificial 

steady state  

𝑧𝑠̅ = (𝑧𝑠, 𝑣𝑠) (4-59) 

 as an additional decision variable to obtain an increased region of attraction (refer to the introduction of section 

4.4). Since the admissible steady state can be parameterized as 𝑧𝑠̅ = 𝑀𝜃𝜃̅ where 𝜃̅ ∈ Θ𝑠. Therefore 𝜃̅ can be 

treated as the decision variable. 

 

The cost function then has a similar form to those seen previously 

𝑉𝑁(𝑥, 𝜃; 𝑧0, 𝐯, 𝜃̅) = ∑ 𝑙(𝑧𝑖 , 𝑧𝑠 , 𝑣𝑖 , 𝑣𝑠) + 𝑉𝑓(𝑧𝑁, 𝑧𝑠) + 𝑉0(𝜃̅, 𝜃)

𝑁−1

𝑖=0

 (4-60) 

which has a slightly modified stage function 

𝑙(𝑧𝑖 , 𝑧𝑠 , 𝑣𝑖 , 𝑣𝑠) = ||𝑧𝑖 − 𝑧𝑠||𝑄
2
+ ||𝑣𝑖 − 𝑣𝑠||𝑅

2
 (4-61) 

and terminal cost  

𝑉𝑓(𝑧𝑁, 𝑧𝑠) = ||𝑧𝑁 − 𝑧𝑠||𝑃
2
 (4-62) 

and includes an additional steady state offset cost 

𝑉0(𝜃̅, 𝜃) = ||𝜃̅ − 𝜃||𝑇
2  (4-63) 

The offset cost term penalizes the deviation of the artificial steady state and the desired steady state and 𝑇 is 

the steady state offset weighting matrix. 

 

Harkening again back to the regulation problem, the nominal states and control actions are subject to tightened 

constraints and the initial state 𝑧0 of the nominal systems must satisfy  

𝑧0 ∈ {𝑥}⨁(−𝒵) (4-64) 



44  Chapter 4 

DLR-IB-RM-OP-2017-17 

and the predicted terminal state 𝑧𝑁 and the steady state parameter 𝜃̅ satisfy 

(𝑧𝑁 , 𝜃̅) ∈ Ω𝑘
𝑒   (4-65) 

The optimal control problem then becomes 

 ℙ𝑁
𝑡 (𝑥, 𝜃):  

𝑉𝑁
𝑡∗(𝑥, 𝜃) = min

z0,𝐯,𝜃̅
{𝑉𝑁(𝑥, 𝜃; 𝑧0, 𝐯, 𝜃̅)| 𝐯 ∈ 𝒰𝑁(𝑧0, 𝜃̅), 𝑧0 ∈ {𝑥}⨁(−𝒵)} (4-66) 

(𝑧0
𝑡∗(𝑥, 𝜃), 𝐯𝑡∗(𝑥, 𝜃), 𝜃̅𝑡∗(𝑥, 𝜃)) = arg min

z0,𝐯,𝜃̅
{𝑉𝑁(𝑥, 𝜃; 𝑧0, 𝐯, 𝜃̅)| 𝐯 ∈ 𝒰𝑁(𝑧0, 𝜃̅), 𝑧0 ∈ {𝑥}⨁(−𝒵)} (4-67) 

It should be noted here that the feasible region of ℙ𝑁
𝑡 (𝑥, 𝜃) depends only on the current state, and not on the 

steady state parameter [32]. The set of admissible nominal control actions is given by 

𝒰𝑁(𝑧0, 𝜃̅) = {𝐯 | 𝑣𝑖 ∈ 𝕌̅, 𝚽̅(𝒊; 𝑧0, 𝐯) ∈ 𝕏̅ 𝑓𝑜𝑟 𝑖 = 0,1, … , 𝑁 − 1, (𝚽̅(𝑁; 𝑧0, 𝐯), 𝜃̅) ∈ Ω𝑘
𝑒 } (4-68) 

The set of admissible nominal initial states takes the form 

𝒳̅𝑁 = {𝑧 | ∃𝜃̅ 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝒰𝑁(𝑧, 𝜃̅) ≠ ∅} (4-69) 

and the set of admissible actual initial states the form 

𝒳𝑁 = {𝑥 | ∃(𝑧0, 𝜃̅) 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑧0 ∈ {𝑥}⨁(−𝒵),𝒰𝑁(𝑧0, 𝜃̅) ≠ ∅} (4-70) 

 

As is clear at this point, the sequence of predicted optimal control inputs 𝐯∗(𝑥, 𝜃) is obtained from the solution 

of  ℙ𝑁
𝑡∗(𝑥, 𝜃). Again, the first element of 𝑣0

∗(𝑥, 𝜃) is applied to the feedforward term in the implicit controller  

𝜅𝑁(𝑥, 𝜃) = 𝑣0
∗(𝑥, 𝜃) + 𝐾(𝑥 − 𝑧0

∗(𝑥, 𝜃)) (4-71) 



 

45 

 

 

5 A practical exposition of Tube-based Robust 

MPC for tracking: The double pendulum 

In this final chapter of Part 1, a sample problem is presented to illustrate the implementation of the Tube-based 

Robust MPC for tracking theory presented in the previous chapter. The double pendulum is a well-studied 

control task. The problem is used as a sample task in literature often. The aim is to here present the design 

and implementation procedure as clearly and in as much detail as possible, which will require additional inline 

exposition. The implementation of this controller design and simulation in software is given in Appendix part 

A. Double Pendulum.  

 

It makes sense, then, to start from the beginning: 

 

5.1 Defining the problem 

Let there be a disturbed system of the form of (4-28), with a nominal system described as in (4-38), a 

disturbance characterized by (4-30), and system and tightened constraints (4-29) and (4-30), respectively. In 

this example, the double pendulum will be controlled using tracking state feedback control methods as 

presented in [1, 2, 4, 33]. The disturbed system can be described as follows 

𝑥+ = [
1 1
0 1

] 𝑥 + [
0 0.5
1 0.5

] 𝑢 + 𝑤  

𝑦 = [1 0]𝑥 (5-1) 

and the nominal system obtained by neglecting the disturbance is given by 

𝑧+ = [
1 1
0 1

] 𝑧 + [
0 0.5
1 0.5

] 𝑣 (5-2) 

 

The state and control constraints given in [1, 2, 33] for the disturbed system and disturbance bound are given 

by their H-representations: 

𝕏 = {𝑥 | ‖𝑥‖∞ ≤ 5} = {𝑥 ∈ ℝ
𝑛 | 𝐴𝑥𝑥 ≤ 𝑏𝑥} (5-3) 

𝕌 = {𝑢 | ‖𝑢‖∞ ≤ 0.3} = {𝑢 ∈ ℝ
𝑚 | 𝐴𝑢𝑢 ≤ 𝑏𝑢} (5-4) 

𝒲 = {𝑤 | ‖𝑤‖∞ ≤ 0.1} = {𝑤 ∈ ℝ𝑛 | 𝐴𝑤𝑤 ≤ 𝑏𝑤}                    (5-5) 



46  Chapter 5 

DLR-IB-RM-OP-2017-17 

This square problem has two states and two inputs. The constraints and disturbance can therefore be 

equivalently expressed as |𝑥1| ≤ 5, |𝑥2| ≤ 5, |𝑢1| ≤ 0.3, |𝑢2| ≤ 0.3, and 𝑤 ∈ 𝒲 = 0.1ℬ2. These constraints are 

polytopic or polyhedral (refer to (4-29)), and can as easily be defined as such through their vertices in V-

representation. These constraints are implemented in software using the Multi-Parametric Toolbox, see lines 

15-24 of the implemented software in the Appendix. The Multi-Parametric Toolbox (MPT) for MATLAB permits 

working with polyhedral/polytopic constraints in control problems, and it is used in this implementation 

extensively.  

 

The objective now is to devise a state feedback tube-based Robust model predictive controller which will steer 

the actual trajectory near the nominal trajectory while robustly satisfying the system and actuation constraints. 

This controller is of two parts: an LTI feedback control gain 𝐾𝑑𝑟 for disturbance rejection which ensures that 

the deviation between the actual and nominal state is bounded and a nominal MPC gain 𝑣 determined at each 

time step. The combined form of the control law will then, of course, be  

𝑢 = 𝑣 + 𝐾𝑑𝑟(𝑥 − 𝑧) (5-6) 

 

There are a few quantities which must be determined before this control law can be constructed. This will be 

the subject of the rest of the chapter. 

 First, the tube of trajectories must be addressed. This is a rather involved process which will be tackled 

in parts. From results obtained in this consideration, the disturbance rejection gain and the tightened 

constraints for the nominal system can be determined.  

 Following this, the nominal MPC problem can be formulated. This will also be conducted in steps 

covering each important aspect of the construction.   

In each of the following sections, the method of implementation will be discussed, pertinent algorithms clearly 

indicated, and design parameter choices will be explained. Intermediary results will also be provided for 

understanding. Finally, some results from the simulation of this implementation will be presented.  

 

5.2 The tube of trajectories 

Recall from chapter 4 that the tube, centered on the nominal trajectory, contains all feasible trajectories under 

which constraints are robustly satisfied for any realization of the uncertainty. Recall, as well, that the tube is 

constructed by the affine mapping of the minimal robust positively invariant (mRPI) set along the nominal 

trajectory. Thus, to determine the mRPI is to determine the tube. This section will present the practical 

determination of the mRPI, the tube of trajectories, and the tightened constraints. 

 

 

 



A practical exposition of Tube-based Robust MPC for tracking: The double pendulum  47 

DLR-IB-RM-OP-2017-17 

5.2.1 The disturbance rejection gain 

The first step in determining the mRPI is to select the disturbance rejection gain. This is, of course, an important 

parameter in the control law (5-6), compensating the deviation between actual state 𝑥 and nominal state 𝑧 and 

characterizing the closed loop dynamics in the presence of disturbances [33]. This parameter and its 

determination resembles the Kothare’s controller for Min-Max MPC [59], however in tube-based robust MPC 

it is only determined once at the beginning of the controller design. This difference is important in reducing the 

computational complexity, and so in simplicity advantage of tube-based robust MPC. 

 

The disturbance rejection gain 𝐾𝑑𝑟 will be chosen using a disturbance rejection criterion, as indicated in [33], 

which will ensure the existence of an RPI set 𝒵 such that the tightened constraints are non-empty and which 

will minimize the size of 𝒵. This robustness criterion will additionally ensure a larger domain of attraction, which 

is desirable. A practical method of determining the disturbance rejection gain, based largely on the Kothare’s 

controller [59], will be presented here. This method is derived closely following [33]. 

 

The form of the controller in the synthesis of this gain is 𝑢 = 𝐾𝑑𝑟𝑥, and the design problem can be briefly 

described as the minimization of the size of an ellipsoid ℰ(𝑃, 1) = {𝑥 ∈ ℝ𝑛| 𝑥𝑇𝑃𝑥 ≤ 1}. 𝑃 is the terminal 

weighting matrix of the robust control optimization problem, which, along with the gain 𝐾𝑑𝑟, will be determined 

in this minimization problem. Consider the system and actuation constraints defined in their respective 

normalized H-representations, such that 

𝕏 = {𝑥 ∈ ℝ𝑛 | |ℎ𝑖
𝑇𝑥| ≤ 1, 𝑖 = 1,… , 𝑛𝑟𝑥} (5-7) 

𝕌 = {𝑢 ∈ ℝ𝑚 | |𝑙𝑗
𝑇𝑢| ≤ 1, 𝑗 = 1,… , 𝑛𝑟𝑢} (5-8) 

where 𝑛𝑟𝑥 and 𝑛𝑟𝑢 are the number of rows in the defining matrices of the corresponding sets, and ℎ𝑖 and 𝑙𝑗 are 

the rows of the matrix derived from the normalization of 𝐴𝑥 and 𝐴𝑢 with respect to 𝑏𝑥 and 𝑏𝑢, as appropriate. 

The constraints to this optimization problem are detailed in the following list. For optimization using matrices 

containing unknowns, the constraints need be transformed into Linear Matrix Inequalities (LMI). In the following 

exposition, the constraints are stated and transformed into this useful form.  

 

(1) The ellipsoid ℰ(𝑃, 1) is an RPI set for the system. This condition is formulated as  

(𝑥+)𝑇𝑃(𝑥+) ≤ 1  

∀𝑥 ∈ ℰ(𝑃, 1)  

𝑥+ = 𝐴𝑘𝑥 + 𝑤  

∀𝑤 ∈ 𝒲 (5-9) 

 

The S-procedure [60] is applied to inequality (5-9). When the convexity with respect to 𝑤 is considered, 

this modified condition is satisfied if there exists a multiplier 𝜆 ≥ 0 such that 

 

 



48  Chapter 5 

DLR-IB-RM-OP-2017-17 

((𝐴𝐾,𝑑𝑟)𝑥 + 𝑤)
𝑇

𝑃 ((𝐴𝐾,𝑑𝑟)𝑥 + 𝑤) + 𝜆(1 − 𝑥
𝑇𝑃𝑥) ≤ 1 

 

∀𝑤 ∈ 𝑣𝑒𝑟𝑡(𝒲) (5-10) 

with 𝑣𝑒𝑟𝑡(𝒲) indicating the vertices of the disturbance bound. 

 

This is the result of the so-called S-procedure [60] and is an indication of the conditions under which 

the particular quadratic inequality is non-negative. Applying the Schur complement to the inequality, 

the linear matrix inequality (LMI) is formed. Applying this step and expanding 𝐴𝑘 to make clear the 

presence of the target variable 𝐾𝑑𝑟, this constraint can be written 

[
𝜆𝑃 − (𝐴 + 𝐵𝐾𝑑𝑟)

𝑇𝑃(𝐴 + 𝐵𝐾𝑑𝑟) −(𝐴 + 𝐵𝐾𝑑𝑟)
𝑇𝑃𝑤

−𝑤𝑇𝑃(𝐴 + 𝐵𝐾𝑑𝑟) 1 − 𝜆 − 𝜔𝑇𝑃𝑤
] > 0,    ∀𝑤 ∈ 𝑣𝑒𝑟𝑡(𝒲) (5-11) 

The Schur complement is a useful tool for transforming inequalities into LMIs by restructuring a linear 

equation into a matrix in a manner mimicking Gaussian elimination [61]. Variable changes 𝑊 = 𝛾𝑃−1 

and 𝑌 = 𝐾𝑑𝑟𝑊 are then made and the LMI becomes 

[
𝜆𝑊 ∗ ∗
0 1 − 𝜆 ∗

𝐴𝑊 + 𝐵𝑌 𝜔 𝑊
] > 0, ∀𝜔 ∈ 𝑣𝑒𝑟𝑡(𝒲) (5-12) 

The constraint is symmetric indicated by ∗ in the matrix.  

 

(2) LMI formulation of the actuation constraint:  

For all 𝑥 ∈ ℰ(𝑃, 1), the control law |𝑙𝑗
𝑇𝐾𝑑𝑟𝑥| ≤ 𝜌𝑗 for all rows of 𝑙 and with 𝜌𝑗 ∈ (0,1]. The magnitude of 

the parameter 𝜌𝑗 is chosen to restrict the size of the set of admissible control inputs such that the 

tightened set 𝕌̅ = 𝕌⊖𝐾𝑑𝑟𝒵 is not empty. Applying the Schur complement to the condition 

𝑙𝑗
𝑇𝐾𝑑𝑟𝑃

−1𝐾𝑑𝑟
𝑇 𝑙𝑗 ≤ 𝜌𝑗

2, 𝑗 = 1, … , 𝑛𝑟𝑢 yields the LMI 

[
𝜌𝑗
2 𝑙𝑗

𝑇𝐾𝑑𝑟

𝐾𝑑𝑟
𝑇 𝑙𝑗 𝑃

] > 0, 𝑗 = 1,… , 𝑛𝑟𝑢 (5-13) 

The same variable change made in (1) is applied to obtain the condition 

[
𝜌𝑖
2 ∗

𝑌𝑇𝑙𝑖 𝑊
] > 0, 𝑖 = 1,… , 𝑛𝑟𝑢 (5-14) 

 

 

(3) LMI formulation of the state constraint:  

Following similar steps for the state set, for all 𝑥 ∈ ℰ(𝑃, 1), |ℎ𝑖
𝑇𝑥| ≤ 1 becomes  

[
1 ℎ𝑖

𝑇

ℎ𝑖 𝑃
] > 0, 𝑖 = 1,… , 𝑛𝑟𝑥 (5-15) 

 

The measure used to minimize the size of the ellipsoid ℰ(𝑃, 1) in the adopted method is a parameter  𝛾 > 0 

such that ℰ(𝑃, 1) ⊆ √𝛾 𝕏. The minimization problem then becomes the minimization of 𝛾 to a value between 

(0,1]. Applying standard operations of LMIs, the minimization problem is fully formulated as follows 



A practical exposition of Tube-based Robust MPC for tracking: The double pendulum  49 

DLR-IB-RM-OP-2017-17 

min
𝑌,𝑊,𝛾

𝛾  (5-16) 

𝑠. 𝑡.  [
𝜆𝑊 ∗ ∗
0 1 − 𝜆 ∗

𝐴𝑊 + 𝐵𝑌 𝜔 𝑊
] > 0, ∀𝜔 ∈ 𝑣𝑒𝑟𝑡(𝒲) 

 

[
𝜌𝑖
2 ∗

𝑌𝑇𝑙𝑖 𝑊
] > 0, 𝑖 = 1, … , 𝑛𝑟𝑢 

 

[
𝛾 ∗
𝑊ℎ𝑖 𝑊] > 0, 𝑖 = 1, … , 𝑛𝑟𝑥  

Each of the constraint LMIs are symmetric, indicated by ∗ in the matrices.  

 

In order to reproduce the results given in literature, this application to obtain the mRPI chooses 𝜌𝑖 to obtain a 

certain sized tightened control constraint and 𝜆 is taken as small as possible such that a solution exists. Both 

of these quantities should be selected before the optimization is conducted. In this implementation, 𝜌𝑖 is chosen 

as dictated in [33]. As the CVX toolbox cannot resolve optimizations where two of the optimization parameters 

are multiplied together (refer to [62] for a detailed explanation as to why this is), 𝜆 is determined external to the 

optimization itself. In this initial implementation, the 𝜆 which resulted in the minimization of 𝛾 was determined 

by experimentation. 

 

The optimization must then be conducted such that each vertex of 𝒲 and each half-space of the state and 

control constraint sets is considered. 𝑊,𝑌, and 𝛾 are the optimization variables. The LMI solver will vary 𝑊 

and 𝑌 until 𝛾 is minimized. In a feasible solution,  

𝑃 = 𝑊−1 (5-17) 

and  

𝐾𝑑𝑟 = 𝑌𝑊
−1 (5-18) 

 

In this example, 𝜌 = 0.48 is chosen to obtain a 𝐾𝑑𝑟 which would allow the same size set 𝐾𝒵 as for the LQR 

gain 𝐾𝑙𝑞𝑟 [33]. Parameter 𝜆 = 0.49 is chosen as this corresponds to the smallest value of 𝛾. This value was 

determined by experimentation. The code used to conduct this process for this implementation is indicated in 

Appendix part A. Double Pendulum lines 30-74. The disturbance rejection gain obtained through this 

implementation is  

𝐾𝑑𝑟 = [
−0.1181 −0.5654
−0.2154 −0.6462

] (5-19) 

 

 



50  Chapter 5 

DLR-IB-RM-OP-2017-17 

5.2.2 The mRPI set 𝒵 

Now that the disturbance rejection gain is known, the mRPI set can be determined. Recall from section 4.2 

that the mRPI set is the smallest RPI set contained in every closed RPI set of system. The set is defined 

through the iterative Minkowski summations of the set given by the disturbance bound 𝒲 with the system 

dynamics 𝐴𝑘,𝑑𝑟 

𝐹𝑠 =⨁(𝐴 + 𝐵𝐾𝑑𝑟)
𝑘𝒲

𝑠

𝑘=0

 (5-20) 

with 𝑠 tending to infinity. The disturbance set is effectively grown by an amount at each iteration dictated by 

the nominal dynamic of the system. 𝐹∞ can only be determined in special cases, so the set 𝒵 is estimated such 

that 𝐹∞ ⊆ 𝒵 ⊆ 𝐹∞⨁𝜖ℬ
𝑛 for some chosen bound of the error 𝜖. To this end, the following functions are calculated 

𝛼(𝑠) = min𝛼    𝑠. 𝑡.   𝐴𝐾
𝑠𝒲 ⊆ 𝛼𝒲 (5-21) 

𝛽(𝑠) = min𝛽    𝑠. 𝑡.   𝐹𝑠 ⊆ 𝛽ℬ𝑛         (5-22) 

through a series of linear programming problems. Once a large enough 𝑠 is obtained such that 

(1 − 𝛼(𝑠))
−1
𝛼(𝑠)𝛽(𝑠) ≤ 𝜖, then the set 𝑍 = (1 − 𝛼(𝑠))

−1
𝐹𝑠 which is an approximation of 𝐹∞ with an error bound 

less than 𝜖. 

 

This implementation will consider only the practical point of view, following from [33, 58].  The reader is directed 

to these papers for more detail. The first step is to determine 𝑠, followed by the construction of set 𝒵. 

 

The determination of s is an iterative process. First, it should be noted that the support function of a polytopic 

uncertainty, evaluated at 𝑎 ∈ ℝ𝑚, is given by 

ℎ𝒲(𝑎) = sup
𝑤∈𝒲

𝑎𝑇𝑤 (5-23) 

As 𝒲 is polytopic and describable by a finite set of affine inequalities, ℎ𝒲(𝑎) will be finite and can be calculated 

through a finite number of linear programs.  An initial estimate for 𝛼 is then given by  

𝛼(𝑠) = max
𝑖∈𝔗

ℎ𝒲((𝐴
𝑠)𝑇𝐴𝑤,𝑖

𝑇 )

𝑏𝑤,𝑖
 (5-24) 

for some guess of 𝑠. An a priori error bound for the approximation of 𝒵 can then also be computed using the 

support function, through the summation 

𝑀(𝑠) = max
𝑗∈{1,…,𝑛}

{∑ℎ𝒲 ((𝐴𝑖)
𝑇
𝑒𝑗)

𝑠−1

𝑖=0

,∑ℎ𝒲 (−(𝐴𝑖)
𝑇
𝑒𝑗)

𝑠−1

𝑖=0

} (5-25) 

where 𝑒𝑗 is the 𝑗𝑡ℎ standard basis vector. After each iteration, 𝑠 is incremented. The value of 𝑠 which yields the 

outer 𝜖 −approximation of the mRPI 𝒵 is obtained when 

𝛼(𝑠) ≤
𝜖

𝜖 + 𝑀(𝑠)
 (5-26) 

 



A practical exposition of Tube-based Robust MPC for tracking: The double pendulum  51 

DLR-IB-RM-OP-2017-17 

This process is summarized by the following algorithm: 

 Algorithm  5-1  Determination of parameter s 

Inputs: System and input matrices, so that 𝐴𝐾,𝑑𝑟 = 𝐴 + 𝐵𝐾𝑑𝑟 

 Disturbance 𝒲 

  

Algorithm: 𝑠 ⟵ 1 

 Determine initial 𝛼(𝑠) using (5-24) 

 Set 𝑀(𝑠) through (5-25) 

   

 while 𝛼(𝑠) >
𝜖

𝜖+𝑀(𝑠)
 

  𝑠 ⟵ 𝑠 + 1 

  Determine initial 𝛼(𝑠) using (5-24) 

  Set 𝑀(𝑠) through (5-25) 

 end 

 

Output: parameter 𝑠 

 

Now, the construction of 𝒵 is relatively easy.  Making use of the zonotopic representation of the polytopic 

uncertainty set, 𝒲 = 𝐻ℬ𝑛⨁𝜔0, the uncertainty is simply a scaled norm ball centered on 𝜔0 with 𝐻 non-singular. 

Define a matrix 𝐻𝑧(𝑠) = [𝐴𝐾,𝑑𝑟
𝑠−1 𝐻, 𝐴𝐾,𝑑𝑟

𝑠−2 𝐻,… ,𝐻] and note that 

𝛼̂(𝑠) = ‖𝐻−1𝐴𝐾,𝑑𝑟
𝑠 𝐻‖

∞
= min 𝛼     𝑠. 𝑡.   𝐴𝐾,𝑑𝑟

𝑠 𝐻ℬ𝑛 ⊆ 𝛼𝐻ℬ𝑛 (5-27) 

       𝛽̂(𝑠) = ‖𝐻𝑧(𝑠)‖∞ = min𝛽           𝑠. 𝑡.  ⨁𝐴𝐾,𝑑𝑟
𝑘 𝐻ℬ𝑛 ⊆ 𝛽ℬ𝑛

𝑠−1

𝑘=0

 (5-28) 

By combining these definitions, for this form of uncertainty, it is seen that 𝑠 is such that 

𝛼̂(𝑠) = ‖𝐻−1𝐴𝐾,𝑑𝑟
𝑠 𝐻‖

∞
≤

𝜖

𝜖 +𝑀(𝑠)
 (5-29) 

 

So, after constructing 𝐻𝑧(𝑠) and 𝐵𝑛𝑠, 𝒵 is denoted by 

𝒵 = (1 − 𝛼̂(𝑠))
−1
𝐻𝑧(𝑠)ℬ

𝑛𝑠⨁(𝐼𝑛 − 𝐴𝐾,𝑑𝑟)
−1
𝜔0 

(5-30) 

 

These final construction steps are outlined in the following algorithm: 



52  Chapter 5 

DLR-IB-RM-OP-2017-17 

Algorithm  5-2  Construction of mRPI,   𝓩 

Inputs: System and input matrices, so that 𝐴𝐾,𝑑𝑟 = 𝐴 + 𝐵𝐾𝑑𝑟 

 Disturbance 𝒲 

 Parameter 𝑠 

  

Algorithm: ℬ𝑛1 ← ℬ𝑛 

 𝐻𝑧 ← [ ] 

 for 1 : i : s-1 

  ℬ𝑛𝑖 ← ℬ𝑛𝑖 ∗ ℬ𝑛 

 end 

 for 1 : j : s 

  𝐻𝑧 ← [𝐻𝑧  𝐴𝐾,𝑑𝑟
𝑠−1 𝐻] 

 end 

 𝒵 ← (1 − 𝛼(𝑠))
−1
𝐻𝑧(𝑠)ℬ

𝑛𝑠 

 

Output: mRPI set 𝒵 

 

In this application, set 𝜖 = 0.01 and 𝑠 comes to 16. The resultant mRPI set is given here: 

 

Figure 5-1 Minimal Robust Positively Invariant Set 

The determination of the mRPI set implemented in software is given in Appendix part A. Double Pendulum 

lines 79-139. 

 

5.2.3 Construction of the tube 

The practical construction of the tube is a relatively simple procedure. As previously explained, the tube is 

basically a series of copies of the mRPI set along the nominal trajectory, with the origin of the set co-locating 

with the nominal state. To build the tube, then, a series of translated mRPI sets is iteratively populated. This 

simple process is as follows: 

 



A practical exposition of Tube-based Robust MPC for tracking: The double pendulum  53 

DLR-IB-RM-OP-2017-17 

Algorithm  5-3  Tube construction 

Inputs: mRPI and nominal trajectory 

  

Algorithm: 𝑡𝑢𝑏𝑒 ← [ ] 

 for 1 : i : simulation horizon 

  𝑡𝑢𝑏𝑒 ← [𝑡𝑢𝑏𝑒 𝑎𝑓𝑓𝑖𝑛𝑒_𝑚𝑎𝑝𝑝𝑖𝑛𝑔( 𝒵 , 𝑥(𝑖) )] 

 end 

  

Output: Vector of sets describing a tube within which all permissible trajectories will lie 

 

5.2.4 The tightened constraints 𝕏̅ and 𝕌̅ 

Finally, the tightened constraints are simple to determine. Recall from chapter 4 that these take the forms 

𝕏̅ = 𝕏⊖ 𝒵 (5-31) 

𝕌̅ = 𝕌⊖𝐾𝑑𝑟𝒵 (5-32) 

where ⊖ indicates the Pontryagin set difference. This definition has implications, which are important to the 

understanding of the purpose of the mRPI set. The tightened constraints are those which apply solely to the 

nominal system. They describe the regions in which the nominal states/trajectory and inputs can exist. They 

must therefore be an amount and manner smaller than the full system constraints so that the disturbed system 

will still robustly satisfy these constraints if the nominal state is located along the boundary of the tightened 

constraint.  

 

The MPT toolbox provides an implementation for the Pontryagin difference. Using this and quantities 

determined in the preceding, the tightened constraints are determined according to (5-31) and (5-32) through 

lines 144-146 of Appendix part A. The obtained sets are as follows. 

Figure 5-2 Tightened constraints 



54  Chapter 5 

DLR-IB-RM-OP-2017-17 

In the figures, the red sets indicate the robust state and input constraints, respectively. The blue sets are the 

nominal constraints. The yellow set in state space is simply the mRPI 𝒵 and in input space is the mRPI set 

scaled by the disturbance rejection gain 𝐾𝑑𝑟𝒵.  

 

5.3 Set point parameterization and the artificial steady state 

The set points which can be reached while robustly satisfying the actual system constraints are those terminal 

states of the nominal system admissible under the tightened constraints (5-31) and (5-32) [32]. The relationship 

of this subspace of terminal states to the set of admissible set points is characterizable through a 

parameterization. However, in the literature in which this example has been presented, [1, 4, 33], while 

published by the same research group following from the same body of work, various parameterizations 

stemming from at least 2 parameterization methods and yielding 𝜃 of different sizes are presented. Each of 

these parameterizations is correct and yield the same results, however Alvarado, Limon, and the others 

generally advocate that the parameterization should be conducted such that the parameter 𝜃 should be of the 

smallest number of elements possible to reduce computational complexity later. Technically then, one 

parameterization would be ‘better’ than others.  

 

Nonetheless, the expressed characterization (4-33)-(4-34) allows the parameterization of the subspace of 

steady states and inputs via a single decision parameter 𝜃. The implementation in code is straight forward, 

and the method described by (4-35)-(4-37) can be used. The implementation presented in the Appendix made 

use of a basic parameterization obtained from the form of the system model with the result verified in [4]. 

 

Designing the weighting matrix for the offset cost (refer to (4-63)) is also simple. The weighing matrix 𝑇 is 

initially chosen close to the terminal weight, as recommended in [33], and then tuned to achieve a fast transient 

with minimal optimality loss. In this implementation, 𝑇 = 1000 ∗ 𝑃𝑙𝑞𝑟 is taken from [33], where 𝑃𝑙𝑞𝑟 is the terminal 

weighting matrix discussed in the following. 

 

5.4 The terminal set and constraints 

The final part of the controller design which needs to be considered are the prediction horizon terminal aspects. 

The terminal set 𝕏𝑓 for the prediction horizon truncated to 𝑁 steps replaces the terminal set of the infinite 

horizon 𝑁 → ∞ problem. It is customary to imitate the infinite horizon cost for the actual system through the 

infinite horizon cost of the unconstrained system, determined through the solution for 𝑃 in the Riccati equation.  

This forms the basis of LQR MPC. Using the unconstrained LQR parameters, in particular the gain 𝐾𝑙𝑞𝑟, has 

the added bonus of allowing a larger terminal set to be determined. The terminal cost must then also be 

addressed. Therefore, the LQR infinite horizon gain and terminal weighting matrices need to be considered 

here.  



A practical exposition of Tube-based Robust MPC for tracking: The double pendulum  55 

DLR-IB-RM-OP-2017-17 

5.4.1 LQR gain and terminal weight  

These parameters are dependent on the LQR weighting matrices, which are taken in this implementation from 

[33] as 𝑄 = 𝐼2 and 𝑅 = 10 𝐼2. For this discrete problem, the MATLAB function dlqr is utilized to obtain the gain 

𝐾𝑙𝑞𝑟 and terminal weight matrix 𝑃𝑙𝑞𝑟. This function makes use of the system and input matrices and the 

weighting matrices 𝑄 and 𝑅 to determine the LQR gain 𝐾𝑙𝑞𝑟 and the terminal weight 𝑃𝑙𝑞𝑟.  

 

There is one caveat to using this available function. The function dlqr assumes that 𝐴𝐾,𝑙𝑞𝑟 = 𝐴 − 𝐵𝐾𝑙𝑞𝑟 . This 

design methodology expects 𝐴𝐾,𝑙𝑞𝑟 = 𝐴 + 𝐵𝐾𝑙𝑞𝑟. So, to obtain the expected results, the gain obtained from the 

dlqr function be multiplied by −1. 

 

5.4.2 Terminal set 𝕏𝑓 

The terminal set 𝕏𝑓 is the set of states within which the final predicted state on the prediction horizon must 

reside. In order to obtain the largest region of attraction, encompassing as much of the state constraint set as 

possible, the terminal set 𝕏𝑓 should be as large as possible. In tube-based robust MPC for tracking, this set is 

called the Invariant Set for Tracking, which is chosen as the Maximal Robust Positively Invariant Set (MRPI). 

This set is determined using the closed-loop dynamics of the extended state  

𝑥𝑒 = (𝑥, 𝜃) (5-33) 

encompassing, with some stretching of notation, the nominal system state 𝑥 and an admissible terminal state 

𝜃. To describe these dynamics, first consider the nominal control law  

𝑢 = 𝐾𝑙𝑞𝑟(𝑥 − 𝑧𝑠) + 𝑣𝑠 (5-34) 

where 𝑧𝑠 and 𝑣𝑠 indicate the desired terminal state and actuation of the system. Let this be re-written as 

𝑢 = 𝐾𝑙𝑞𝑟𝑥 + 𝐿𝜃 (5-35) 

where 𝐿 = [−𝐾𝑙𝑞𝑟 𝐼𝑚]𝑀𝜃.  

 

Provided that 𝐴 + 𝐵𝐾𝑙𝑞𝑟 is Hurwitz, two important results occur. First, the closed-loop system will evolve to the 

terminal state and input described by 𝑧𝑠 = 𝑀𝜃𝜃. Second, the invariant set for tracking is the set of states and 

inputs which are admissibly stabilizable by this control law. 

 

Then, for the extended state 𝑥𝑒, the closed loop system is posed as  

[
𝑥
𝜃
]
+
= [

𝐴 + 𝐵𝐾𝑙𝑞𝑟 𝐵𝐿

0 𝐼𝑛𝜃
] [
𝑥
𝜃
] (5-36) 

or 𝑥𝑒+ = 𝐴𝑒𝑥
𝑒. The constraint set for this system is given by 

𝕏𝜆𝑀𝑅𝑃𝐼
𝑒 = {𝑥𝑒 = (𝑥, 𝜃) | (𝑥, 𝐾𝑥 + 𝐿𝜃) ∈ 𝕏̅×𝕌̅ ,𝑀𝜃𝜃 ∈ 𝜆𝑀𝑅𝑃𝐼×(𝕏̅×𝕌̅)} (5-37) 

 



56  Chapter 5 

DLR-IB-RM-OP-2017-17 

where 𝜆𝑀𝑅𝑃𝐼 ∈ (0,1) will be discussed shortly. 

 

The MRPI is determined using this closed loop system matrix, the LQR gain, the relationship of terminal states 

and inputs to the parameterized 𝜃-space, and the nominal system constraints. It should be noted here, that 

due to the unitary eigenvalues of 𝐴𝑒, the MRPI set is not finitely determinable, but can be arbitrarily closely 

approximated [1-3, 32, 63-65]. This convex, finitely determined polyhedron is obtained by applying a scaling 

factor 𝜆𝑀𝑅𝑃𝐼 arbitrarily close to 1 to the definition of the MRPI set,  

Ω∞,𝜆
𝑒 = {𝑥𝑒: 𝐴𝑒

𝑖 𝑥𝑒 ∈ 𝕏𝜆𝑀𝑅𝑃𝐼
𝑒 , ∀𝑖 ≥ 0} (5-38) 

 

The determination of this set is therefore conducted practically as follows: 

Algorithm  5-4    Determination of MRPI as the Invariant Set for Tracking  

Inputs: Nominal constraints 𝕏̅, 𝕌̅,  

 Closed-loop system 𝐴𝑒, 

 LQR gain 𝐾𝑙𝑞𝑟 , 

 State and input parameterization matrix 𝑀𝜃 , 

 Scaler 𝜆𝑀𝑅𝑃𝐼  

  

Algorithm: Set 𝑘 ← 0 

 Construct the constraint set for the closed loop system  

Ω0 ← {[

𝐴𝑥 0 0
0 𝐴𝑥𝑀𝜃 0
0 0 𝐴𝑢𝑀𝜃

] 𝑥 ≤ [

𝑏𝑥
𝜆𝑀𝑅𝑃𝐼  𝑏𝑥
𝜆𝑀𝑅𝑃𝐼 𝑏𝑢

]} = {𝐴Ω𝑥 ≤ 𝑏Ω} 

  Calculate 2 pre-sets for an initial comparison  

  Ω1 ← 𝑃𝑟𝑒(Ω0) ∩ Ω0  

   Ω2 ← 𝑃𝑟𝑒(Ω1) ∩ Ω1 

 𝐰𝐡𝐢𝐥𝐞 the current and next pre-sets are not equal  Ω𝑘+1 ≠ Ω𝑘 

 𝑘 ← 𝑘 + 1 

 Determine the next pre-set Ω𝑘+1 ← 𝑃𝑟𝑒(Ω𝑘) ∩ Ω𝑘 

 𝐞𝐧𝐝 

  

Output: Maximal Robust Positively Invariant Set  Ω∞ = Ω𝑘 = Ω𝑘+1 

For more information on this algorithm, the reader is directed to [63, 64]. 

In the preceding algorithm, the function 𝑃𝑟𝑒(∙) indicates the “predecessor” set, or 1-step set. In practice, the 

pre-set is defined by formulating the polytope 



A practical exposition of Tube-based Robust MPC for tracking: The double pendulum  57 

DLR-IB-RM-OP-2017-17 

[

𝐴Ω𝐴𝑒
𝐴𝑥                         0        

𝐴𝑢𝐾𝑙𝑞𝑟 𝐴𝑢[−𝐾𝑙𝑞𝑟 𝐼]𝑀𝜃

] 𝑥 ≤ [

𝑏Ω
𝑏𝑥
𝑏𝑢

] 

The algorithm basically states that the computation of pre-sets continues until two consecutive pre-sets are 

equal.  

 

This process will yield the invariant set for tracking in extended space Ω𝑒. It is desirable to know this set in 

state space, Ω𝑥, or input space,Ω𝑢, to be able to apply the result. These must be found through a projection 

from the extended space onto the desired space. In this implementation, the appropriate functions from the 

MPT toolbox are made used to obtain the projections. The resultant invariant set for tracking is given below. 

 

Figure 5-3 Invariant set for tracking projected onto X-space 

This result was obtained using the implementation in software in Appendix part A. Double Pendulum lines 

169-184 and 421-475. For more detail on this set and its determination, the reader is referred to  [1-3, 32, 

63-65]. 

 

5.5 Nominal model predictive controller 

Now that all of the design parameters have been addressed, the nominal model predictive controller can be 

constructed. This controller was laid out in section 5.5, the reader is referred to this for the theory. The important 

results here are the cost function 

𝑉𝑁(𝑥, 𝜃; 𝑧0, 𝐯, 𝜃̅) = ∑(‖𝑧(𝑖) − 𝑥𝑠‖𝑄
2 + ‖𝑣(𝑖) − 𝑢𝑠‖𝑅

2) + ‖𝑧(𝑁) − 𝑥𝑠‖P
2 + ‖𝜃̅ − 𝜃‖

𝑇

2
𝑁−1

𝑖=0

 (5-39) 

and optimization problem  



58  Chapter 5 

DLR-IB-RM-OP-2017-17 

min
𝑧,𝐯,𝜃

𝑉𝑁(𝑥, 𝜃; 𝑧0, 𝐯, 𝜃̅) (5-40) 

𝑠. 𝑡.    𝑧 ∈ 𝑥⨁(−𝒵) (a) 

                                 𝑧(𝑖) ∈ 𝕏̅, 𝑖 = 0,… , 𝑁 (b) 

                                          𝑣(𝑖) ∈ 𝕌̅, 𝑖 = 0,… , 𝑁 − 1 (c) 

               (𝑧(𝑁), 𝜃̅) ∈ Ω𝑒 (d) 

 

While controller implementation through the multi-parametric toolbox is well documented in the toolbox manual 

and auxiliary documentation [7, 66], the remainder of this section will outline the practical aspects of 

constructing the implementation using the Multi-Parametric Toolbox. 

 

The controller object must be called at each time step. The nominal controller object therefore only handles 

the prediction and optimization steps along a single prediction horizon. To construct a controller object, the 

optimization variables – the nominal and actual state, the nominal input, steady state characterized as 𝜃, and 

the artificial steady state 𝜃̅ – are defined as variables which can be manipulated by the optimization problem 

across the prediction horizon. The objective function and constraints are then considered simultaneously. Each 

call of the controller object encompasses one prediction cycle. Each begins with a prediction cost of 0. For the 

first 𝑁 − 1 prediction steps, the cost is determined according to the first term of (5-39) and the constraints 

(5-40)(b-c) and the nominal system dynamic (5-2) are defined. The terminal and offset costs are then 

determined according to the second and third terms of (5-39), respectively, and are added to the result of the 

summation in the previous step. The nominal and terminal state set constraints are determined for (5-40)(a 

and d). The nominal output can then be defined for the extended state (5-33). The set of constraints, cost, 

extended state, and output form are sent to the MPT optimizer function, which returns the controller object. 

The implementation of this controller in software can be found in Appendix part A. Double Pendulum lines 196-

216 and 476-544. 

 

5.6 Controller simulation  

Simulating the disturbed system is fairly straight forward. First, a disturbance sequence is chosen. Then, the 

controller object constructed in the preceding sections is applied at each time step in the simulation horizon to 

obtain the controlled nominal response and the corresponding input. The successive actual state, is simply 

obtained by applying the current nominal state obtained from the controller and the current state of the 

disturbance to the dynamics described by the state equation in (5-1).  

 

The results of such a simulation are presented here.  

 



A practical exposition of Tube-based Robust MPC for tracking: The double pendulum  59 

DLR-IB-RM-OP-2017-17 

The initial and terminal states of the simulation was selected from the presentations of this example in literature 

[1, 2, 4, 33] as a diagnostic against which to compare this implementation. The assumption is that, as these 

works have been reviewed and accepted, comparable quality and form of results would indicate a correct 

understanding and implementation of the theory. Some parameters were modified in testing. The parameters 

used in the simulation are summarized in Table 5-1 at the end of this section. The simulation and the results 

presented here were designed to illustrate the ability of the controller to bring the system to a desired set point 

and to handle online changes in set point. The simulation was conducted and the results obtained using lines 

223-259 and 545-576 of the software implementation in Appendix part A. Double Pendulum. 

 

To this end, the simulation has two parts: the initial tracking problem, followed by a change in set point and a 

second tracking. The initial state is taken to be 𝑥(0) = [−3 1.5]𝑇 and the first set point 𝑥𝑠,𝐴 = [−4 0]𝑇 ∈ Ω𝑥. 

The second set point is chosen to demonstrate the ability of the controller to handle set points not located in 

the terminal set by tracking the nearest permissible set point. After successfully reaching the first set point, the 

simulation will change over to the second, 𝑥𝑠,𝐵 = [4 −0.5]𝑇 ∉ Ω𝑥.  

 

The following figure demonstrates the progression of the controlled system in state space. 

 

Figure 5-4 Controlled evolution pendulum system 

 

This figure depicts the projection of the invariant set for tracking on state space Ω𝑥 (blue), the set of admissible 

terminal states 𝕏𝑠 (red), the tube of trajectories (yellow), and the boundaries of the nominal and robust regions 

of attraction 𝕏𝑁̅̅ ̅̅  and 𝕏𝑁, respectively marked in the figure. The nominal and actual states are also indicated as 

trajectories with the markers x and ∗, respectively. 

 



60  Chapter 5 

DLR-IB-RM-OP-2017-17 

The projection of the invariant set for tracking represents the set of points in state space for which there exists 

a value for the parameterization variable 𝜃 such that there exists an associated steady state described in the 

MPRI set Ω𝑒. The set of admissible terminal states (red) is the representation of all terminal states which are 

relatable to the characterization of the target state (i.e. 𝑦𝑡,𝐴 = −4 or 𝑦𝑡,𝐵 = 4) through the parameterization of 

𝜃. The output equation of the system model and parameterization through 𝑁𝜃 of the set points means that the 

output is dependent only on state 𝑥1. However, the set of admissible terminal states is obviously 2-dimensional. 

This is as a result of the set of admissible terminal state’s definition, which is reliant on the definition of 𝜃 – 

involving the the state and input constraint and mRPI sets, which are all of course 2-dimensional.  

 

The state space results indicate that after approximately 12 time steps in simulation, the system enters the 

neighbourhood of the first target steady state 𝑥𝑠,𝐴.  It will remain there until time step 21, when the target steady 

state is changed to 𝑥𝑠,𝐵. The system will steadily progress toward this target state, but it is not within the set of 

admissible steady states, making the state technically infeasible. However, the offset constraint of the cost 

function (5-39) and the terminal set constraint of the optimization problem (5-40)(d) mean that the artificial 

steady state will drive the system to the neighbourhood of the nearest feasible set point, retaining problem 

feasibility. 

 

Similarly, the input space should be considered. The evolution in this space is illustrated in the following figure. 

 

Figure 5-5 Input evolution of pendulum system 

The (blue) time series of control inputs are presented here as a form of trajectory. The two regions, marked 

out in black, indicate the boundaries of the set 𝑢𝑠,𝐴⨁𝐾𝑑𝑟𝒵 and 𝑢𝑠,𝐵⨁𝐾𝑑𝑟𝒵 – for the first and second parts of 

the simulation, respectively – analogously to the yellow tube in Figure 5-4. The green line specifies the 1-

dimensional set of admissible steady state inputs. The control input generated for the uncertain system at 

steady state, with any admissible realization of the uncertainty, must exist in the intersection of the of the black 

region and the green line. Sure enough, the results indicate that the final inputs are located on the green line 

and within the admissible control input. 

 



A practical exposition of Tube-based Robust MPC for tracking: The double pendulum  61 

DLR-IB-RM-OP-2017-17 

Table 5-1 Double pendulum simulation parameters 

Parameter Simulation Value 

𝑸 𝐼2 

𝑹 10 𝐼2 

𝑷 𝑃𝑙𝑞𝑟: 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑡𝑜 𝑅𝑖𝑐𝑐𝑎𝑡𝑖 𝑒𝑞. 𝑓𝑜𝑟 𝑡ℎ𝑒 𝐿𝑄𝑅 

𝑻 1000 𝑃 

𝑷𝒓𝒆𝒅𝒊𝒄𝒕𝒊𝒐𝒏 𝒉𝒐𝒓𝒊𝒛𝒐𝒏 10 𝑠𝑡𝑒𝑝𝑠 

𝑺𝒊𝒎𝒖𝒍𝒂𝒕𝒊𝒐𝒏 𝒉𝒐𝒓𝒊𝒛𝒐𝒏 20 𝑠𝑡𝑒𝑝𝑠 

𝒙𝟎 [
−3
0.5
] 

𝑺𝒕𝒆𝒂𝒅𝒚 𝒔𝒕𝒂𝒕𝒆 𝜃1 = [
−4
0
] ;  𝜃2 = [

4
−0.5

] 

𝑫𝒊𝒔𝒕𝒖𝒓𝒃𝒂𝒏𝒄𝒆 𝑢𝑛𝑖𝑓𝑜𝑟𝑚𝑙𝑦 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑑 𝑝𝑠𝑒𝑢𝑑𝑜𝑟𝑎𝑛𝑑𝑜𝑚 𝑛𝑜𝑖𝑠𝑒 𝑤𝑖𝑡ℎ𝑖𝑛 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑒𝑑 𝑏𝑜𝑢𝑛𝑑𝑠 





 

63 

 

Part 2: Application of tube-based 
robust MPC to a satellite 
rendezvous maneuver 





 

65 

6 Platform and RPO formulation  

In this rendezvous problem, the goal is to bring a chaser spacecraft from its initial position in space to a docking 

point on a target spacecraft along a provided reference trajectory while robustly satisfying actuation 

constraints. To this end, this chapter is dedicated to the definition of the system and an initial characterization 

of the control problem, with the aid of the preceding theory. 

 

The rendezvous maneuver, considered in 3 dimensions, is to be carried out between a chaser spacecraft and 

a target satellite. The target craft is considered as a sphere of radius 𝑟𝑡 [m] centered on the center of mass of 

the craft, which tumbles with an angular velocity 𝜔𝑡. The target body frame follows this same motion. A docking 

point is located at a position on this sphere defined by  𝐫𝒅
𝐎 in the orbital frame of the target. The orbit of the 

center of mass of the target is approximated to be circular with orbital radius 𝑅𝑡, measured from the center of 

the Earth. The relative motion between the spacecraft is then appropriately described using the CWH 

equations, previously discussed in chapter 2. The chaser spacecraft is modelled as a point mass and must 

approach the target to dock at the docking point. As is typical to the rendezvous phase of RPO maneuvers, 

the chaser and target spacecraft are within the same orbit. [20, 21]  

 

The reference trajectory is provided by a motion planner, which makes use of a selected inertia and rotational 

velocity state to determine the trajectory optimized to a set of costs [67]. The motion planner devises a relative 

trajectory between the two spacecraft with respect to the target orbital frame [67].  However, there is an amount 

of uncertainty in the motion of the target spacecraft resultant from uncertainty in the inertia or spin state of the 

target craft. The uncertainty in the motion of the target can be described by an arc drawn on a spherical shell, 

or the upper most bound of a scaled unitary ball ℬ𝑛 = {𝑏 ∈ ℝ𝑛: ‖𝑏‖𝑝 ≤ 1}, as represented in Figure 6-1.   

 

Figure 6-1 Effect of uncertainty in motion of the target on the position of the docking point 



66  Chapter 6 

DLR-IB-RM-OP-2017-17 

The above figure captures a realization of the uncertainty at the final time step in the maneuver. The center of 

mass of the target is coincident with 𝑂𝑂 in the figure. The position of the docking point if nominal motion of the 

target is followed is indicated by the radius to point 𝑧𝑂. When the nominal motion is additionally affected by an 

uncertainty, described by the red arc, the docking point will be located at 𝑥𝑂. This uncertainty must be 

accounted for in the robust control of the chaser to the docking port, and this idea will be returned to later. 

 

Fortunately, the reference trajectory is defined relatively with respect to the two spacecraft, and, under robust 

reference tracking control methods, it can be validly nominally tracked irrespective of the actual position of the 

docking point in absolute space, permitting that the actuation constraints are not violated. As the boundary of 

the uncertainty is characterizable, there exist robust control methods which will allow the reference trajectory 

to be tracked within this uncertainty bound and actuation constraints. The aim of this work is to design a 

controller using the theory of Tube-based robust Model Predictive Control for tracking, as presented in the 

chapters 4 and 5, to control the approach of the chaser satellite while guaranteeing constraint satisfaction and 

tracking the provided reference trajectory. The development of this control problem shall be the topic of the 

next chapter. 

 

In this chapter, some characteristics of the two spacecraft will be explained, the system model will be presented 

in state space representation, and the constraints of the system and the uncertainty will be characterized. 

 

6.1 The target satellite 

This work tackles the task of bringing a chaser craft to the disabled, tumbling Envisat so that robotic docking 

and deorbiting maneuvers can be conducted. The rest of this section will outline pertinent details about the 

satellite in preparation of the following work. 

 

 

Figure 6-2 Envisat [68] 



Platform and RPO formulation   67 

DLR-IB-RM-OP-2017-17 

Envisat, depicted above, is an unresponsive, tumbling satellite which serves as the target in active debris 

removal scenarios investigated by ESA [69]. Launched in 2002, Envisat was the largest civilian Earth 

observation mission. In April of 2012, contact with Envisat was unexpectedly lost, and in May, after a month 

of efforts to regain control of the satellite, the Envisat mission was declared over [68]. Now, Envisat is the 

largest single piece of space debris owned by ESA. A large body of work has been conducted under the ESA 

e.Deorbit project, focused on the re- or de-orbiting of the satellite to prevent adverse collisions, destruction, or 

the creation of more high velocity debris. The work can hopefully be more widely deployed to help clean up 

the orbits about Earth.  

 

Following from e.Deorbit specifications, Envisat is chosen as the target spacecraft in this work for a number of 

reasons [69-71]: Envisat is located in the densely populated 600-800 km altitude band near the polar region; 

maintaining a sun-synchronous orbit at a nominal reference mean orbit altitude of 800 km, or about 7171 km 

from the center of the Earth. The spacecraft has an approximate mass of 8000 kg. The size and location of 

the craft gives it the highest risk of collision with other debris out of all ESA owned orbiting objects. The large 

size of Envisat is also representative of many heavy orbital debris objects, such as late rocket stages. 

Furthermore, Envisat’s complex shape and uncertain tumbling state complicate its capture. This means that 

in the case of robotic capture, as is of interest here, the position and attitude of the chaser must be 

synchronised with the motion of the target for capture, while avoiding the solar panel – which is locked into an 

inconvenient position, partially blocking access to one of the strongest, stiffest, most stable external points on 

the satellite (see Figure 6-2).   

 

The tumbling nature of the satellite has precluded its attitude evolution from being reliably known, but motion 

planning methods have been used to estimate the evolution. The estimate commonly uses a satellite rotation 

at an angular velocity of 3.5 deg/s almost aligned with the orbital momentum [71]. The effects of the Earth’s 

magnetic field on the rotation of the satellite are difficult to determine, but could be slowing it. On the other 

hand, the spin could also have been slowed or sped up due to impacts with other debris or micrometeorites 

which have already occurred. [71] 

 

6.2 The chaser satellite 

The e.Deorbit project proposed many methods for the de- or re-orbiting of orbital debris (see [69]). This work 

focuses on a robotics-based proposal. This requires the chaser to approach the docking point on the target 

such that the terminal state is within a specific distance of the docking point. The re-orbit or de-orbit mission 

end goal makes no difference as to how the chaser will maneuver to the proximity of the docking port and the 

scope of this work terminates with the end of the rendezvous phase – that is, at the beginning of the docking 

procedures.  

 

Under the body of the e.Deorbit project, the selected grasping or docking point used in the robotic docking 

designs varies by research group [69]. These scenarios are illustrated in the following figure.  



68  Chapter 6 

DLR-IB-RM-OP-2017-17 

 

Figure 6-3 Grasping point proposals under the e.Deorbit Phase A, adapted from [69] 

 

The Airbus Defence and Space and DLR partnership proposed grasping Envisat’s Hold Down Release 

Mechanism (HDRM). OHB systems devised a method which suggested clamping onto the sides of the target, 

such that the chaser is held to the top face of the target. SSTL, Aviospace, and Deimos devised a clamping 

mechanism for the Launch Adapter Ring (LAR) of Envisat. 

 

In this work, a motion planner designed for optimizing a rendezvous path to Envisat is utilised to provide the 

optimal trajectory from the initial position of the chaser to the target. The motion planner was devised with 

docking through grasping the Launch Adapter Ring (LAR) in mind. By the end of Phase A of the ESA project, 

the LAR had been agreed upon as the designated grasping point, as the it can withstand large forces and the 

structure is a common feature for many other possible target satellites [69]. This would permit the extension 

of the development conducted under this project to be easily applied to other missions with little to no redesign 

of the docking procedures. It should also be noted that the trajectories provided by motion planner were created 

with hardware imposed constraints on the accessible thruster force and velocity of [−65 65] 𝑁 and 

[−1 1] 𝑚/𝑠, respectively. These constraints cannot be violated in the control implementation as the real 

system would not be capable of supplying more thrust force or attaining greater velocities.  

 

It should also be noted that the proposed chaser spacecraft will make use of LiDAR and a multispectral camera 

to determine the relative position of the chaser to the target. As of the publication of [69], this was still an open 

task. Nonetheless, this work can assume the provision of these measurements, which is vital to the relative 

motion control task.  

 

6.3 The rendezvous model 

As a circular orbit is approximated for the progression of the relative motion system, the CWH equations will 

be used as outlined in chapter 2 to set out the system model. In accordance with this preceding exposition, 

the x-axis refers to radial or R-bar direction, the y-axis to the along-track or V-bar direction, and the z-axis to 

the cross-track or H-bar direction. The cross-track dynamics have often been ignored in previous works, for 

example [16-18, 20, 21], and the problem constrained to the radial/along-track-plane, as the cross-track 

dynamics are decoupled from the interdependent radial and along-track dynamics. In this work, however, the 



Platform and RPO formulation   69 

DLR-IB-RM-OP-2017-17 

third dimension is included, expanding on the works [15, 20-24, 41]. The nominal system model is here 

developed.  

 

The target is on a circular orbit about the Earth, with an orbital rate 𝑛 = √𝜇/𝑅𝑡
3 (rad/s), where 𝜇 is the 

gravitational constant of the Earth and 𝑅𝑡 = 7171 [km]. The origin of the reference Hill frame is affixed to the 

center of mass of the target and revolves with orbital rate 𝑛 with respect to the inertial reference frame centered 

on the center of the Earth. Following from the development in section 2.2 up to the definition of the set of 

equations (2-5), the base-model for the relative motion problem is given in continuous time by  

𝑧̇(𝑡) = 𝐴𝑐𝑧(𝑡) + 𝐵𝑐𝑣(𝑡) (6-1) 

where the nominal state vector 

𝑧 = [𝛿𝑥𝑂 𝛿𝑦𝑂 𝛿𝑧𝑂 𝛿𝑥̇𝑂 𝛿𝑦𝑂̇ 𝛿𝑧̇𝑂]
𝑇
 (6-2) 

 within which, 𝑥𝑂, 𝑦𝑂 , and 𝑧𝑂 refer to the axes of the target orbital frame, the nominal input vector  

𝑣 = [𝑣𝑥
𝑂 𝑣𝑦

𝑂 𝑣𝑧  
𝑂 ]

𝑇
 (6-3) 

the components of which correspond to the accelerations applied to translational thrusters of fixed-direction of 

the chaser, and  

𝐴𝑐 =

[
 
 
 
 
 
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
3𝑛2 0 0 0 2𝑛 0
0 0 0 −2𝑛 0 0
0 0 3𝑛2 0 0 0]

 
 
 
 
 

 (6-4) 

𝐵𝑐 = [
03×3
𝐼3
] (6-5) 

As a discrete-time model is desired, this system is discretized and becomes 

𝑧(𝑘 + 1) = 𝐴𝑧(𝑘) + 𝐵𝑣(𝑘) (6-6) 

which is discretized using the sampling time 𝑇𝑠. 

Note that the system retains its linear dependence on the input control actions. Under MPC terminology, 

therefore, linear control methods are applicable to this problem. This system model will be used in the control 

strategy following. 

 

6.4 Rendezvous constraints 

As has been indicated in the Part 1 of this work, constraints are integral to the development of MPC problems 

and system description. Thus, system constraints will be enumerated here, but will be numerically defined later 

in the controller and simulation designs.  

  



70  Chapter 6 

DLR-IB-RM-OP-2017-17 

The state and input constraints for the above system are fairly simple to outline. The first three components of 

the system state correspond to the position and the next three to the velocity of the chaser relative to the target. 

It is desirable that these system properties remain within hard limits and are set using inequality constraints in 

the form of polyhedral set constraints, which will be defined later in chapter 6. The acceleration inputs are 

physically constrained by the nature of the thrusters utilized by the chaser spacecraft. These constraints can 

be defined by an inequality constraint 

𝑢𝑚𝑖𝑛 ≤ 𝑢 ≤ 𝑢𝑚𝑎𝑥  (6-7) 

where 𝑢𝑚𝑖𝑛 is the minimum applicable thrust and 𝑢𝑚𝑎𝑥 the maximal. In case, the thrusters are characterized 

by their thrust force capabilities in newtons. The lower and upper constraints on the acceleration inputs must 

then be determined using 

𝐹𝑚𝑖𝑛 

𝑚𝑐
≤ 𝑢 ≤

𝐹𝑚𝑎𝑥
𝑚𝑐

 (6-8) 

where 𝐹(∙) is derived from the force available from the thruster and 𝑚𝑐 is the mass of the chaser spacecraft, to 

which the thrusters are attached.  

 

In RPO problems, there are typically some further constraints, namely line of sight and soft-docking constraints. 

However, a line of sight constraint is typically only useful in the case of a cooperative target and the soft docking 

constraint is simply an additional acceleration constraint which limits the relative acceleration over time, with 

the aim that the relative acceleration between the target and the chaser at the time of docking is negligible. 

The same outcomes are achieved by requiring the system to follow a provided, pre-determined optimal 

trajectory. The use of reference tracking techniques imposes further constraints on the system to limit the 

discrepancy between the current system state and the desired trajectory state. The form of the model will then 

constrain the position and velocity of the chaser relative to the target.   

 

6.5 Uncertainty characterization 

The goal of Tube-based robust MPC is to steer a disturbed system in an admissible evolution to an admissible 

steady state while guaranteeing robust satisfaction of the state and control constraints in the presence of a 

possibly unknown, but bounded, uncertainty. As was shown in chapters 4 and 5, the definition of the uncertainty 

is important to the design of the control law. To this end, the uncertainty pertaining to this problem will now be 

characterized.  

 

6.5.1 Uncertainty boundary 

Previous applications of these control methods to satellite rendezvous have concentrated on navigation and 

thruster timing errors. In this application, the uncertainty lies in the inertia and spin state of the target spacecraft. 

This uncertainty has been characterized simply as an angular uncertainty, described as in the axis-angle 

representation. That is, the uncertainty can be visualized as forming an arc along the surface of a sphere 

centered on the origin of the orbital frame (refer to Figure 6-1). Therefore, as the target moves through space, 



Platform and RPO formulation   71 

DLR-IB-RM-OP-2017-17 

the uncertainty introduced into its motion will not result in some large deviation of its path, but rather a deviation 

of the docking point from the expected point on the sphere over-bounding the satellite to some other point 

along the surface of the sphere [72]. This will be shown to be the case with the following. 

 

First, it is necessary to determine how the target will behave under the presence of a disturbance in its inertia 

or spin state. Consider, then, the general problem, where the point mass chaser would be brought together 

with the center of mass of the target, as illustrated in the following image. 

The spacecraft are depicted moving to a common position in space at which they are to rendezvous. This may 

be a possible view external to this defined system. In reality, it is assumed that the spacecraft are in the same 

orbit, travelling in the same direction, with the chaser spacecraft initially at a known position phased a known 

distance behind the target craft. In the above illustration, 𝑥𝑐
𝑂 and  𝑥𝑡

𝑂 represent the actual positions of the chaser 

and target in the target orbital frame (refer to Figure 2-2) and  𝑧𝑐
𝑂 and  𝑧𝑡

𝑂represent the evolutions of the nominal 

positions of the chaser and target in the target orbital frame when all uncertainty is ignored. The nominal 

position of the chaser relative to the target  𝑧𝑟
𝑂 is equivalent to the expected state dictated by the reference 

trajectory. If the uncertainty in the target’s motion was not present, the motion of the chaser relative to the 

target would follow this trajectory. However, because of the presence of the uncertainty, the chaser will deviate 

from this path, but still track the shape of the reference trajectory which is defined based on the relative motion 

of the target and chaser. The trajectory will lie within the tube extending from the initial position of the chaser 

toward the terminal set where the target and chaser meet. This is the same concept described in section 4.3. 

The evolution of the set of desired terminal states is described by the possible motion of the docking point 

through space.  

 

Now, the relationship between frames of the chaser and the target needs to be shown. First, note that  

𝑧𝑐
𝑂(0) − 𝑧𝑡

𝑂(0) = 𝑧𝑟
𝑂(0) (6-9) 

𝑧𝑐
𝑂(𝑡𝑓) − 𝑧𝑡

𝑂(𝑡𝑓) = 0 (6-10) 

Figure 6-4 Nominal and disturbed motion 



72  Chapter 6 

DLR-IB-RM-OP-2017-17 

where the initial time 𝑡0 = 0, 𝑡𝑓 is the final time of the maneuver. Therefore, it can clearly be understood that 

𝑧𝑐
𝑂(𝑡𝑖) − 𝑧𝑡

𝑂(𝑡𝑖) = 𝑧𝑟
𝑂(𝑡𝑖) (6-11) 

which simply states that the difference of the positions of the chaser and the target in the undisturbed system 

is the nominal relative position at time 𝑡𝑖 as posed in the orbital frame. Clearly, the goal is to determine the 

position of the chaser in the presence of uncertainty. The uncertainty ±Δ𝑥(∙)
𝑂  is incorporated as follows 

𝑧𝑐
𝑂(𝑡𝑖) ± Δ𝑥𝑐

𝑂(𝑡𝑖) = 𝑥𝑟
𝑂(𝑡𝑖) + 𝑧𝑡

𝑂(𝑡𝑖) ± Δ𝑥𝑡
𝑂(𝑡𝑖) (6-12) 

such that the nominal and real states of each body are related by 

𝑥(∙)
𝑂 (𝑡𝑖) = 𝑧(∙)

𝑂 (𝑡𝑖) ± Δ𝑥(∙)
𝑂 (𝑡𝑖) ( 6-13) 

 

Now, the inertia of the target is defined in the body frame of the target. This is advantageous to motion planning 

and other processes, as the property is constant in this frame. The target motion, incorporating the uncertainty, 

must be transformed from the body frame into the inertial frame. This is written as 

𝑧𝑐
𝑂(𝑡𝑖) ± Δ𝑥𝑐

𝑂(𝑡𝑖) = 𝑥𝑟
𝑂(𝑡𝑖) + 𝐴

𝑏𝑂(𝜙)𝑥𝑡
𝑏(𝑡𝑖) (6-14) 

with superscript 𝑏 indicating the target body-fixed frame, 𝐴𝑏𝐼(𝜙) is the rotation matrix which transforms the 

body frame to the inertial frame, and 𝑥𝑡
𝑏(𝑡𝑖) indicating the target motion in the target body-fixed frame at time 

𝑡𝑖 incorporating the uncertainty, as in the illustration above. It is not the subject of this thesis to fully characterise 

this rotation matrix, but is used here as a device to illustrate the basis of the evolution of the uncertainty. It is 

desired to describe the subject of the rotation matrix 𝜙. This is easiest understood from the mathematical basis 

of the description of the motion of a rigid body. Consider then, the equation of motion of the rigid body of the 

target: 

𝐼𝜔̇ + 𝜔×𝐼𝜔 = 0 (6-15) 

where 𝐼 is the inertia matrix of the rigid body and 𝜔 the angular velocity. Let  𝐼 ̅ = 𝐼 ± Δ𝐼 describe the inertia of 

the target incorporating the uncertainty. Then the equation of motion becomes 

𝐼𝜔̇̅ + 𝜔×𝐼𝜔̅ = 0 (6-16) 

Rewriting this in terms of 𝜔̇ gives an integrable equation such that 

𝜔(𝐼)̅ = ∫ 𝜔̇ 𝑑𝑡 = ∫ 𝐼−̅1 (−𝜔×𝐼𝜔̅) 𝑑𝑡 (6-17) 

The subject of the rotation matrix is an angular position. However, the angular velocity 𝜔 cannot be integrated 

in time to obtain a time evolution of the orientation of the target. To obtain this evolution, the equation  

𝜙̇ = 𝐶−1(𝜙)𝜔(𝐼)̅ (6-18) 

is used, where the matrix 𝐶(∙) is a function of 𝜙, which be determined through 

𝜙(𝐼)̅ = ∫ 𝜙̇(𝐼)̅ 𝑑𝑡 =∫𝐶−1(𝜙) 𝜔(𝐼)̅ 𝑑𝑡 (6-19) 

Therefore, the transformation matrix 𝐴(𝜙) is dependent on the inertia, which simply influences a rotation in the 

inertial frame.  

 



Platform and RPO formulation   73 

DLR-IB-RM-OP-2017-17 

Now, recalling the definition of the chaser position incorporating uncertainty (6-12), it can easily be understood 

that the chaser position uncertainty is directly influenced by the uncertainty in the inertia of the target, and can 

similarly be defined.  

 

The problem at hand requires that the chaser meets a docking point on the target, rather than the target’s 

center of mass. The control problem is therefore a tracking problem rather than a regulation problem. The 

above result is extended to the present problem, and is be understood with the aid of the following figure.  

 

Figure 6-5 Propagation of uncertainty 

 

By virtue of the preceding exposition, the worst-case uncertainty bound of the docking point can be defined in 

the orbital frame as a unitary norm ball, scaled by the radius of the sphere over-bounding the target – that is 

𝑟ℬ𝑛, or 4.6662 ℬ𝑛 for this problem. The radius is determined from the magnitude of the vector displacing the 

grasping point from the center of mass of the target. The spherical bound is drawn by the motion of the docking 

point with every realization of the worst-case uncertainty in the motion of the target. The relevant final positions 

of the chaser are located on this sphere, represented by the purple sphere in Figure 6-5, when the nominal 

motion of the target brings the center of mass of the target to 𝑧𝑡
0(𝑡𝑓). Of course, it was shown above that the 

same would be true for the position of the disturbed 𝑥𝑡
0(𝑡𝑓) – as only the pose of the target will change. In this 

figure, the center of mass of the target and the nominal position of the docking point are therefore differentiated. 

The latter is noted by 𝑧𝑑
0 for some possible predicted motion of the target. The position of the docking point in 

the presence of a non-zero disturbance of the target motion is denoted by 𝑥𝑑
0 . Trajectories which could possibly 

be followed by the docking point and the chaser to the nominal and disturbed set points are given in green and 

red, respectively.  

 



74  Chapter 6 

DLR-IB-RM-OP-2017-17 

The trajectories of the docking point to any worst-case uncertainty set point will be contained in the propagation 

of uncertainty of the target. As in [37], the worst-case uncertainty, or likewise the uncertainty boundary, for the 

chaser can be translated or propagated back from the docking point uncertainty back to the chaser and 

implemented as a state disturbance. This uncertainty bound can thus be likewise defined using the ∞− 𝑛𝑜𝑟𝑚 

of the scaled sphere. As the motion of the chaser is to be controlled in this task, this is the desired uncertainty 

bound to be defined in the controller design – the exact set definition shall be addressed in the next chapter. 

Luckily, this is a typical polytopic form for the uncertainty in problems controlled through this method – which 

requires the uncertainty to be bounded, closed, and convex – and literature suggests this to be the easiest 

form to handle in the progression of the problem. 

 

6.5.2 Disturbances applied to the system  

As presented in chapter 4, the disturbed system is given by 

𝑥+ = 𝐴𝑥 + 𝐵𝑢 + 𝑤  (6-20)  

where a state disturbance presents some unknown, but bound, additional actuation to the system. This must 

be distinguished from the instigating position disturbance.  Let this position disturbance be denoted by δx.  For 

this application, the current state disturbance δx is given by the difference between the nominal state 𝑧 defining 

the position and velocity of the chaser relative to the target and the relative state of the chaser measured by 

instrumentation located on the chaser 𝑥. 

 

 

 

 

 

 

 

The figure illustrates that the real state of the chaser relative to the docking point, measured by instrumentation 

on-board the chaser, differs from the reference at time 𝑘 any an amount 𝛿𝑥, that is 

𝛿𝑥 = 𝑥 − 𝑧 (6-21) 

This disturbance will in some manner instigate an additional actuation to the state equation to obtain the real 

system (6-20). To see how this effect is introduced, predict the next real state of the chaser: 

Figure 6-6 Position disturbance at time k 



Platform and RPO formulation   75 

DLR-IB-RM-OP-2017-17 

𝑥+ = 𝑧+ + 𝛿𝑥+ (6-22) 

                   = 𝐴𝑧 + 𝐵𝑣 + 𝛿𝑥+ (6-23) 

                                 = 𝐴(𝑥 − 𝛿𝑥) + 𝐵𝑣 + 𝛿𝑥+  (6-24) 

                                                = 𝐴𝑥 − 𝐴𝛿𝑥 + 𝐵𝑢 − 𝐵𝐾𝑑𝑟𝛿𝑥 + 𝛿𝑥
+ (6-25) 

                                                    = 𝐴𝑥 + 𝐵𝑢 + (𝛿𝑥+ − 𝐴𝛿𝑥 − 𝐵𝐾𝑑𝑟𝛿𝑥) (6-26) 

               = 𝐴𝑥 + 𝐵𝑢 + 𝑤 (6-27) 

 

As will be discussed more in the next chapter, there is assumed to be only a position disturbance applied to 

the docking point. It can then be shown that for a position disturbance of  

𝛿𝑥 = [Δ𝑥 Δ𝑦 Δ𝑧 0 0 0]𝑇 (6-28) 

the state disturbance  

             𝑤 = 𝛿𝑥+ − 𝐴𝛿𝑥 − 𝐵𝐾𝑑𝑟𝛿𝑥 (6-29) 

with 𝐴 and B as above and 𝐾𝑑𝑟 determined in the next chapter, reduces to 

             𝑤 = 𝛿𝑥 (6-30) 

This is an important result which will be made use of later. 

 

 





 

77 

7 Controller formulation   

In general terms, MPC is a frequently chosen method for the control of satellite rendezvous as it has the 

particular advantage that robust control ideas – including system and control constraints and the robust 

satisfaction thereof – can be easily incorporated [2, 13, 15, 52, 73], as should be now evident. Furthermore, 

the pointwise-in-time treatment and the inherently slow nature of the spacecraft rendezvous problem, as well 

as its expression as a linear model, make the problem a suitable candidate for MPC [15]. Furthermore, MPC 

controllers have the distinct advantages of being inherently closed loop in operation and that the model or 

circumstantial specifications can be done remotely, where infrastructure permits, and can even be done on the 

fly [50].  

 

Reconsider, then, the system to be controlled: In summary, a chaser spacecraft is required to rendezvous with 

a target spacecraft utilizing their relative dynamics for navigation. A pre-determined reference trajectory is 

provided by a motion planner tailored to this process. This trajectory is an optimized path from a start position 

to the specified final position – which coincides with the point where the docking procedure is set to begin. The 

chaser is required to follow this provided reference trajectory while robustly satisfying the system constraints 

and converging to the defined terminal state.  

 

The goal of the control problem is thus to determine a sequence of control actions which guarantee rendezvous 

precision while tracking the provided reference. It is crucial that the actuator constraints are satisfied and the 

size of the arrival set should be minimized to benefit the rendezvous precision. Therefore, the control strategy 

which follows makes use of tube-based robust MPC for tracking to robustly satisfy constraints, track a 

reference trajectory, and satisfy the requirements of an RPO problem. This chapter will detail how tube-based 

robust MPC for tracking can be used in the framework of this problem. The implementation of this design 

process in software is provided in Appendix part B. Satellite Rendezvous controller design.  

 

7.1 The system  

The undisturbed nominal system for this task can be described by the rendezvous model described in section 

6.3  

𝑧+ = 𝐴𝑧 + 𝐵𝑣 (7-1) 

where the state 𝑧 ∈ 𝕏̅ ⊆ ℝ6, successive state 𝑧+ ∈ 𝕏̅ ⊆ ℝ6, and control input 𝑣 ∈ 𝕌̅ ⊆ ℝ3 vectors and the state 

𝐴 and input 𝐵 matrices are defined as in section 6.3. When the orbital rate 𝑛 is chosen to match that used by 

the motion planner, 𝑛 and the discretized system matrices at a sampling time of 𝑇𝑠 = 0.5 𝑠 become  



78  Chapter 7 

DLR-IB-RM-OP-2017-17 

𝑛 = 0.0012 [𝑟𝑎𝑑 𝑠⁄ ] (7-2) 

𝐴 =

[
 
 
 
 
 

1       0 0 0.5 0.003 0
−2.16×10−10 1 0 −0.0003 0.5 0

0 0 1 0 0   0.5
2.16×10−10 0 0 1 0.0012 0

−1.296×10−9 0 0 −0.0012 1 0
0 0 −7.2×10−7 0 0 1]

 
 
 
 
 

 (7-3) 

𝐵 =

[
 
 
 
 
 

0.125 5×10−5 0
−5×10−5 0.125 0

0 0 0.125
0.5 0.0003 0

−0.0003 0.5 0
0 0 0.5]

 
 
 
 
 

 (7-4) 

This model describes the normal expected dynamics of the rendezvous maneuver. However, under normal 

operation, the chaser will deviate from this trajectory due to disturbances, and the perturbed system is 

represented by  

𝑥+ = 𝐴𝑥 + 𝐵𝑢 + 𝑤 (7-5) 

again with the state 𝑥 ∈ 𝕏 ⊆ ℝ6, successor state 𝑥+ ∈ 𝕏 ⊆ ℝ6, and control 𝑢 ∈ 𝕌 ⊆ ℝ3 vectors defined 

analogously to (7-1) and the state 𝐴 and control 𝐵 matrices defined as in (7-3) and (7-4), respectively.  

 

The output 𝑦 ∈ 𝕏̅ ⊆ ℝ6 vector and output 𝐶 and feedthrough 𝐷 matrices are now brought into consideration:  

𝑦 = 𝐶𝑥 + 𝐷𝑢 (7-6) 

As it is desirable to track all components of the state and no feedthrough is introduced, the respective matrices 

are given by 

𝐶 = 𝐼6 (7-7) 

𝐷 = 𝟎6×3 (7-8) 

 

The state disturbance 𝑤 is bounded and belongs to the polytopic compact set 𝒲. Under the framework of 

Tube-based robust MPC, the boundary of this uncertainty is required. As elaborated in section 6.5, the 

boundary for the uncertainty in the relative position of the chaser can be described by the upper most bound 

of the scaled unitary ball 𝑟𝑡ℬ
𝑛 = {𝑏 ∈ ℝ𝑛: ‖𝑏‖∞ ≤ 𝑟𝑡}. It is assumed that there is no uncertainty on the relative 

velocity. With the radius of the docking port from the center of mass of the target being 𝑟𝑡 = 4.66627 𝑚, the 

relevant bound of the disturbance is described by  

𝒲 = {
{𝑏 ∈ ℝ3: ‖𝑏‖∞ ≤ 4.66627}

𝟎3×1
} 

(7-9) 

This set can be visualized as follows.  

 



Controller formulation   79 

DLR-IB-RM-OP-2017-17 

 

Figure 7-1 Disturbance bound, (left) dimensions 1-3, (right) dimensions 4-6 

 

Figure 7-1 represents the set boundaries for the system states rather than the true bounds of the disturbance 

in space. The left figure depicts the elements of the state vector corresponding to the maximum disturbance 

in relative position. The set is defined using the infinity-norm; this set thus translates to maximal disturbance 

in each dimension, which is required for the subsequent calculations. The implications should be clear. Each 

position component is limited in the range [−4.66627 4.66627] m. The right figure indicates the boundary on 

elements of the state vector corresponding to the relative velocity of the spacecraft. 

 

Finally, the state and control constraints can be defined. The robust constraints can be defined for velocity 

states and input accelerations based on the hard constraints outlined in section 6.2. The position state 

constraints are chosen to be within the common range of a rendezvous maneuver, as discussed in chapter 2. 

Therefore, the robust state and control constraints are polyhedral, defined in their H-representations as 

𝕏 = {𝑥 ∈ ℝ6 | [
𝐼6
−𝐼6

] 𝑥 ≤ [

100 ∗ 𝟏3×1
𝟏3×1

100 ∗ 𝟏3×1
𝟏3×1

]} (7-10) 

 

𝕌 = {𝑢 ∈ ℝ3 | [
𝐼3
−𝐼3

] 𝑢 ≤ [0.0433̅ ∗ 𝟏6×1]} 
(7-11) 

The position constraints are chosen from the definition of the terminal rendezvous phase in section 2.1. The 

maneuver may begin at any point within these bounds.  

 

These sets are defined using the Multi-Parametric Toolbox, as in chapter 5, for the subsequent set operations. 

Lines 32-89 in Appendix part B. Satellite Rendezvous controller design define these constraints. The nominal 

system constraints will be determined in the following as the appropriate robust sets are determined. 

 

 



80  Chapter 7 

DLR-IB-RM-OP-2017-17 

7.2 Minimal robust positively invariant set 

Recall that there are several steps in the approximation of the mRPI set. The algorithm for each step has been 

laid out in section 5.2, and the full process need not be reiterated here. Rather reference will be made to this 

preceding exposition and the application of the process in software. Therefore, at the end of this section, the 

disturbance rejection gain 𝐾𝑑𝑟 and the mRPI set 𝒵 will be known.  

 

First, the disturbance rejection gain is determined using optimization problem given by equation (5-16), 

implemented using the CVX toolbox as in section 5.2.1 in lines 99-142 and 469-616 of Appendix part B. 

Satellite Rendezvous controller design.  

 

To determine the S-procedure parameter 𝜆, a form of L-curve parameter determination was implemented. The 

obtained curve is presented in the following figure. 

 

Figure 7-2 Determination of appropriate 𝜆 for minimization of 𝛾  

There exists significant variance in the optimization parameter 𝛾 present in the curve before knee. Therefore, 

a value of lambda was selected from along the curve where the variance in 𝛾 becomes insignificant.  

 

The parameter is then set to 𝜆 = 1×10−5. The design parameter 𝜌 for the weighing of the actuation constraint 

(refer to section 5.2.1) is arbitrarily set to 𝜌 = 0.4, as the selection makes insignificant difference to the 

disturbance rejection gain or the tightening to the actuation constraints. This test was conducted using lines 

633-765 in Appendix part B. Satellite Rendezvous controller design. 

 

Applying these choices to the optimization problem in (5-16), the disturbance rejection gain is found to be 

𝐾𝑑𝑟 = [
−4.32×10−6 0 0

0 0 0
0 0 −4.32×10−6

 
0 −2.4×10−3 0

2.4×10−3 0 0
0 0 0

] 
(7-12) 

 

 



Controller formulation   81 

DLR-IB-RM-OP-2017-17 

Now, (7-3),(7-4), and (7-12) are substituted respectively into 𝐴𝐾,𝑑𝑟 = 𝐴 + 𝐵𝐾𝑑𝑟, and 𝐴𝐾,𝑑𝑟, 𝒲 defined as in 

(7-9), and the error bound 𝜖 = 0.01 are respectively passed as inputs or set as a parameter to Algorithm  5-1. 

Initially the same error bound from chapter 5. Altering this value made no noticeable difference to performance 

or result, and so the bound was left unchanged. In this case, the algorithm returns 𝑠 = 3. Passing these 

parameters to Algorithm  5-2 returns the mRPI set 𝒵 given below. These steps correspond to lines 144-217 in 

Appendix part B. Satellite Rendezvous controller design. 

 

Figure 7-3 Minimal Robust Positively Invariant set for the rendezvous maneuver, (left) dimensions 1-3 corresponding 
to relative position, (right) dimensions 4-6 corresponding to relative velocity 

The plot on the left of Figure 7-3 depicts the first three dimensions of the mRPI corresponding to the relative 

position states. The plot on the right depicts the same for the last three dimensions corresponding to the 

relative velocities. In the long term, this means that the actual relative position can be at a position ±4.6662 m 

in any dimension relative to the nominal relative position due to the disturbance. This very small difference to 

the disturbance bound is due to the very small magnitude of the values in 𝐴 as compared to the magnitude of 

the disturbance bound given by 𝒲, from which this set is determined. As there is to be no disturbance to the 

nominal in the relative velocity, it is expected these dimensions of the mRPI are of very little contribution.  

 

The H-representation of the mRPI is given as an intermediary result in the following which will be referenced 

in section 7.5 

𝒵 = {𝑥 ∈ ℝ6| [
𝐼6
−𝐼6

]𝑥 ≤ [

4.666200621821147 ∗ 𝟏3×1
𝟎3×1

4.666200621821147 ∗ 𝟏3×1
𝟎3×1

]} (7-13) 

 

7.3 Nominal constraints  

The nominal constraints can now simply be determined. Recall from sections 4.3 and 5.2.4 the relationship 

between the nominal and robust constraints, re-produced here: 

𝕏̅ = 𝕏⊖𝒵 (7-14) 

𝕌̅ = 𝕌⊖⨁𝐾𝑑𝑟𝒵 (7-15) 



82  Chapter 7 

DLR-IB-RM-OP-2017-17 

From the preceding results, the robust state constraints determined using lines of Appendix part B. Satellite 

Rendezvous controller design are given by their H-representations as   

𝕏̅ = {𝑧 ∈ ℝ6 |  [
𝐼6
−𝐼6

] 𝑧 ≤ [

95.333799378178853 ∗ 𝟏3×1
𝟏3×1

95.333799378178853 ∗ 𝟏3×1
𝟏3×1

]} (7-16) 

Similarly, for the robust input constraints,  

𝕌̅ =

{
 
 

 
 

𝑣 ∈ ℝ3 |  [
𝐼3
−𝐼3

] 𝑣 ≤

[
 
 
 
 
 
0.043313142013789

0.043333300000000
0.043313142013532
0.043313142013789

0.043333300000000
0.043313142013532]

 
 
 
 
 

}
 
 

 
 

 (7-17) 

Practically, the nominal constraints for each state and input is indicated in the following table: 

Table 7-1 Nominal state and input constraints 

Constrained aspect Minimum constraint 

States 1-3: relative x, y, and z position [m] ±95.333799378178853 

States 4-6: relative x, y, and z velocities [m/s] ±1 

Input 1: x acceleration [m/s2] ±0.043313142013789 

Input 2: y acceleration [m/s2] ±0.043333300000000 

Input 3: z acceleration [m/s2] ±0.043313142013532 

 

As can be seen from Table 7-1 the nominal state constraints as compared to the robust constraints have been 

tightened by the margin granted by the mRPI set, or in the case of the input constraints by that dictated by the 

mRPI set scaled by the disturbance rejection gain. It should be noticed that none of the hardware constraints 

mentioned in section 6.2 are violated by these robust constraints. The ensuing controller is therefore constraint 

feasible.  

 

7.4 Invariant set for tracking and admissible sets 

Recall from sections 4.4.3, 5.3, and 5.4 that the invariant set for tracking takes the place of the terminal set in 

tracking applications and is determined using numerous parameters. In this section, the determination of this 

set is outlined.  

 

First, the LQR gain 𝐾𝑙𝑞𝑟 and terminal weighting 𝑃𝑙𝑞𝑟 are determined using the MATLAB function dlqr. Recall 

from section 5.4.1 that this function takes the system dynamics and the weighting matrices 𝑄 and 𝑅 as inputs 

and the obtained 𝐾𝑙𝑞𝑟 must be negated. Initial values of the weighting matrices were chosen; then tuned based 

on performance and values cited in literature for MPC of rendezvous maneuvers [15, 20-22] to  



Controller formulation   83 

DLR-IB-RM-OP-2017-17 

𝑄 = 10×105 ∗ 𝐼6 (7-18) 

𝑅 = 100 ∗ 𝐼3 (7-19) 

The obtained LQR parameters are 

𝐾𝑙𝑞𝑟

= [
−4.319784011×10−6 0 0 0

0 0 0 0.002399880005482
0 0 −4.319784011×10−6 0

 
−0.002399880006 0

0 0
0 0

] 
(7-20) 

𝑃𝑙𝑞𝑟 = 1×10
6

[
 
 
 
 
 
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 2.000000000575978 0 0
0 0 0 0 2.000000000575970 0
0 0 0 0 0 2]

 
 
 
 
 

 (7-21) 

These will be reference later in section 7.5. 

 

Then, the terminal states and set points are parameterized using the method expressed in chapter 4 to obtain 

the matrices 𝑀𝜃 and 𝑁𝜃.  

𝑀𝜃 =

[
 
 
 
 
 
 
 
 

  

−0.185551526369166 0.018117071393572 0.047743479379178 0.706328547648448
−0.002300266364531 −0.182713737993363 0.060394004339685 −0.007604460874062
−0.051013496976408 −0.057658466070907 −0.176380728691161 −0.032282424810556
0.185551526369166 −0.018117071393571 −0.047743479379178 0.706328547648448
0.002300266364531  0.182713737993363 −0.060394004339685 −0.007604460874062
0.051013496976408 0.057658466070907 0.176380728691161 −0.032282424810556
0.185546807312485 −0.018555662630504 −0.047598740020594 0.706343747015220
0.002745590027817 0.182670257022019  −0.060508588690195 −0.005909272359706
0.051013717354715 0.057658715155481 0.176381490655910 −0.032282285350481

 

                                                                                                                  

0.005820151954137 0.032651318626743
0.706008414024590 0.038656066811025

−0.038964665502406  0.705293981181349
 0.005820151954136 0.032651318626743
0.706008414024590 0.038656066811025

−0.038964665502406 0.705293981181349
0.004125706617421 0.032558403012700
0.706022382389280 0.038734429975730

−0.038964497175050  0.705290934311349]
 
 
 
 
 
 
 
 

 

(7-22) 

𝑁𝑡ℎ𝑒𝑡𝑎 =

[
 
 
 
 
 
 −0.556654579107498 0.054351214180714 0.143230438137534
−0.006900799093592 −0.548141213980089 0.181182013019056
−0.153040490929224 −0.172975398212721 −0.529142186073484 
0.556654579107498  −0.054351214180714 −0.143230438137534
0.006900799093592 0.548141213980089  −0.181182013019056
0.153040490929224 0.172975398212721 0.529142186073484

           

0.706328547648448 0.005820151954136  0.032651318626743
−0.007604460874062 0.706008414024590 0.038656066811025
−0.032282424810556 −0.038964665502406  0.705293981181349
0.706328547648448  0.005820151954137  0.032651318626743

−0.007604460874062 0.706008414024590  0.038656066811025
−0.032282424810556  −0.038964665502406 0.705293981181348]

 
 
 
 
 

 

(7-23) 

       

   

    

             



84  Chapter 7 

DLR-IB-RM-OP-2017-17 

The parameterization method is implemented in software in Appendix part B. Satellite Rendezvous controller 

design in lines 238 and 298-329. 

The system dynamics and parameters 𝐾𝑙𝑞𝑟 and 𝑀𝜃 are then used to form the closed loop system for the 

extended state  

[
𝑥
𝜃
]
+
= [

𝐴 + 𝐵𝐾𝑙𝑞𝑟 𝐵𝐿

0 𝐼6
] [
𝑥
𝜃
] (7-24) 

with 𝐿 = [−𝐾𝑙𝑞𝑟 𝐼3]𝑀𝜃, such that 𝑥𝑒+ = 𝐴𝑒𝑥
𝑒. Finally, the parameters 𝐾𝑙𝑞𝑟 and 𝜆𝑀𝑅𝑃𝐼 = 0.99, the matrices 𝑀𝜃 

and 𝐴𝑒, and the nominal constraints are passed to Algorithm  5-4 to obtain the invariant set for tracking. The 

scaling parameter 𝜆𝑀𝑅𝑃𝐼 is chosen arbitrarily close to 1 as the design methodology allows. The first six 

dimensions of set pertain to state space and the next six to the parameterized 𝜃-space.   

 

The invariant set for tracking Ω𝑒 describes the terminal constraint for each prediction step of the nominal 

controller. For the nominal states in this problem, this means that the final step of each prediction horizon must 

lie within the projection of this set into state space Ω𝑥, given by  

Ω𝑥 = {𝑥 ∈ 𝕏̅|1×10
3 ∗                                                                                                                                                         

 

(

 
 
 
 
 
 
 
 
 

 

[
 
 
 
 
 
 
 
 
 
 
 

5.246339631×10−6 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 −0.017090189112502 0
0 5.246339631×10−6 0
0 0 −0.017090189112502
0 0 5.246339631×10−6

−0.017090189112502 0 0
0 0 0
0 0 0

                                                                    

          

0 0 0
0.001219679685189 0 0

0 −0.001219679685189 0
0 0 −0.017090189112486
0 0 5.15069147091×10−4

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

−8.47376763781×104 0 0
0 8.47376763781×104 0]

 
 
 
 
 
 
 
 
 
 
 

𝑥 ≤

[
 
 
 
 
 
 
 
 
 
 
 
0.000500153489806
0.001219679685189
0.001217523942679
0.017090189112486
0.000515069147091
1.629272660186442
0.000500153489806
1.629272660186442
0.000500153489806
1.629272660186443
0.000847376763781
0.000848420429103]

 
 
 
 
 
 
 
 
 
 
 

)

 
 
 
 
 
 
 
 
 

}
 
 
 
 
 

 
 
 
 
 

 

(7-25) 

 

The state-related dimensions of the invariant set for tracking is of the same magnitude as the nominal set 

constraint. Practically, this implies that any nominal position or velocity is a permissible state at the end of the 

prediction horizon.  

 

 

 

 



Controller formulation   85 

DLR-IB-RM-OP-2017-17 

Similarly, for the parameterized 𝜃-space: 

Ω𝜃 = {𝜃 ∈ ℝ6|1×103 ∗                                                                                                                                                         

  

(

 
 
 
 
 
 
 
 
 

 

[
 
 
 
 
 
 
 
 
 
 
 
0.001189681852441 0.00134464866731 0.004113361452975 −0.00075284944968
0.004327223038681 −0.0004225058681 −0.001113419479532 −0.01647219629
−9.83220914×10−7 9.6×10−8 2.5298842×10−7 3.74277169×10−6

5.3644213025×10−5 0.004261043344668 −0.001408440728517 0.000177342644035
−1.2188905×10−8 −9.68183727×10−7 3.2×10−7 −4.0295357×10−8

6.4029363914×10−5 0.004260017061755 −0.00141110887128 −0.000137808976049
−0.004327116638817 0.000432734562646 0.001110044968777 −0.016472564657425

−2.7031595×10−7 −3.05527046×10−7 −9.34625678×10−7 −1.71061677×10−7

−0.001189688705037 −0.001344656412518 −0.004113385146035 0.000752853786114
0.001189679135061 0.001344645595966 0.004113352057549 0.000752854234714
−6.39702969×10−5 −0.004256087201038 0.001409807125011 0.000137681847432
0.00432711663882 −0.000432734562646 −0.001110044968778 0.016472564657436

                     

                                       

−0.000908684126199 0.016447964758324
−0.000135731007539 −0.000761457159473

3.084×10−8 1.73×10−7

−0.016464730495353 −0.000901493111712
3.741×10−6 2.04835×10−7

0.016465008830619 0.000903318007343
−9.6215×10−5 −0.000759290927449
−2.0647×10−7 3.737289615×10−6

0.000908689360242 −0.016448059498994
0.000908689901699 −0.016448069299844

−0.016449819879387 −0.000902484697546
9.6215149211×10−5 0.000759290927450]

 
 
 
 
 
 
 
 
 
 
 

𝑥 ≤

[
 
 
 
 
 
 
 
 
 
 
 
0.000999997120004
2.201034477567907
0.000500113608763
2.201034477567907
0.000500113608763
0.001000461675305

0.001
0.000500113608763

0.001
2.201034477568637
0.000999538750589

0.001]
 
 
 
 
 
 
 
 
 
 
 

)

 
 
 
 
 
 
 
 
 

}
 
 
 
 
 

 
 
 
 
 

 

(7-26) 

 

The polytope indicated in the above set of inequalities indicates the terminal constraints for the parameter 𝜃. 

As this parameter exists in parameterized space, it does not have an exact physical meaning. It does mean 

that the artificial steady state in the offset cost term of the objective function must be optimized to exist within 

this set.  

 

The software implantation of the Invariant Set for Tracking is implemented in the lines of 240-251 of Appendix 

part B. Satellite Rendezvous controller design.   

 

Incidentally, in this task, the nominal region of attraction is similarly sized: 

𝕏̅𝑟𝑎 = {[
𝐼6
−𝐼6

] 𝑥 ≤ [

95.333799378178867 ∗ 𝟏3×1
𝟏3×1

95.333799378178853 ∗ 𝟏3×1
𝟏3×1

]} 
(7-27) 

 

 

It would be expected, then, that the region of attraction for the robust states would be similarly sized to the 

robust state constraint: 

𝕏𝑟𝑎 = {[
𝐼6
−𝐼6

] 𝑥 ≤ [

100 ∗ 𝟏3×1
𝟏3×1

100 ∗ 𝟏3×1
𝟏3×1

]} 
(7-28) 

 



86  Chapter 7 

DLR-IB-RM-OP-2017-17 

Recalling that a large region of attraction is one of the benefits of tube-based robust MPC, these preceding 

results indicate that the design process has yielded control gains and constraints which produce such desirably 

large regions of attractions.  

 

The set of admissible terminal states is given by 

𝕏𝑎 = {[
𝐼6
−𝐼6

] 𝑥 ≤ [

95.3337993781788 ∗ 𝟏3×1
0.043828731493523 ∗ 𝟏3×1
95.3337993781788 ∗ 𝟏3×1
0.043828731493523 ∗ 𝟏3×1

]} 
(7-29) 

 

Recall from the steady state/set point parameterization that the steady states are defined for all states and 

inputs. The steady states of the states and inputs must reside in these sets. The practical implications of the 

above is that the states pertaining to relative position and the inputs may reach steady states at any point 

within the nominal constraints. The velocity steady state set, on the other hand, is tighter than the nominal 

constraint, with each velocity steady state constrained to ±0.043 m/s.  

 

These sets are determined in lines 253-267 of Appendix part B. Satellite Rendezvous controller design. 

 

7.5 Tube-based robust model predictive controller 

Now that all of the necessary parameters have been determined, the tube-based robust model predictive 

controller can be defined. The nominal controller is considered first, then integrated into the robust controller. 

 

Recall from section 5.5 that the objective function is of the form 

𝑉𝑁(𝑥, 𝜃; 𝑧0, 𝐯, 𝜃̅) = ∑(‖𝑧(𝑖) − 𝑥𝑟𝑒𝑓(𝑖)‖𝑄
2
+ ‖𝑣(𝑖) − 𝑢𝑟𝑒𝑓(𝑖)‖𝑅

2
) + ‖𝑧(𝑁) − 𝑥𝑟𝑒𝑓(𝑁)‖P

2
+ ‖𝜃̅ − 𝜃𝑟𝑒𝑓‖𝑇

2
𝑁−1

𝑖=0

 (7-30) 

which is minimized in the optimization problem  

min
𝑧,𝐯,𝜃

𝑉𝑁(𝑥, 𝜃; 𝑧0, 𝐯, 𝜃̅) (7-31) 

𝑠. 𝑡.    𝑧 ∈ 𝑥⨁(−𝒵) (a) 

                                 𝑧(𝑖) ∈ 𝕏̅, 𝑖 = 0,… , 𝑁 (b) 

                                          𝑣(𝑖) ∈ 𝕌̅, 𝑖 = 0,… , 𝑁 − 1 (c) 

               (𝑧(𝑁), 𝜃̅) ∈ Ω𝑒 (d) 

After some tuning, the design parameters were chosen as summarized in Table 7-2. In this table, large 

matrices and sets which have been previously defined are indicated simply by their equation number. 

 

 



Controller formulation   87 

DLR-IB-RM-OP-2017-17 

 

 

Table 7-2 Nominal predictive controller design parameters 

Parameter Simulation Value 

State weighting matrix 𝑸 10×105 ∗ 𝐼6 

Input weighting matrix 𝑹 100 𝐼3 

Terminal weighting matrix 𝑷 𝑃𝑙𝑞𝑟   (7-21) 

Offset weighting matrix 𝑻 1000 𝑃 

LQR gain 𝑲𝒍𝒒𝒓 𝐾𝑙𝑞𝑟  (7-20) 

Nominal state constraints 𝕏̅ 𝕏̅  (7-16) 

Nominal input constraint 𝕌̅ 𝕌̅  (7-17) 

mRPI 𝓩 (7-13) 

Invariant set for tracking 𝛀𝒆 Ω𝑥  (7-25), Ω𝜃  (7-26) 

Prediction horizon 𝑵 40 𝑠𝑡𝑒𝑝𝑠 

Sample time 𝑻𝒔 0.5 𝑠 

 

The predictive controller makes up a large part of the robust controller, handling the most calculation intensive 

part of the control action. The following figure demonstrates how the predictive controller factors into the robust 

model predictive control action. 

 

Figure 7-4 Block diagram of the robust controller 

As can be seen, to complete the robust controller, the nominal input must be slightly modified. To do this, the 

first predicted state in the series determined by the optimization problem 𝑧 must be subtracted from the actual 

state 𝑥, scaled by the disturbance rejection gain 𝐾𝑑𝑟, and finally added to the nominal optimal control input 𝑣. 

It should be remembered that the output of the model is equal to the system state. The robust input  

𝑢 = 𝑣 + 𝐾𝑑𝑟(𝑥 − 𝑧)  (7-32) 



88  Chapter 7 

DLR-IB-RM-OP-2017-17 

is then passed to the system model to close the control loop. It is important to ensure that the robust control 

constraints are not violated.  

 

The remaining parameters pertinent to the robust controller are outlined in Table 7-3. 

Table 7-3 Additional robust controller design parameters 

Parameter Simulation Value 

Disturbance rejection gain 𝑲𝒅𝒓 𝐾𝑑𝑟  (7-12) 

Robust state constraints 𝕏̅ 𝕏  (7-10) 

Robust input constraint 𝕌̅ 𝕌  (7-11) 

 

This controller is initialized in software using in lines 330-468 of Appendix part B. Satellite Rendezvous 

controller design. Now that the robust controller has been fully formulated, the next chapter is devoted to the 

formulation a MATLAB/Simulink simulation.  

 

 

 

 

 

 

 

 



 

89 

8 Simulation 

In this chapter, a simulator for the tube-based robust model predictive controller designed in chapter 7 is 

developed. For the purposes of generality, the formulation will only discuss the structure of the simulator; 

specific simulation values will then be applied to obtain the reported results. 

 

In chapter 5, the controller development and simulation was conducted using only the Multi-parametric and 

the CVX toolboxes. However, the satellite rendezvous control task requires reference tracking and a modified 

objective function and constraint set as compared to standard MPC, which requires nuances of the MPT to be 

influenced in a manner which have not yet been reliably manipulated by the author.  Therefore, it was decided 

to implement this simulation using the Model Predictive Control Toolbox. Much like the MPT, the Model 

Predictive Control Toolbox, allows the user to create a custom nominal model predictive controller, with the 

desired system constraints, prediction and terminal weights, and set custom terminal constraints for a desired 

system model. However, unlike the MPT, the Model Predictive Control toolbox very clearly and transparently 

handles reference trajectories.  

 

In the rest of this chapter, the simulator will be formulated and explained and applied to a set of simulation 

parameters, and the simulation results will be analysed. 

 

8.1 Simulator formulation 

Figure 7-4 serves as a basic schematic for the simulator, but a few more aspects need to be considered for 

simulation using the Model Predictive Control toolbox. The modified block diagram is shown below. 



90  Chapter 8 

DLR-IB-RM-OP-2017-17 

 

Figure 8-1 Block diagram for simulation in Simulink 

The above figure shows the five major parts to the simulation: the system model, the set point disturbance, the 

nominal MPC controller, the construction of the robust control law, and the reference trajectory. Each of these 

is discussed in the following. 

 

The orange MPC controller block refers to the nominal MPC Controller block from the set of Model Predictive 

Control Toolbox Simulink functions. This block serves as the prediction controller in the simulation. The block 

applies an mpc object from the MATLAB workspace as a model predictive controller on the inputs to the block 

at the current state node and outputs the optimized control action. The reference node refers to the state 

references and takes in a reference vector the length of the prediction horizon. Likewise, the target node refers 

to the target values of the control action and requires a vector the length of the prediction horizon. The 

reference and target nodes are built-in required attributes of the controller which permit tracking of the 

reference trajectory. In this application, the estimated state viewing option is also activated. 

 

The yellow reference trajectory block parses a loaded reference file provided by the motion planner to obtain 

the reference and target vectors at each simulation step. The block provides both a reference and a target the 

length of the prediction horizon to the controller at each simulation step.  

 

The robust control law is constructed from the outputs of the controller block summed together with the 

disturbance rejection term provided by the pink disturbance rejection term block. The pink block takes in the 

current state provided by the system model block and the estimated state vector from the nominal controller. 

The first state in the series of estimated states is subtracted from the current real state, and the difference is 

multiplied by the disturbance rejection gain 𝐾𝑑𝑟 (7-12) determined in chapter 7. The robust control input is 

passed to the blue system model block.  

 



Simulation   91 

DLR-IB-RM-OP-2017-17 

The system model block handles the coordination of the nominal and disturbed system models subject to the 

robust control inputs and provides the model outputs. At each time step the real and nominal system outputs 

are determined and sent to the appropriate subsequent block.   

 

Now recall the discussion on the form of the bounded state disturbance from section 6.5.2. While the state 

disturbance can be shown to be of the same form as the set point disturbance in this problem, in these 

simulations the bound disturbance is applied as set point disturbance 𝛿𝑥 rather than the additive disturbance 

𝑤. This mimics where the uncertainty enters the system. The addition of the disturbance to the state is therefore 

removed from the model block to an external summation conducted by the green block in the figure above. 

 

As noted in the above, the MPC block makes use of a mpc object defined in the MATLAB workspace as the 

designated model predictive controller. This mpc object is created using the Model Predictive Control Toolbox 

for a specific system model, sampling time, and prediction and control horizons. Once the controller object is 

created for the nominal system (7-1) and (7-6), the various system attributes can be set. In this case, the 

weighting matrices, system and input constraints, terminal constraints, and terminal sets are defined as 

indicated in Table 7-2 and Table 7-3. The Model Predictive Control Toolbox also makes provision for a user 

defined initialization of the controller. The initial conditions are taken from the reference trajectory for the initial 

plant and last move arguments, respectively corresponding to the initial state and inputs, and from the problem 

definition to define the initial disturbance and noise. 

8.2 Common simulation components  

Several simulations were conducted using the above simulator to test the capability of the controller to robustly 

guide the chaser to the correct point on the target. Each of the simulations makes use of the same simulator. 

The only changes made between simulations pertains to the disturbance 𝑤 and the setpoint. This section 

details the definition of the common components.    

 

The simulations of course make use of a common controller. The robust control law uses the disturbance 

rejection gain 𝐾𝑑𝑟 (7-12). The nominal mpc controller object is defined as indicated in the preceding section, 

using the parameters 𝕏̅, 𝕌̅, 𝑄, 𝑅, 𝑃, 𝑇, and Ω𝑒 determined in chapter 7. The initial conditions of the controller are 

taken from the motion planner as  

𝑥 = [39 39 4.23 0 0 0]𝑇 (8-1) 

𝑢 = [0 0 0]𝑇 (8-2) 

with initial noise and disturbances set to 0. The Simulink simulator and the MATLAB function called in the 

execution are included in Appendix part C. Satellite Rendezvous simulator. The common functions are given 

in lines 1-385.  As this thesis is not a tutorial on the Model Predictive Control Toolbox, the reader is referred to 

the Model Predictive Control Toolbox manual and MATLAB documentation for further details [9, 10]. 

 



92  Chapter 8 

DLR-IB-RM-OP-2017-17 

Each simulation also makes use of the same reference trajectory. This is done to maintain uniformity of 

conditions across the trials and to give meaning to the results. The nominal set point is given by this reference 

trajectory as 

𝑥 = [1.97 0 4.23 0 0 0]𝑇 (8-3) 

𝑢 = [0 0 0]𝑇 (8-4) 

The nominal control action should drive the nominal state and inputs from the initial condition in (8-1) and (8-2) 

to the steady states values in (8-3) and (8-4), while following the reference between. Following from the 

definition of the disturbance (see sections 6.5 and 7.1), the robust position states are permitted to deviate from 

the nominal relative position trajectory but should maintain the same target accelerations and reference 

velocities.  

 

The reference trajectories provided by the motion planner are of more conservative constraints than the 

nominal constraints 𝕏̅ and 𝕌̅ determined in the preceding chapter. Both the nominal and robust operations 

should therefore be constraint feasible. To ensure that no constraints are violated, constraint handling is 

included in the system model block. This also means that there exists a much larger set of points which are 

reachable without breaching the input constraints. As has been previously discussed, though, there exists a 

finite set of trajectories which can be robustly controlled while tracking a specific trajectory under the nominal 

dynamics. For a successful rendezvous, and therefore a truly robust tracking, the real terminal state of the 

relative position should lie on the sphere over bounding the target described in section 6.5.  

 

8.3 Simulation results and analysis 

In this section, several simulations are presented: The first simulation verifies the nominal operation of the 

controller. Then, three simulations of various guaranteed-to-work set points are presented to verify correct 

operation of the robust controller. Finally, two simulations of points which demonstrate the limitations of the 

controller are presented to demonstrate non-compliance with terminal conditions or failed docking. Additional 

simulation results are presented for the case of shortened rendezvous times.  

 

Recall that the goal of Tube-based robust MPC is to steer a disturbed system in an admissible evolution to an 

admissible final state – that is, points contained within (7-29) – while guaranteeing robust satisfaction of the 

state and control constraints in the presence of a possibly unknown, but bounded, uncertainty. In each of the 

simulations a set point and disturbance are defined. In this task, the terminal set point in the target orbital frame 

is inherently defined by the manifestation of the uncertainty. Referring to section 6.5, the arc prescribed on the 

over-bounding sphere starts at the nominal set point and ends at this new set point. For the purposes of 

analysis, it is assumed that the uncertainty is known. In the following, it is assumed that the desired set point 

in is known before the start of the rendezvous maneuver and remains constant until the end of the maneuver. 

The disturbance in the set point has been distributed linearly along the trajectory as the state disturbance 𝛿𝑥, 

rather than 𝑤, as discussed in section 6.5 and 8.2. The rest of this chapter presents the simulation results. 



Simulation   93 

DLR-IB-RM-OP-2017-17 

 

8.3.1 Nominal operation 

In this first simulation, the disturbance is set to zero. The resulting system response is the nominal response 

for the setpoint (8-3). The state and input responses are as follows. 

  

Figure 8-2 Simulation of the nominal system, (left) relative position states, (right) relative velocity states, (below) 

control inputs 

In the timeseries in the preceding figure, the nominal state and input results from the simulator, are plotted 

along with the reference and target series, respectively. The reference series are plotted in dark blue for the 

radial, red for the in-track, and yellow for the cross-track directions, and the simulated series are respectively 

green, purple, and light blue. As can be seen, the controller produces a series of inputs which very closely 

track the target values and shape of the series. This results in nominal state progressions which very clearly 

track the reference trajectory.  With satisfactory nominal control, the robust controller has a solid foundation 

on which to build. 

 

 

 



94  Chapter 8 

DLR-IB-RM-OP-2017-17 

8.3.2 Robust operation with successful rendezvous 

Three simulations were conducted in demonstration of successful rendezvous maneuvers. The three set points 

were chosen to show the robust control capabilities as defined in the tube-based robust MPC framework. Each 

of the points are therefore selected on the spherical shell on which the docking port could exist if the origin of 

the frame were coincident with the center of the target. The set points chosen for simulation are depicted in 

the following figure. 

 

Figure 8-3 Set points used in simulations with successful rendezvous 

The sphere is reduced to a unit sphere for the visibility of the relationship of the set points. The first two points 

that will be simulated, SP1 and SP2, are located close to the nominal set point. The third set point, SP3, is a 

greater distance from the nominal, near the boundary of the tube. The results of the simulations to these set 

points are presented in the following. 

 

In the first of these four simulations, the disturbance is given by 

𝛿𝑥 = [−1.64×10−3 𝑡 0 3.63×10−4 𝑡 0 0 0] (8-5) 

where 𝑡 indicates the simulation time step, and a corresponding set point of 

𝑥(𝑡𝑓) = [0 0 4.6662 0 0 0] (8-6) 

The set point is located near the nominal steady state described – refer to Figure 8-3 – and is therefore located 

solidly in the terminal tube set.  

 



Simulation   95 

DLR-IB-RM-OP-2017-17 

As it is desired that the form of the nominal trajectory should be followed by the robust trajectory, the relative 

position states are studied. First, consider the nominal and real trajectories returned by the simulation. 

 

Figure 8-4 Simulated trajectories for steady state (0,0,4.6662,0,0,0) 

In this plot, the nominal is given by the blue trajectory and the real trajectory by the red. Clearly the form of the 

real trajectory, controlled by the full robust controller, maintains the form of the nominal trajectory. This is a 

touch complex to view in three dimensions. In the following, the trajectory is broken down in to one-dimensional 

timeseries. 

 

 

Figure 8-5 Relative position timeseries for steady state (0,0,4.6662,0,0,0) 

In this figure, the reference and nominal components are represented as in Figure 8-2 and the real position 

components by the red, yellow, and orange dashed series. Clearly, each real component follows the form of 

its corresponding reference to the new steady state. 

 

Furthermore, the containment of the real trajectory within the tube can be shown.  



96  Chapter 8 

DLR-IB-RM-OP-2017-17 

 

Figure 8-6 Location of the trajectories within the tube, (left) radial/along-track dynamics, (right) along-track/cross track 
dynamics, steady state (0,0,4.6662,0,0,0) 

In Figure 8-6, red indicates the set of admissible steady states, the black prism with a yellow front face 

represents the tube of trajectories, the blue line represents the nominal trajectory, and the magenta the real 

trajectory. Recall from section 7.4 that the set of admissible states will extend far past the presented axes. As 

can be seen here, the robust trajectory is contained well within the tube boundary indicating the trajectories 

whose evolution can be robustly controlled by the controller.  

  

For completeness, the velocity states should also be presented.  

 

Figure 8-7 Velocity tracking for steady state (0,0,4.6662,0,0,0) 

In Figure 8-7, the only addition as compared to the nominal simulation Figure 8-2 is the dotted robust values. 

The robust relative velocity values track the nominal. Clearly, no substantial difference exists between the 

nominal and true values. This is due to the zero-disturbance applied to the velocity-related states. With no 

disturbance applied to the velocity states, there should exist a zero-difference between the nominal and robust 

relative velocities.  



Simulation   97 

DLR-IB-RM-OP-2017-17 

 

Finally, the robust control action is displayed below. 

 

Figure 8-8 Control action for steady state (0,0,4.6662,0,0,0) 

 

The target and nominal inputs are identical to those in Figure 8-2. Figure 8-8 additionally displays the robust 

control actions as the dashed series. As desired to maintain the properties of the reference trajectory and 

anticipated, the robust control inputs track the form of the targets. However, to produce the real position 

trajectory, an amount dictated by the disturbance rejection term is added to the nominal inputs. This is a fairly 

small additional acceleration:   

 

Figure 8-9 Additional acceleration from disturbance rejection term for steady state (0,0,4.6662,0,0,0) 



98  Chapter 8 

DLR-IB-RM-OP-2017-17 

With a simulation duration of 600 s and the very small state disturbance (8-5), this small additional term is all 

that is required to make up the difference in position of the set points. Validation through inverse dynamics will 

provide support for this finding in section 8.3.5.  

 

In the next simulation, the disturbance is given by 

𝛿𝑥 = [−8.076×10−4 𝑡 8.326×10−4 𝑡 1.798×10−4 𝑡 0 0 0] (8-7) 

and a corresponding steady state of 

𝑥(𝑡𝑓) = [1 1 4.446 0 0 0] (8-8) 

The final state is also located near the set point described by the nominal and therefore solidly in the terminal 

tube set. As this final state is rather close to the preceding, it would be expected that the results are similar. 

This shall be shown in the following. 

 

As before, the first step will be to confirm that the form of the nominal trajectory is followed by the robust 

trajectory. Therefore, consider the nominal and real trajectories returned by the simulation. 

 

Figure 8-10 Simulated trajectories for steady state (1,1,4.446,0,0,0) 

The nominal is given by the blue trajectory and the real trajectory by the red. Again, the form of the real 

trajectory, controlled by the full robust controller, maintains the form of the nominal trajectory. For ease of 

understanding, the trajectory is broken down in to one-dimensional components in the following figure. 



Simulation   99 

DLR-IB-RM-OP-2017-17 

 

Figure 8-11 Relative position timeseries for steady state (1,1,4.446,0,0,0) 

The reference and nominal trajectories appear as before and the real position components by the red, orange, 

and pink dashed series. Clearly, each real component follows the form of its corresponding reference to the 

new steady state. 

 

Furthermore, the containment of the real trajectory within the tube can be shown.  

 

Figure 8-12 Location of the trajectories within the tube, (left) radial/along-track dynamics, (right) along-track/cross 
track dynamics, steady state (1,1,4.446,0,0,0) 

In the above figure, red indicates the set of admissible steady states, the black prism with a yellow front face 

represents the tube of trajectories, the blue line represents the nominal trajectory, and the magenta the real 

trajectory. As before, the robust trajectory is contained well within the tube boundary indicating the trajectories 

whose evolution can be robustly controlled by the controller.  

  

The evolution of the velocity states is given by the following.  



100  Chapter 8 

DLR-IB-RM-OP-2017-17 

 

Figure 8-13 Velocity tracking for steady state (1,1,4.446,0,0,0) 

Again, the real velocities are indicated by the dotted series. As expected, the real velocities track the form of 

the nominal. The difference between the nominal and robust velocities is similar to the preceding simulation, 

as it is a result of the robust system dynamics.  

 

Finally, the robust control action is displayed below. 

 

Figure 8-14 Control action for steady state (1,1,4.446,0,0,0) 

The target and nominal inputs are identical to those in Figure 8-2, and the robust control actions are similar to 

those in Figure 8-8. As in Figure 8-8, the robust control inputs track the form of the targets. The additional 

acceleration given by the disturbance rejection term is given as follows:  



Simulation   101 

DLR-IB-RM-OP-2017-17 

 

Figure 8-15 Additional acceleration from disturbance rejection term for steady state (1,1,4.446,0,0,0) 

This is again of the same form as for the previous set point, but the growth in the radial and cross-track 

acceleration components are only about half of that in preceding case. This is likely due to the distance of the 

set point from the nominal set point being about half the size as in the first simulation. This would suggest that 

the greater the disturbance in the motion of the target, the greater the additional acceleration required from the 

robust controller. This is supportive evidence for a logical result. 

 

The next simulation implements a disturbance is given by 

𝛿𝑥 = [−1.64×10−3 𝑡 −3.885×10−3 𝑡 −3.522×10−3 𝑡 0 0 0] (8-9) 

and a corresponding steady state of 

𝑥(𝑡𝑓) = [0 −4.6662 0 0 0 0] (8-10) 

The final state is located at a greater distance from the nominal set point than the preceding two simulation 

steady states. As will be seen later, (8-10) is located at the boundary of the final iteration of 𝒵 in the tube. This 

simulation will demonstrate the consequences, if any, of the real steady state being located at the boundary 

of the robust control capability. 

 

Again, it should be confirmed that the form of the nominal trajectory is followed by the robust trajectory. 

Consider, then, the nominal and real trajectories returned by the simulation. 



102  Chapter 8 

DLR-IB-RM-OP-2017-17 

 

Figure 8-16 Simulated trajectories for steady state (0, -4.6662,0,0,0,0) 

The nominal is given by the blue trajectory and the real trajectory by the red. Again, the form of the real 

trajectory, controlled by the full robust controller, maintains the form of the nominal trajectory. The trajectory is 

still contained within the tube, shown below, though the steady state lies on the boundary of the tube. 

 

Figure 8-17 Location of the trajectories within the tube, (left) radial/along-track dynamics, (right) along-track/cross 
track dynamics, steady state (0,-4.6662,0,0,0,0) 

In the above figure, the same color scheme is used as previously. This figure highlights the difference between 

this simulation and the preceding two: the set point is located on the boundary of the tube, albeit, this is the 

only point in the simulation when the boundary is encountered. This is an important property of the simulation, 

however. The implications become clear when the trajectory is broken down into one-dimensional components. 



Simulation   103 

DLR-IB-RM-OP-2017-17 

 

Figure 8-18 Relative position timeseries for steady state (0,-4.6662,0,0,0,0) 

Each real component still follows the form of its corresponding reference to the new final state. However, the 

set point is barely reachable in the allotted simulation horizon. This can be seen by the real along-track and 

cross-track series struggling to remain steady after the 600 s mark.  

 

The velocity states and acceleration inputs still track the forms of the reference and targets, respectively.   

Figure 8-19 Velocity and input tracking for steady state (0,-4.6662,0,0,0,0) 

This is desirable to maintain the obstacle avoidance and optimality properties. However, observe the 

disturbance rejection term profile for this simulation: 



104  Chapter 8 

DLR-IB-RM-OP-2017-17 

 

Figure 8-20 Additional acceleration from disturbance rejection term for steady state (0,-4.6662,0,0,0,0) 

In comparison to the preceding two simulations, the additional acceleration added by the feedback term is 

more complex. Bear in mind that the distance of the set point from the nominal set point is much greater than 

either of the previous simulations. First, the along-track component is non-zero, unlike in the preceding two 

simulations, although by a very small amount as compared to the other two components. Now, note that the 

growth in the radial component is approximately the same as in the first scenario, despite the much greater 

disturbance. This is easily explained by breaking down the disturbance into components. In the preceding two 

simulations, the disturbances were mostly in the radial and cross-track position components, resulting in a 

large growth in the radial and cross-track disturbance rejection terms and negligible overall growth in the along-

track disturbance rejection term.  In this scenario, on the other hand, the disturbance is predominantly in the 

along- and cross-track position components. The decoupled nature of the cross-track component from the 

radial and along-track components and the quadratic weighting on the position in the determination of the 

cross-track acceleration accounts for the growth in the cross-track disturbance rejection term. The along-track 

and radial components are inter-related. The along-track component is defined by its linear coupling with the 

radial velocity only and, with no radial velocity disturbance and very small component introduced by the system 

dynamics, exhibits comparatively little growth. The radial acceleration component, on the other hand, applies 

a quadratic weighing on the radial position and a linear weighting on the along-track velocity. With the large 

weighting on the radial position, the disturbance in this component being the same as in the first scenario, the 

growth in the radial disturbance rejection term is comparable to that in the first simulation. The growth is larger 

in the radial component than the cross-track component due to the slightly greater weighting on the radial 

position. 

 



Simulation   105 

DLR-IB-RM-OP-2017-17 

Clearly, then, disturbances in the radial position will cause the greatest additional control effort, followed closely 

by disturbances in the cross-track. Disturbances in the along-track position of the set point will be of little 

consequence to the requisite robust control action. An addendum to this analysis can be made in the event 

that velocity uncertainties are incorporated in future work: it would be expected that disturbances in velocities 

will be of lesser consequence than position disturbances as they are of linear weighting in the system 

dynamics. Velocity disturbances in the cross-track will cause no additional control action to become necessary, 

in the along-track will require some additional control action on the radial component, and velocity disturbances 

in the radial will cause an overall additional control action to finally become necessary in the along-track 

acceleration.  

 

This also explains why the controller is beginning to struggle to reach the set point under the simulation 

requirements. In fact, the tube is the region in which the nominal dynamics are guaranteed to be feasible. If 

the reference parameters are to be tracked, only the states within the tube, so within a bounded disturbance 

from the nominal, will be reachable while also tracking the reference. So, as the set point reaches the bound 

of the tube, the limit of the nominal dynamics is reached and the ability of the controller to drive the chaser to 

the set point as a steady state with soft docking and zero-velocity comes into question. 

 

8.3.3 Testing the limits of the implemented controller  

In these final simulations, some limitations of this controller will be demonstrated. Three cases are presented: 

The relationship between the nominal set point and these test points is illustrated below. In the first, a trajectory 

contained in the tube will fail to complete the rendezvous. In the second, the steady state will be admissible 

according to the problem constraints, but the trajectory will leave the tube. In the third case, the actuation 

constraints will be stressed by decimating the time allowed for the chaser to rendezvous with the target. 



106  Chapter 8 

DLR-IB-RM-OP-2017-17 

 

Figure 8-21 Set points used in limitations of the controller simulations 

 

The first simulation implements a disturbance is given by 

𝛿𝑥 = [−3.05×10−3 𝑡 3.885×10−3 𝑡 −3.522×10−3 𝑡 0 0 0] (8-11) 

and a corresponding steady state of 

𝑥(𝑡𝑓) = [−2 4.6662 0 0 0 0] (8-12) 

This will result in a trajectory which is contained within the tube, but approaches a point not located on the 

spherical shell described by the rotation of the grasping point. This is evidenced by the following figure.  

 

 



Simulation   107 

DLR-IB-RM-OP-2017-17 

Figure 8-22 Trajectory contained within tube, failed rendezvous 

The trajectory is clearly contained in the tube for the duration of the maneuver. However, by simple geometry, 

the steady state is not located in the desired region. As the point is located within the tube, the nominal 

dynamics will also still be valid, resulting in the nominal actuation to follow the form of the reference, as 

previously and shown in the following figure. 

 

Figure 8-23 Actuation time series for a point in the tube, but not on the sphere 

Attempting to maneuver to this point will therefore result in a false positive for successful rendezvous. This is 

because the controller views this point as an acceptable point to steer the chaser to. It would be fairly simple 

to maneuver the chaser from this point to the nearest acceptable steady state, but this would violate the 

simulation requirements. 

 

In the second simulation, the disturbance is given by 

𝛿𝑥 = [−3.28×10−3 𝑡 0 −7.044×10−3 𝑡 0 0 0] (8-13) 

and a corresponding final state of 

𝑥(𝑡𝑓) = [−1.97 0 −4.23 0 0 0] (8-14) 

This is a rather extreme case. Not only does the steady state correspond to a possible manifestation of the 

uncertainty in the satellite motion, but it is located on the far side of the target and clearly outside of the tube 

of trajectories. In this simulation, the state constraints imposed by the tube are stressed. 

 

Without constraint (7-31)(a), the chaser would follow the following trajectory. 



108  Chapter 8 

DLR-IB-RM-OP-2017-17 

 

Figure 8-24 Trajectory departs from tube 

The tube is departed from as a direct result of the state uncertainty bound being violated – the set point would 

require a terminal state disturbance of over 8 m.  

 

Despite departing from the tube in the cross-track, it is clear that the real trajectory does follow the form of the 

nominal. 

 

 

Figure 8-25 Simulated trajectories for steady state (-1.97,0,-4.23,0,0,0) 

The actuation required for this maneuver would have the following form. 



Simulation   109 

DLR-IB-RM-OP-2017-17 

 

Figure 8-26 Control inputs without tube constraint 

The actuation certainly follows the form of the nominal actuation, but the additional acceleration applied by the 

disturbance rejection term is now large enough to cause a deviation from the nominal series to become visible. 

Some points where this is best visible in the radial and cross-track series are highlighted in the figure by the 

arrows.  

 

The state tracking requirements and all constraints other than that the trajectory remain in the tube (which was 

omitted in the results of this simulation so far) are still adhered to. However, by tracking the reference as 

required the chaser would have to pass through the sphere over bounding the grasping point. So, while the 

point could be reached despite departing from the tube, the reference conditions mean that a collision would 

likely occur between the target and chaser spacecraft, which is undesirable for obvious reasons.  

 

However, the controller has a constraint which requires the trajectory of the chaser to remain in the tube. The 

application of this constraint results in the following chaser trajectory. 

 



110  Chapter 8 

DLR-IB-RM-OP-2017-17 

 

Figure 8-27 Trajectory remains in tube 

  

Figure 8-28 Trajectory for set point (-1.97,0,-4.23,0,0,0) 

Now the trajectory remains clearly inside of the tube, despite attempting to maneuver to the required set point. 

The state constraint imposed by the tube, despite being stressed for most of the simulation, holds and the 

chaser is driven to the closest point on the sphere to the desired final state. The series of control inputs for this 

action is given by the following figure. 

 



Simulation   111 

DLR-IB-RM-OP-2017-17 

 

Figure 8-29 Control action with the tube constraint 

 The chaser therefore maneuvers to the steady state within the tube which is closest to it desired destination. 

This effect is independent of the control method’s direction of trajectories to the nearest point in the admissible 

steady state set, which is indemonstrable in the confines of this problem. As can be seen in Figure 8-28, the 

controller will follow the form of the reference trajectory as best as it can. However, when the disturbed 

trajectory reaches the boundary of the tube, the harder constraint wins, and the trajectory is forced to remain 

in the tube. Due to the nature of the cost function, the controller still attempts to follow the form of the reference. 

In many aspects it does this job remarkably well. 

 

 

In each of these simulations, the rendezvous maneuver expectedly fails. In the first scenario, the chaser is 

maneuvered into the neighbourhood of the target, but the mouth of the tube includes points which are valid in 

terms of the system constraints, but not valid set points in terms of the rendezvous goal. It is unlikely that the 

chaser would be required to be maneuvered to this point, but should the event occur, an additional correction 

maneuver or the docking maneuver would be required to account for this discrepancy. In the second scenario, 

the steady state is actually not reachable under the operation conditions – the uncertainty bound has been 

violated.  

 

The set of admissible steady states are valid for the general controller, but when reference tracking is employed 

in the manner described here with the permissible allotted disturbance, the nominal trajectory is locked and 

the only truly admissible states are located in the intersection of the tube and the spherical shell on which the 

grasping point may lie. Points located on the shell but outside of the intersection will require deviation from the 

form of the nominal or the permission of disturbances applied to the relative velocity states. 

 



112  Chapter 8 

DLR-IB-RM-OP-2017-17 

The design of the controller means that each point within the state constraints are valid initial states and 

nominal set points. The set of desirable steady states, located on the spherical shell described by the uncertain 

motion of the grasping point, is well within the set of admissible steady states, along with most of points 

contained by the state constraint. Each of these desired steady states is theoretically reachable under nominal 

dynamics in the presence of a state disturbance less than or equal to the disturbance bound. The reference 

trajectory locks a set of initial and nominal terminal conditions for the maneuver and the form of the path and 

series of control actions. The tube then defines the subset of trajectories which can be driven to the disturbed 

set points whilst adhering to the nominal tracking requirements.  

 

 

Finally, some simulations were conducted in which the permissible satellite rendezvous time was much 

shortened. The same basic simulator was used and a final state of 𝑥(𝑡𝑓) =(0,-4.6662,0,0,0,0) was used. The 

code for these simulations is also included in part C of the appendix. In these simulations, the rendezvous time 

was progressively halved to observe the effect on the required actuation. While this situation is not particularly 

realistic, it is contrived here for the purposes of demonstrating the behaviour of the controlled system. The 

nominal actuation series and disturbance rejection terms of these simulations are presented below in Figure 

8-30 on the following page. 

 

The sequence of images on the left hand side of the figure demonstrate the difference between the reference 

and nominal actuations as the simulation time is shortened. In the first halving of the simulation time, the 

nominal actuation approximately doubles in magnitude but the form of the reference series is largely retained. 

This is largely true for the second halving as well, however the nominal actuation does not reach back to zero 

at the end of the simulation. At the third halving of the rendezvous time, the actuation constraints are met. The 

maximum acceleration is attained and the thrusters saturate. Nonetheless, the form of the actuation series still 

vaguely resembles the reference. Now, in the 37.5 s rendezvous simulation, a complete breakdown in the 

reference tracking occurs. In all of the preceding rendezvous durations, the chaser is able to track the position 

reference and meet the target. However, in this last scenario, the chaser will not even reach the vicinity.  

 

While the nominal actuation experiences great change in the truncation of the simulation time, the disturbance 

rejection term remains largely similar. This is not to be wholly unexpected in this implementation. It can be 

noted that the reference actuations and the nominal actuations while following the reference trajectory for the 

rendezvous duration that it was designed for are very small – to the order of 10−3 at their maxima, bur 10−4 

for most of the maneuver, while the nominal constraint is to the order of 10−2. There is clearly just a lot of head 

room for the nominal control to utilize before the robust control term must take on any meaningful additional 

effort.   

 

 



Simulation   113 

DLR-IB-RM-OP-2017-17 

 



114  Chapter 8 

DLR-IB-RM-OP-2017-17 
 

Figure 8-30 Actuation for a shortened simulation time 



Simulation   115 

DLR-IB-RM-OP-2017-17 

8.3.4 On characterizing the limits of the controller 

A predictable subset of the points contained within the end of the tube will be located on the sphere drawn by 

the uncertainty of the grasping point. This can simply be determined as follows. 

 Algorithm  8-1  Set points for successful rendezvous 

Input: mRPI mapped to the nominal set point  

 Radius 𝑟 of sphere drawn by the grasping point 

  

Algorithm: for each point 𝒑 = [𝑥, 𝑦, 𝑧] in the mapped mRPI set 

   

  If |𝒑| = 𝒓 

  𝒑 is a robust set point 

  else 

   𝒑 is not a robust set point 

  end_conditional 

 end_for 

  

Output: set of desirable set points which can be robustly reached for the given nominal trajectory 

 

For the nominal set point used in these simulations, the intersection is as in the following figure 



116  Chapter 8 

DLR-IB-RM-OP-2017-17 

 

Figure 8-31  Intersection of tube with sphere drawn by the uncertainty of target motion for the nominal set point 
(1.97,0,4.23,0,0,0) 

In the figure, the portion of the sphere contained in the tube is indicated by the scatter of points determined by 

the algorithm. The points on the surface of the sphere were determined sparsely to allow the simulation set 

points to be visible. The nominal and simulation set points are indicated in relation to this portion, differentiated 

from each other as described in the legend. As can be seen, nearly the whole of the upper hemisphere is 

contained within the tube at this nominal set point. Given the approximately symmetric nature of the mRPI set, 

it can be reasoned that approximately the same surface area of the sphere will be available at all nominal set 

points. This suggest that at any nominal set point, the chaser can be robustly maneuvered to nearly half of the 

possible points at which the grasping point could be while tracking the nominal response.  

 



Simulation   117 

DLR-IB-RM-OP-2017-17 

8.3.5 Validation 

In an effort to validate these results, an inverse dynamics test and an analytical solution for the CWH equations 

test were applied to the obtained simulation data. The results of these tests are presented in this section. The 

code used to conduct these tests is given in Appendix part D. Validation. 

 

In the inverse dynamics test, the simulated nominal and real trajectories were passed to a re-arranged system 

to determine the requisite acceleration component magnitudes to acquire these trajectories 

𝑢 = (𝐵𝑇𝐵)−1𝐵𝑇(𝑥+ − 𝐴𝑥) (8-15) 

In the case of the real trajectory, the disturbance 𝑤 is incorporated into the states, and so should not be 

additionally addressed in the inverse system. The series of actuation inputs 𝑢 can then be compared to the 

reference and/or the series obtained from the simulator and the requisite disturbance rejection terms can be 

observed and compared to those obtained in simulation. The actuation series and disturbance rejections 

yielded by the application of (8-15) are presented in Figure 8-32, for comparison to Figure 8-8, Figure 8-9, 

Figure 8-14, Figure 8-15, Figure 8-19, Figure 8-20. 

  

It is evident from the input series that the simulator and inverse dynamics that yield the same actuation 

sequences. By simple comparison to the preceding figures, the disturbance rejection is similarly equivalent. 

As should be clear, then, that the series of input and disturbance rejection terms obtained in simulation are 

plausible for the obtained trajectories.  

 

 

 

 

 

 

 

 



118  Chapter 8 

DLR-IB-RM-OP-2017-17 

 

Figure 8-32 Actuation and disturbance rejection series obtained from inverse dynamics 



Simulation   119 

DLR-IB-RM-OP-2017-17 

 

The analytical solution for the CWH equations is included to show that the obtained trajectories are valid for 

CWH dynamics. The series of positions obtained in simulation are used to determine the initial conditions for 

the analytical solution, which is then solved. The results are presented here. 

For each simulation scenario, the trajectory obtained through the analytical solution tracks the simulated 

trajectory. Again, the test clearly supports the validity of the results obtained by the simulator.  

 

 

 

 

 

 

Figure 8-33 Analytical solution trajectories 



120  Chapter 8 

DLR-IB-RM-OP-2017-17 

8.3.6 Timing statistics 

Tube-based robust model predictive control is computationally intensive in the design of the controller. 

However, these calculations must be conducted only once. The implementation of the controller is similar in 

intensity to nominal model predictive control. The timing aspects are therefore also similar, making the 

controller suitable to online operation. Table 8-1 enumerates the timing statistics for the presented simulations 

to demonstrate this capability.  

Table 8-1 Timing metrics for 600 s reference trajectory, from 100 simulations 

Simulator Max time (s) Min time (s) Avg time (s) 

Nominal controller,                

no disturbance rejection term 

64.5776 40.5262 46.3674 

Tube-based robust nominal 

controller 

63.3588 40.4447 46.2618 

Tube-based robust MPC, 

perturbed systems 

59.8543 40.5003 46.3782 

 

The additional simulator used to obtain the timing metric for the nominal controller with no disturbance rejection 

term is also given Appendix part C. Satellite Rendezvous simulator.



 

121 

9 Conclusion 

The goal of this work was to robustly conduct a rendezvous maneuver while tracking a provided optimal 

trajectory. This was conducted using Tube-based robust Model Predictive Control. In Part 1, the relevant theory 

for rendezvous and proximity maneuvers and for nominal and tube-based robust model predictive control was 

detailed; the design methodology was conducted and implemented in software for a sample problem; and the 

controller designed for the sample problem was simulated. In Part 2, the participants and maneuver 

requirements were defined and the tube-based model predictive controller for the task was developed and 

simulated.  

 

To the best of the author’s knowledge, there exist only two publications, [37] and [38], on the use of tube-based 

robust model predictive control to control rendezvous and proximity operations maneuvers. In these two works, 

the satellites are taken to be travelling on elliptical orbits, the uncertainty was derived from navigation and 

thruster timing errors, respectively, and tracking was omitted. In this work, a circular orbit was assumed and 

the uncertainty was introduced to the dynamics by the target rather than the chaser.  

 

In tube-based robust MPC for tracking, trajectories contained within a tube centered on the nominal response 

of the system are guaranteed to evolve robustly to a neighbourhood, defined by the mRPI, of an admissible 

final state.  In this implementation of Tube-based robust MPC, the nominal dynamics are constrained to track 

a provided optimal reference trajectory. Simulations of the controller show that the nominal response is robustly 

tracked and a set point offset from the nominal final state by a disturbance in the motion of the target will be 

successfully reached while this real set point remains within the tube. It has been shown that not all points on 

the sphere of uncertainty described by the possible target motion will be contained within the progression of 

the tube as a direct result of the requirement that the reference trajectory be tracked. The intersection of the 

tube and the sphere represents the set of possible set points which can be reached with guaranteed reference 

trajectory tracking with robust adherence to system requirements.  

 

The controller has additionally been shown to be appropriate for online control applications. One of the 

motivating qualities of tube-based robust model predictive control is the similar complexity and processing 

times to nominal model predictive controllers. Model predictive controllers are used in online, real-time 

applications. As indicated in Table 8-1, the standard MPC and the robust MPC implementations have similar 

time requirements, supporting the claims of online, real-time applicability of the method.  

 

 



122  Chapter 9 

DLR-IB-RM-OP-2017-17 

There are several aspects which should be considered in future work:  

For continued operation in the orbital frame, some additional constraints for the avoidance of collisions with 

obstacles or the target satellite should be implemented. This would require the re-consideration of the terminal 

set 𝕏𝑓 such that regions of known danger are not permitted.  

  

The trajectory devised by the motion planner is constructed with obstacle avoidance in mind. These obstacles 

may be mobile relative to the target in the target orbital frame, in which this work was conducted. In the target 

body frame, the obstacles are static with respect to the target. By tracking the reference trajectory referred to 

the target body frame, the optimal obstacle avoidance characteristics of the trajectory will remain intact. 

Retaining these properties while maneuvering to the true position of the docking point is desirable for obvious 

reasons. Therefore, tracking the reference trajectory referred to the target body frame should be conducted in 

the future.  

 

In this implementation, the actuation constraints were a non-issue, as it is not particularly easy to force the 

system to reach the nominal actuation constraint boundary. This is not likely the case when the problem is 

expressed in the body frame of the target. Therefore, referral of the maneuver and control action to the body 

frame will also allow more strenuous use of the actuation constraints. 

 

It should be noted that the designed controller not only functions as the theory suggests for the defined 

disturbance bound and constraints, it is also valid with minor adjustment for rendezvous with other target 

spacecraft. The success of the controller could therefore be further characterized in future work through the 

conduction of more simulations with the characteristics of other targets.  Future work should also investigate 

and characterize the causes and effects of relative velocity uncertainty. 

 

Further work could also explore the implications of non-linearity in the state equation, which would require the 

abandonment of the linear tube-based robust model predictive control theory in favour of the non-linear theory. 

There are various ways in which non-linearity can be introduced. The most obvious would to consider that in 

a multi-body system, the equations of motion involve non-linear and non-inertial terms. The Newtonian relation 

of force and acceleration is therefore not applicable and the linear dependence of the state equation on the 

input actuation becomes non-linear. Additional non-linear elements exist in the production of the acceleration 

dictated by the controller as between the determination and output of the optimized acceleration from the 

controller and a force being applied by the thrusters, a number of steps occur, which may likewise introduce a 

non-linear relationship to the actuation in the state equation. 

 

 

 



 

123 

10 References 

[1] I. Alvarado, "Model predictive control for tracking constrained linear systems," Doctor of Philosophy, 

Department of Systems Engineering and Automation, University of Sevilla Sevilla, 2007. 

[2] M. Balandat, "Constrained robust optimal trajectory tracking: model predictive control approaches," 

Dipl.-Ing. Diplomarbeit, Fachbereich Maschinenbau Institut für Flugsysteme und Regelungstechnik, 

Technische Universität Darmstadt, Darmstadt, Germany, 2010. 

[3] D. Limon, I. Alvarado, T. Alamo, and E. F. Camacho, "MPC for tracking of piece-wise constant 

references for constrained linear systems," in 16th IFAC World Congress, Prague, Czech Republic, 

2005. 

[4] D. Limon, I. Alvarado, T. Alamo, and E. F. Camacho, "MPC for tracking piecewise constant references 

for constrained linear systems," Automatica, vol. 44, pp. 2382-2387, 2008. 

[5] CVX Research Inc., "CVX: Matlab software for disciplined convex programming, version 2.0," ed, April 

2011. 

[6] M. Grant and S. Boyd, "Graph implementation for nonsmooth convex programs, Recent advances in 

Learning and control," in Lecture Notes in Control and Information Sciences, V. Blondel, S. Boyd, and 

H. Kimura, Eds., ed: Springer-Verlag Limited, 2008, pp. 95-110. 

[7] M. Herceg, C. N. Kvasnica, and M. Morari, "Multi-Parametric Toolbox 3.0," in Proc. of the European 

Control Conference, Zurich, Switzerland, 17-19 July 2013, pp. 502-510. 

[8] J. Löfberg, "YALMIP: A Toolbox for Modeling and Optimization in MATLAB," in Proceedings of the 

CACSD Conference, Taipei, Taiwan, 2004. 

[9] A. Bemporad, M. Morari, and N. Ricker. (2015). Model Preditive Control Toolbox User's Guide 

(R2015b).  

[10] The MathWorks Inc. Model Predictive Control Toolbox Documentation (R2015b). Available: 

https://www.mathworks.com/help/mpc/ 

[11] Model Predictive Control Toolbox (r2015b), The MathWorks, Inc., Natick, Massachusetts, United 

States. 

[12] J. L. Goodman, "History of space shuttle rendezvous and proximity operations," Journal of Spacecraft 

and Rockets, vol. 43, pp. 944-959, 2006. 

[13] E. F. Camacho and C. Bordons, Model Predictive Control, 2 ed. London: Springer-Verlag, 2007. 

[14] J. B. Rawlings and D. Q. Mayne, Model Predictive Control: Theory and Design. Madison, WI, USA: 

Nob Hill 2009. 

[15] F. Gavilan, R. Vazques, and E. Camacho, "Robust model predictive control for spacecraft rendezvous 

with online prediction of disturbance bounds," 2011. 

[16] L. Breger and J. P. How, "Safe trajectories for autonomous rendezvous of spacecraft," Journal of 

Guidance, Control, and Dynamics, vol. 31, 2008 2008. 

[17] A. Richards, L. Breger, and J. P. How, "Analytical performance prediction for robust constrained model 

predictive control," International Journal of Control, vol. 79, pp. 877-894, 20 Feb 2007 2007. 

[18] A. Richards and J. P. How, "Model predictive control of vehicle maneuvers with guaranteed completion 

time and robust feasibility," in American Control Conference, 2003, 2003, pp. 4034-4040. 

[19] E. Hartley, "Model predictive control for spacecraft rendezvous," Ph.D., University of Cambridge, 2010. 

https://www.mathworks.com/help/mpc/


124  Chapter 10 

DLR-IB-RM-OP-2017-17 

[20] S. Di Cairano, H. Park, and I. Kolmanovsky, "Model predictive control approach for guidance of 

spacecraft rendezvous and proximity maneuvering," International Journal of Robust and Nonlinear 

Control, vol. 22, pp. 1398-1427, 2012. 

[21] H. Park, S. Di Cairano, and I. Kolmanovsky, "Model predictive control for spacecraft rendezvous and 

docking with a rotating/tumbling platform and or debris avoidance," in 2011 American Control 

Conference, San Francisco, CA, USA, 2011, pp. 1922-1927. 

[22] A. Weiss, I. Kolmanovsky, M. Baldwin, and R. S. Erwin, "Model predictive control of three dimensional 

spacecraft relative motion," presented at the 2012 American Control Conference, Montreal, Canada, 

2012. 

[23] A. Weiss, M. Baldwin, R. S. Erwin, and I. Kolmanovsky, "Model predictive control for spacecraft 

rendezvous and docking: strategies for handling constraints and case studies," IEEE Transactions on 

Control Systems Technology, vol. 23, pp. 1638-1647, July 2015 2015. 

[24] A. Weiss and S. Di Cairano, "Robust dual control MPC with guaranteed constraint satisfaction," in 

2014 IEEE 53rd Annual Conference on Decision and Control, Los Angeles, CA, USA, 2014, pp. 6713-

6718. 

[25] W. Langson, I. Chryssochoos, S. Raković, and D. Mayne, "Robust model predictive control using 

tubes," Automatica, vol. 40, pp. 125-133, 2004. 

[26] D. Q. Mayne, M. M. Seron, and S. V. Raković, "Robust model predictive control of constrained linear 

systems with bounded disturbances," Automatica, vol. 41, pp. 219-224, 2005. 

[27] D. Q. Mayne, S. V. Raković, R. Findeisen, and F. Allgöwer, "Robust output feedback model predictive 

control of constrained linear systems," Automatica, vol. 42, pp. 1217-1222, 2006. 

[28] D. Q. Mayne, S. V. Raković, R. Findeisen, and F. Allgöwer, "Robust output feedback model predictive 

control of constrained linear systems: Time varying case," Automatica, vol. 45, pp. 2082-2087, 2009. 

[29] D. Q. Mayne, S. V. Raković, R. Findeisen, and F. Allgöwer, "Robust output feedback model predictive 

control of constrained linear systems," Automatica, vol. 42, pp. 1217-1222, 2006. 

[30] S. Raković and D. Mayne, "A simple Tube Cotroller for efficient Robust Model Predictive Control of 

constrained linear discrete time systems subject to bounded disturbances," in 16th IFAC World 

Congress, 2005, pp. 241-246. 

[31] I. Alvarado, D. Limon, T. Alamo, and E. Camacho, "Output feedback Robust tube based MPC for 

tracking of piece-wise constant references," presented at the 2007 46th IEEE Conference on Decision 

and Control, New Orleans, LA, USA, 2007. 

[32] I. Alvarado, D. Limon, T. Alamo, M. Fiacchini, and E. Camacho, "Robust tube based MPC for tracking 

of piece-wise constant references," presented at the 2007 46th IEEE Conference on Decision and 

Control, New Orleans, LA, USA, 2007. 

[33] D. Limon, I. Alvarado, T. Alamo, and E. F. Camacho, "On the design of Robust tube-based MPC for 

tracking," in 17th IFAC Triennial Congress, Seoul, 2008. 

[34] D. Mayne, E. Kerrigan, E. van Wyk, and P. Falugi, "Tube-based robust nonlinear model predictive 

control," International Journal of Robust and Nonlinear Control, vol. 21, pp. 1341-1353, 17 April 2011 

2011. 

[35] D. Q. Mayne and E. C. Kerrigan, "Tube-based robust nonlinear model predictive control," in 7th IFAC 

Symposium on Nonlinear Control Systems, Pretoria, South Africa, 2007, pp. 36-41. 

[36] D. Q. Mayne, E. C. Kerrigan, and P. Falugi, "Robust model predictive control: advantages and 

disadvantages of tube-based methods," in Proceedings of the 18th IFAC World Congress, Milano, 

Italy, 2011, pp. 191-196. 

[37] G. Deaconu, C. Louembet, and A. Théron, "Minimizing the effects of navigation uncertainties on the 

spacecraft rendezvous precision," Journal of Guidance, Control, and Dynamics, vol. 37, pp. 695-700, 

2014. 

[38] C. Louembet, D. DArzelier, and G. Deaconu, "Robust rendezvous planning under maneuver execution 

errors," Journal of Guidance, Control, and Dynamics, vol. 38, pp. 76-93, Jan 2015 2015. 



References   125 

DLR-IB-RM-OP-2017-17 

[39] T. E. Carter, "State transition matrices for terminal rendezvous studies: brief survey and new example," 

Journal of Guidance, Control, and Dynamics, vol. 21, pp. 148-155, Jan-Feb 1998 1998. 

[40] G.-R. Duan and G. Xu, "Direct parametric control approach to robust integrated relative position and 

attitude control for non-cooperative rendezvous," presented at the 2015 34th Chinese Control 

Conference, Hangzhou, China, 2015. 

[41] L. Sun and W. Huo, "Robust adaptive control of spacecraft proximity maneuvers under dynamic 

coupling and uncertainty," Advances in Space Research, vol. 56, pp. 2206-2217, 2015. 

[42] J. R. Wertz and R. Bell, "Autonomous rendezvous and docking technologies: status and propects," in 

SPIE, Orlando, FL, 2003, pp. 20-30. 

[43] Y. Luo, Z. Jin, and G. Tang, "Survey of orbital dynamics and control of space rendezvous," Chinese 

Journal of Aeronautics, vol. 27, pp. 1-11, 2014. 

[44] ESA, "Journey to the ISS Part 2: Soyuz rendezvous and docking explained," ed, 2014. 

[45] M. Rott, Spacecraft Technology I: "Ascent Flight," Institute of Astronautics, TUM, 2015. 

[46] M. Rott, Spacecraft Technology I: "Orbit Transfers," Institute of Astronautics, TUM, 2015. 

[47] M. Rott, Spacecraft Technology I: "Astrodynamics," Institute of Astrodynamics, TUM, 2015. 

[48] K.-D. Reiniger, Ground and User Segment: "Orbit," Institute of Astronomical and Physical Geodesy, 

TUM, 2015. 

[49] R. Lampariello, On-Orbit Dynamics and Robotics: "Orbital dynamics and control," Institute of 

Astrodynamics, 2015. 

[50] D. Gorinevsky, "Lecture 14 - Model Predictive Control Part 1: The concept," Stanford University, 2016. 

[51] W. Wojsznis, "Model Predictive Control and Optimization," in Instrument Engineers' Handbook: 

Process Control and Optimization. vol. 2, B. Liptak, Ed., 4 ed Boca Raton, FL: CRC Press, 2006, pp. 

242-251. 

[52] M. Cannon, "C21 Model Predictive Control," Oxford University, 2016. 

[53] M. S. Tšoeu, "Lecture Notes: EEE4093F - Model Predictive Control (MPC)," UCT, Ed., ed. Cape Town, 

South Africa, 2014. 

[54] The MathWorks Inc. (2016). Choosing Sample Time and Horizons. Available: 

http://www.mathworks.com/help/mpc/ug/choosing-sample-time-and-

horizons.html?s_tid=gn_loc_drop 

[55] D. Mayne, J. B. Rawlings, C. V. Rao, and P. O. M. Scokaert, "Constrained model predictive control: 

Stability and optimality," Automatica, vol. 36, pp. 789-814, 2000. 

[56] A. Bemporad and M. Morari, "Robust model predictive control: A survey," in Lecture Notes in Control 

and Information Sciences. vol. 245, A. Garulli and A. Tesi, Eds., ed London: Springer London, 1999, 

pp. 207-226. 

[57] F. Blanchini, "Set invariance in control," Automatica, vol. 35, pp. 1747-1767, 1991. 

[58] S. V. Raković, E. Kerrigan, K. Kouramas, and D. Mayne, "Invariant approximations of the Minimal 

Robust Positively Invariant Set," IEEE Transactions on Automatic Control, vol. 50, pp. 406-420, 2005. 

[59] M. V. Kothare, V. Balakrishnan, and M. Morari, "Robust Constrained Model Predictive Control using 

Linear Matrix Inequalities," in 1994 American Control Conference, Baltimore, MD, USA, 1994, pp. 440-

444. 

[60] U. Jönsson, "A Lecture on the S-Procedure," Royal Institute of Technology, 2006. 

[61] S. Boyd, EE363: Linear Dynamical Systems: "EE363 Review Session 4: Linear Matrix Inequalities," 

Sandford University, 2008. 

[62] M. Grant and S. Boyd. (2016). The CVX User's Guide, Release 2.1.  

[63] I. Kolmanovsky and E. C. Gilbert, "Theory and Computation of Distrubance Invariant Sets for Discrete-

Time Linear Systems," Mathematical Problems in Engineering, vol. 4, pp. 317-367, 1998. 

http://www.mathworks.com/help/mpc/ug/choosing-sample-time-and-horizons.html?s_tid=gn_loc_drop
http://www.mathworks.com/help/mpc/ug/choosing-sample-time-and-horizons.html?s_tid=gn_loc_drop


126  Chapter 10 

DLR-IB-RM-OP-2017-17 

[64] E. C. Gilbert and K. T. Tan, "Linear systems with state and control constraints: The theory and 

application of maximal output admissible sets," IEEE Transactions on Automatic Control, vol. 36, pp. 

1008-1020, 1991. 

[65] E. Kerrigan, "Robust constraint satisfaction: Invariant sets and predictive control," Ph.D., Department 

of Engineering, St. John's College, University of Cambridge, Cambridge, UK, 2000. 

[66] M. Kvasnica, P. Grieder, M. Baotic, and F. J. Christophersen. (2004). Multi-Parametreic Toolbox 

(MPT). Available: http://people.ee.ethz.ch/~mpt/2/docs/ 

[67] S. Stoneman and R. Lampariello, "A nonlinear optimization method to provide real-time feasible 

reference trajectories to approach a tumbling target satellite," presented at the International 

symposium on Artificial Intelligence, Robotics and Automation in Space (iSAIRAS 2016), Beijing, P.R. 

China, 2016. 

[68] eoPortal. EnviSat. Available: https://directory.eoportal.org/web/eoportal/satellite-missions/e/envisat 

[69] Clean Space, "e.deorbit Implementation Plan," ESA ESTEC 2015. 

[70] S. p. A. ELV, ESA e.Deorbit Symposium: "Active debris removal by Vega upper state adaptation," 

Leeuwenhorst, Netherlands, 2014. 

[71] M. Sánchez Nogales, e.Deorbit Symposium: "ELECNOR DEIMOS Participation in e.Deorbit and ADR 

Activities," Leeuwenhorst, Netherlands, 2014. 

[72] A. Seel, "Error characterization of motion prediction of tumbling rigid bodies," Masters Thesis, 

Lehrstuhl für Astronomische und Physikalische Geodäsie, Ingenieurfakultät Bau Geo Umwelt, 

Technische Universität München Munich, 2016. 

[73] P. J. Campo and M. Morari, "Robust Model Predictive Control," in 1987 American Control Conference, 

Minneapolis, MN, USA, 1987, pp. 1021-1026. 

 

 

 

 

 

http://people.ee.ethz.ch/~mpt/2/docs/
https://directory.eoportal.org/web/eoportal/satellite-missions/e/envisat


 

127 

Appendix: Software 

In this appendix, the software used in the conduction of this work is given. Functions provided by the Model 

Predictive Control toolbox, Multi-parametric toolbox (MPT3), YALMIP, and CVX toolbox are frequently made 

use of in the following code. 

 

The flow in the presentation of this code will follow similarly as to the rest of the work for easy reference. The 

program used to reproduce the double-pendulum controller will be presented first, followed by the controller 

design and simulation for the satellite rendezvous maneuver. There are some common functions between the 

two scenarios. These shared functions will be presented at the first instance and referred to at the later function 

call. The lines of code are numbered for easy in-text reference. 

 

A. Double Pendulum 

Recall from chapter 5, the double pendulum problem is a well-studied problem frequently used as a sample 

problem in literature. The problem was tackled in this chapter as a trial implementation of the control method. 

The software required for this implementation is given in this section. 

 

The main function of this implementation conducts the controller design, controller construction, and controller 

simulation. Some portions of this design are identical in application in the satellite rendezvous scenario, and 

are therefore moved into separate function which can be called in both implementations. But first, the main 

function of the reproduction of the double pendulum problem is give below: 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Double pendulum: tube-based robust MPC design and simulation                      % 

% --------------------------------------------------------------------------------- % 

% This script details the design process and simulation of the tube-based robust    % 

% model predictive controller for the double-pendulum problem (refer to: chapter 6) % 

% The process begins with the robust constraints. The disturbance rejection gain    % 

% and then the mRPI set are determined. The tightened constraints are thereby given % 

% Subsequently, the terminal (invariant set for tracking) and admissible sets and   % 

% the region of attraction are determined. The controller is set implemented and    % 

% simulated.                                                                        % 

% --------------------------------------------------------------------------------- % 

% --------------------------------------------------------------------------------- % 

% FROM: C. Buckner. Tube-based Model Predictive Control for the Approach Maneuver   % 

%          of a Spacecraft to a free-tumbling Target Satellite. Master Thesis,      % 

%          Technische Universität München, 2016.                                    % 

%                                                                                   % 

% Copyright: Caroline Buckner                                                       % 

% Last edited: 22 Dec 2016                                                          % 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

 

  1 



128  Appendix 

DLR-IB-RM-OP-2017-17 

clc 2 
clear all 3 
  4 
 5 
%% Define system matrices 6 
A=[1,1;0,1];                                                               % state matrix 7 
B=[0,0.5;1,0.5];                                                           % input matrix 8 
C=[1 0];                                                                  % output matrix 9 
D=zeros(1,2);                                                        % feedthrough matrix 10 
  11 
m=2;n=2;p=1;                                        % input, state, and output dimensions 12 
  13 
%% Define robust constraints 14 
Aw=[-1 0;0 -1;1 0;0 1];                                               % disturbance bound 15 
bw=[0.1;0.1;0.1;0.1]; 16 
Ax=[-1 0;0 -1;1 0;0 1];                                         % robust state constraint 17 
bx=[5;5;5;5]; 18 
Au=[-1 0;0 -1;1 0;0 1];                                        % robust input constraints 19 
bu=[0.3;0.3;0.3;0.3]; 20 
  21 
scriptW=Polyhedron(Aw,bw);                          % build inequalities into polyhedrons 22 
doubleX=Polyhedron(Ax,bx); 23 
doubleU=Polyhedron(Au,bu); 24 
  25 
%% Define weighting matrices for nominal MPC cost optimization 26 
Q=eye(2);                                                              % state weights 27 
R=10*eye(2);                                                           % input weights 28 
  29 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 30 
%% Determine disturbance rejection gain Kdr 31 
% refer to section 5.2.1 32 
display(sprintf('\nDetermining K_dr CL dist rejection gain....\n')) 33 
  34 
% Initializations for the optimization problem 35 
lamdas=zeros(4); 36 
a=[0;0];                                                                % zeros vector 37 
p=0.48;                              % weight on control constraint (rho, refer to [33]) 38 
wa=[-0.1 -0.1];                                          % vertices of uncertainty bound 39 
wb=[-0.1 0.1]; 40 
wc=[0.1 -0.1]; 41 
wd=[0.1 0.1]; 42 
l1=[-3.333333333333334 0];                          % rows of normalized state constraint 43 
l2=[0 -3.333333333333334]; 44 
l3=[3.333333333333334 0]; 45 
l4=[0 3.333333333333334]; 46 
h1=[-0.2 0];                                        % rows of normalized input constraint 47 
h2=[0 -0.2]; 48 
h3=[0.2 0]; 49 
h4=[0 0.2]; 50 
  51 
               52 
cvx_begin sdp quiet                                             % Optimization problem 53 
    variable Y(2,2)                                                 % maximizing Gamma 54 
    variable W(2,2) symmetric                                          % to obtain Kdr 55 
    variable Gamma(1,1) banded(0,1) 56 
  57 
    lamda=0.49999; 58 
                  59 
    minimize (Gamma) 60 
    subject to 61 
        [lamda*W,a,(A*W+B*Y)';a',1-lamda,wa;(A*W+B*Y),wa',W]>=0 62 
        [lamda*W,a,(A*W+B*Y)';a',1-lamda,wb;(A*W+B*Y),wb',W]>=0 63 
        [lamda*W,a,(A*W+B*Y)';a',1-lamda,wc;(A*W+B*Y),wc',W]>=0 64 
        [lamda*W,a,(A*W+B*Y)';a',1-lamda,wd;(A*W+B*Y),wd',W]>=0 65 
        [p^2,(Y'*l1')';(Y'*l1'),W]>=0 66 
        [p^2,(Y'*l2')';(Y'*l2'),W]>=0 67 
        [p^2,(Y'*l3')';(Y'*l3'),W]>=0 68 
        [p^2,(Y'*l4')';(Y'*l4'),W]>=0 69 
        [Gamma,(W*h1')';(W*h1'),W]>=0 70 



Software   129 

DLR-IB-RM-OP-2017-17 

        [Gamma,(W*h2')';(W*h2'),W]>=0 71 
        [Gamma,(W*h3')';(W*h3'),W]>=0 72 
        [Gamma,(W*h4')';(W*h4'),W]>=0 73 
cvx_end 74 
              75 
                   76 
  77 
  78 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 79 
% Determine mRPI following from determination of Kdr 80 
% refer to section 5.2.2, Algorithms 5-1 and 5-2, [33, 58] 81 
display(sprintf('Determining mRPI....\n')) 82 
  83 
Ak=A+B*Y*inv(W);                                                           84 
  85 
H=[-0.1 0;0 0.1];                                    % Non-singular matrix to define 86 
                                                     % disturbance bound as zonotope 87 
eps=0.01;                                            % percentage difference 88 
  89 
s=1;                                                 % initialize s 90 
  91 
alpha_goal=norm(inv(H)*(Ak^(s))*H,Inf);        % find initial alpha from support function 92 
  93 
Mplus=zeros(n,1);Mminus=zeros(n,1);        % initialize sum and difference of error bound  94 
As=A^(s-1);                                          % Determine initial error bound 95 
  96 
for count=1:n 97 
   Mplus(count)=Mplus(count)+supportfunc(Aw,bw,As(count,:)');     % From support function  98 

       % as in [58] 99 
   Mminus(count)=Mminus(count)+supportfunc(Aw,bw,-As(count,:)');  % see below for  100 

       % supportfunc() 101 
end 102 
  103 
Msum=max(max(Mplus),max(Mminus)); 104 
  105 
display('Current ratio alpha/(eps/(eps+Ms)) is:') 106 
  107 
while alpha_goal >= ((eps)/(eps+Msum))     % While alpha is greater than the error bound 108 
 109 
    fprintf('\t%d \t %d \t %d\n',(eps/(eps+Msum)), alpha_goal, Msum)   110 
    111 
    s=s+1;               % Increment s 112 
    113 
    alpha_goal=norm(inv(H)*(Ak^(s))*H,Inf);   % Calculate the new alpha from support func 114 
    As=A^(s-1);                                        % Raise Ak to current power of s-1 115 
    116 
   for count1=1:n                                      % Determine new error bound 117 
       Mplus(count1)=Mplus(count1)+supportfunc(Aw,bw,As(count1,:)'); 118 
       Mminus(count1)=Mminus(count1)+supportfunc(Aw,bw,-As(count1,:)'); 119 
   end 120 
    121 
   Msum=max(max(Mplus),max(Mminus)); 122 
    123 
end 124 
  125 
%% Refer to Algorithm 5-2 126 
Bb=Polyhedron([1 0;0 1;-1 0;0 -1],[1;1;1;1]);  % Unit norm ball for definition of scriptW 127 
Bi=Bb;                                         % as a zonotope 128 
for i=1:1:s-1 129 
    Bi=Bi*Bb; 130 
end 131 
Hz=[];         % As in [33] 132 
for i=1:1:s                               % Using obtained s, 133 
    Hz=[Hz Ak^(s-i)*H]; 134 
end 135 
Z=plus(((1-alpha_goal)^-1)*Hz*Bi,(eye(2)-Ak)^-1*[0;0]);      % Obtain mRPI 136 
 137 
  138 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 139 



130  Appendix 

DLR-IB-RM-OP-2017-17 

Pdr=inv(W);       140 
Kdr=Y*inv(W);                                    % Disturbance rejection gain found above 141 
  142 
Utight=minus(doubleU,mtimes(Kdr,Z));             % Determine tightened constraints 143 
KZ=mtimes(Kdr,Z);              % equations (5-31)-(5-32) 144 
Xtight=minus(doubleX,Z); 145 
  146 
display(sprintf('Pdr, Kdr, mRPI, and tightened constraints Xtight and Utight  ... 147 
obtained....\n')) 148 
  149 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 150 
  151 
%% Now determine invariant set for tracking  152 
% Refer to section 5.4.2, Algorithm 5-4, [2, 63] 153 
display(sprintf('Determining MRPI - invariant set for tracking....\n'))% repeating system 154 
A=[1,1;0,1];B=[0,0.5;1,0.5];C=[1 0];D=zeros(1,2);m=2;n=2;p=1; 155 
sys=ss(A,B,C,[],-1); 156 
  157 
% Split the polyhedrons into A matrix and b vector of inequalities  158 
doubleZ=mtimes(Xtight,Utight); 159 
Az=doubleZ.H(:,1:4); 160 
bz=doubleZ.H(:,5); 161 
  162 
Autight=Utight.H(:,1:2); 163 
butight=Utight.H(:,3); 164 
Axtight=Xtight.H(:,1:2); 165 
bxtight=Xtight.H(:,3); 166 
  167 
[Klqr Plqr e]=dlqr(A,B,Q,R);                   % LQR parameters, section 5.4.1 168 
Klqr=-Klqr; 169 
  170 
% Defining CL system 171 
Mtheta=[1 0 0 0;0 1 1 -2]';                    % Parameterization matrices for set points 172 
Ntheta=[1 0];                                  % and targets  173 
  174 
L=[-Klqr eye(2)]*Mtheta;                       % Refer to (4-54)                                        175 
Ae=[A+B*Klqr B*L;zeros(2,2) eye(2)]; 176 
  177 
% Determine MRPI 178 
lambda=0.99; 179 
Oinf=MRPIsetforTracking(Ae,Klqr,Mtheta,Xtight,Utight,lambda,n,m);     % function defined  180 

     % below 181 
Ox=Oinf.projection(1:2); 182 
  183 
  184 
%% Admissible states, inputs, outputs 185 
Theta=Polyhedron(Az*Mtheta,bz); 186 
Xa=affineMap(Theta,... 187 
    [eye(size(Axtight,2)),zeros(size(Axtight,2),size(Autight,2))]*Mtheta); 188 
Ua=affineMap(Theta,... 189 
    [zeros(size(Autight,2),size(Axtight,2)) eye(size(Autight,2))]*Mtheta); 190 
Ya=affineMap(Theta,Ntheta); 191 
  192 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 193 
  194 
%% Build controller 195 
  196 
display(sprintf('Building controller....\n')) 197 
  198 
display(sprintf('\tInit....\n'))    % structure of parameters 199 
params.Q=Q;       % state weights 200 
params.R=R;       % input weights 201 
params.P=Plqr;      % terminal weights 202 
params.Mtheta=Mtheta;     % parameterization matrix 203 
params.Wscript=scriptW;     % disturbance bound 204 
params.Z=Z;       % mRPI 205 
params.K=Kdr;       % disturbance rejection gain 206 
params.Xtight=Xtight;     % tightened state constraint 207 
params.Utight=Utight;     % tightened input constraint 208 



Software   131 

DLR-IB-RM-OP-2017-17 

params.Oinf=Oinf;      % invariant set for tracking 209 
params.T=1000*Plqr;      % offset weight 210 
params.N=10;       % prediction horizon 211 
  212 
display(sprintf('\tsending to controller....\n')) 213 
ctrl=TBRMPCcontroller(sys,params);            % Make controller, function defined below 214 
  215 
%% Region of attraction 216 
Xrat=regAttraction(sys,Ox,Xtight,Utight,params.N);         % nominal 217 
Xra=Xrat+Z;                                                % robust 218 
  219 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 220 
  221 
%% Simulating controller 222 
  223 
display(sprintf('Simulating....\n')) 224 
display(sprintf('\tPart 1:\n')) 225 
display(sprintf('\tsetting initial conditons, sim horizon, set point, 226 
disturbance....\n')) 227 
  228 
x0=[-3;1.5];              % Initial state 229 
Nsim1=20;              % Simulation length 230 
theta1=[-4;0];       % First set point 231 
  232 
w1=-0.1*ones(length(x0),Nsim1)+0.2*rand(length(x0),Nsim1); % Define disturbance 233 
  234 
  235 
display(sprintf('\tsending to simulator....\n')) 236 
[x1,z1,u1,y1]=TBRMPCsimulator(sys,ctrl,Nsim1,x0,theta1,w1); % Simulate,  237 

 % function defined below 238 
  239 
  240 
display(sprintf('\n\tPart 2:\n')) 241 
display(sprintf('\tsetting new sim horizon, set point, disturbances....\n')) 242 
  243 
Nsim2=Nsim1;                   % Simulation length remains the same 244 
x01=[-3;3]                 % New initial state 245 
theta2=[4;-0.5];      % New set point 246 
w2=-0.1*ones(length(x0),Nsim2)+0.2*rand(length(x0),Nsim2); % Define disturbance 247 
  248 
display(sprintf('\tsending to simulator...\n'))   249 
[x2,z2,u2,y2]=TBRMPCsimulator(sys,ctrl,Nsim2,x1(:,end),theta2,w2);  % Simulate 250 
  251 
display(sprintf('\n\tPart 3:\n')) 252 
display(sprintf('\tconcatonating results of Part 1 and Part 2...\n')) 253 
  254 
x=[x1,x2];      % Combine first and second simulations into  255 
z=[z1,z2];      % one long simulation 256 
u=[u1,u2]; 257 
y=[y1,y2]; 258 
  259 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 260 
%% PLOTTING FIGURES  261 
% Extending mRPI to tube, refer to Algorithm 6-3 262 
  263 
display(sprintf('Extending mRPI into tube....')) 264 
  265 
tube=[]; 266 
for j=1:Nsim1+Nsim2 267 
    tube=[tube, affmap(Z,eye(2),z(:,j))]; 268 
end 269 
  270 
% ytube=[]; 271 
% for j=1:Nsim1+Nsim2 272 
%    ytube=[ytube, affmap(Z,C,x(:,j))];  273 
% end 274 
  275 
  276 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 277 



132  Appendix 

DLR-IB-RM-OP-2017-17 

%% Create visualizations 278 
display(sprintf('Making pretty pictures....\n')) 279 
display(sprintf('\tmRPI\n')) 280 
figure;plot(Z);title('Z') 281 
display(sprintf('\tcontrol constriants\n')) 282 
figure;hold 283 
on;doubleU.plot('color','red');Utight.plot('color','blue');KZ.plot('color','yellow');titl284 
e('control constraint') 285 
display(sprintf('\tstate constraints\n')) 286 
figure;hold 287 
on;doubleX.plot('color','red');Xtight.plot('color','blue');Z.plot('color','yellow');title288 
('state constraint') 289 
display(sprintf('\tinvariant set for tracking\n')) 290 
figure;plot(Ox);title('invariant set for tracking') 291 
  292 
display(sprintf('\tcombo state plot\n')) 293 
figure;hold on;  294 
display(sprintf('\t\tinvariant set for tracking\n')) 295 
plot(Ox,'color','b'); 296 
display(sprintf('\t\tadmissible steady states\n')) 297 
plot(Xa); 298 
  299 
display(sprintf('\t\ttube\n')) 300 
for k=1:Nsim1+Nsim2 301 
   tube(k).plot('color','y');  302 
end 303 
display(sprintf('\t\tnominal and actual states\n'))  304 
plot(z(1,:),z(2,:),'--xk'); 305 
plot(x(1,:),x(2,:),'--*k'); 306 
  307 
display(sprintf('\t\tnominal region of attraction\n')) 308 
plot(Xra,'color','k','wire',1); 309 
display(sprintf('\t\tdisturbed system region of attraction\n')) 310 
plot(Xrat,'color','k','wire',1,'wirestyle','--'); 311 
  312 
  313 
axis([-5.5 5.5 -2.5 2.5]) 314 
title('x-space') 315 
  316 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 317 
display(sprintf('\tcombo actuation plot\n')) 318 
  319 
figure;hold on; 320 
display(sprintf('\t\tadmissible inputs\n')) 321 
line([-0.1334 0.1334],[0.1334 -0.1334],'color','g','linewidth',2); 322 
display(sprintf('\t\tboundaries of sets guaranteed to contain control input\n')) 323 
display(sprintf('\t\t\t generated for uncertain system at steady state\n')) 324 
display(sprintf('\t\t\tfor any admissible disturbance sequence\n')) 325 
plot(affmap_robust(Z,Kdr),'color','k','wire',1,'wirestyle','--') 326 
plot([-0.1334; 0.1334]+affmap_robust(Z,Kdr),'color','k','wire',1,'wirestyle','--') 327 
display(sprintf('\t\t"trajectory" of inputs\n')) 328 
plot(u(1,:),u(2,:),'d--','MarkerFaceColor',[0 0 1]); 329 
  330 
axis([-0.35 0.35 -0.35 0.35]) 331 
title('u-space') 332 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 333 
display(sprintf('\toutput dynamics\n')) 334 
  335 
target=[theta1(1,:)*ones(1,Nsim1),theta2(1,:)*ones(1,Nsim2)]; 336 
  337 
figure;hold on; 338 
% plot(x(1,:)) 339 
% plot(y(1,:)) 340 
plot(z(1,:)) 341 
plot(target,'-') 342 
  343 
title('target evolution') 344 
xlabel('Time steps') 345 
ylabel('Output') 346 



Software   133 

DLR-IB-RM-OP-2017-17 

legend('Output evolution','Output target')%'Artificial reference', 347 
  348 
figure;hold on;plot(u) 349 
  350 
  351 
% % figure;hold on; 352 
% % for k=1:Nsim1+Nsim2 353 
% %    ytube(k).plot('color','y');  354 
% % end 355 
%  356 
% % figure;hold on;plot(plus(x(1,Nsim1+Nsim2),mtimes(C,Z))) 357 
%  358 
% figure;hold on; 359 
% % plot(doubleX,'color','r') 360 
% % plot(Xtight,'color','b') 361 
% plot(Ya,'wire',1,'wirestyle','--') 362 
% plot(x(1,:),x(2,:),'k*--') 363 
  364 
   365 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 366 
display(sprintf('...Fin...')) 367 

 

The functions called by this main program are expressed in sequence. First, supportfunc, which returns the 

solution of the support function: 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Support function                                                                  % 

% --------------------------------------------------------------------------------- % 

% Simple optimization to solve support function via YALMIP.                         % 

% --------------------------------------------------------------------------------- % 

% FROM: C. Buckner. Tube-based Model Predictive Control for the Approach Maneuver   % 

%          of a Spacecraft to a free-tumbling Target Satellite. Master Thesis,      % 

%          Technische Universität München, 2016.                                    % 

%                                                                                   % 

% Copyright: Caroline Buckner                                                       % 

% Last edited: 22 Dec 2016                                                          % 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

function sup=supportfunc(H,k,a) 368 
%% Optimization variables 369 
w=sdpvar(size(H,2),1); 370 
y=sdpvar(1,1); 371 
  372 
%% Constraints 373 
constraint=[a'*w>=y; H*w<=k]; 374 
  375 
%% Solve 376 
solvesdp(constraint,-y,sdpsettings('verbose',0)); 377 
sup=double(y); 378 
end 379 
 380 
 381 
 382 
 383 
 384 

  



134  Appendix 

DLR-IB-RM-OP-2017-17 

Second, the function for determining the nominal region of attraction, regAttraction, is given. 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Region of attraction                                                              % 

% --------------------------------------------------------------------------------- % 

% Determine region of attraction for the controller.                                % 

% --------------------------------------------------------------------------------- % 

% function RegionAttractionTight=regAttraction(sys,Xf,Xtight,Utight,N)              % 

%                                                                                   %  

% Parameters:                                                                       % 

%       sys     :  state space system                                               % 

%       Xf      :  MRPI projected onto state dimensions                             % 

%       Xtight  :  tightened state constraints                                      % 

%       Utight  :  tightened input constraints                                      % 

%       N       :  prediction horizon                                               % 

% Returns:                                                                          %  

%       RegionAttractionTight  :  region of attraction for the nominal controller   % 

% --------------------------------------------------------------------------------- % 

% FROM: C. Buckner. Tube-based Model Predictive Control for the Approach Maneuver   % 

%          of a Spacecraft to a free-tumbling Target Satellite. Master Thesis,      % 

%          Technische Universität München, 2016.                                    % 

%                                                                                   % 

% Copyright: Caroline Buckner                                                       % 

% Last edited: 22 Dec 2016                                                          % 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

function RegionAttractionTight=regAttraction(sys,Xf,Xtight,Utight,N) 385 
  386 
%% unpacking system and polytopes 387 
[A, B, C, D]=ssdata(sys);       % System matrices 388 
[n m]=size(B);         % State and input dimensions 389 
  390 
f=size(Xf.H,2);      % Terminal, state, input set dimensions 391 
x=size(Xtight.H,2); 392 
u=size(Utight.H,2); 393 
Hf=Xf.H(:,1:f-1);        % Unpack terminal 394 
kf=Xf.H(:,f); 395 
Hx=Xtight.H(:,1:x-1);                  % state 396 
kx=Xtight.H(:,x); 397 
Hu=Utight.H(:,1:u-1);       % input constraint sets 398 
ku=Utight.H(:,u); 399 
  400 
%% Constraint polytope in augmented state space 401 
Ha=[Hf*A Hf*B; Hx zeros(size(Hx,1),m); zeros(size(Hu,1),n) Hu]; 402 
ka=[kf;kx;ku]; 403 
Aug=Polyhedron(Ha,ka); 404 
pre=Aug.projection(1:n); 405 
  406 
%% For prediction horizon 407 
for i=1:N-1 408 
     409 
    % Unpack augmented state space polytope 410 
    p=size(pre.H,2); 411 
    Hp=pre.H(:,1:p-1); 412 
    kp=pre.H(:,p); 413 
     414 
    % Determine pre-set 415 
    Ha=[Hp*A Hp*B; Hx zeros(size(Hx,1),m); zeros(size(Hu,1),n) Hu]; 416 
    ka=[kp;kx;ku]; 417 
    Aug=Polyhedron(Ha,ka); 418 
    pre=Aug.projection(1:n); 419 
     420 
end 421 
RegionAttractionTight=pre; 422 
End 423 



Software   135 

DLR-IB-RM-OP-2017-17 

Next, MRPIsetforTracking, which determines the maximal RPI set to be used as the terminal constraint 

set for the prediction step of the nominal controller. 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% MRPI as the invariant set for tracking                                            % 

% --------------------------------------------------------------------------------- % 

% Approximates MRPI from tightened state and input constraints.                     % 

% --------------------------------------------------------------------------------- % 

% function Oinf = MRPIsetforTracking(A,K,M,X,U,lambda,n,m)                          % 

%                                                                                   % 

%   Parameters:                                                                     % 

%        A      :  CL state matrix                                                  % 

%        K      :  LQR gain                                                         % 

%        M      :  parameterization matrix Mtheta                                   % 

%        X      :  tightened state constraints                                      % 

%        U      :  tightened input constraints                                      % 

%        lambda :  arbitrary scale matrix to ensure feasibility                     % 

%        n      :  dimension of states                                              % 

%        m      :  dimension of inputs                                              % 

%                                                                                   % 

%   Returns: Oinf  :  invariant set for tracking                                    % 

% --------------------------------------------------------------------------------- % 

% FROM: C. Buckner. Tube-based Model Predictive Control for the Approach Maneuver   % 

%          of a Spacecraft to a free-tumbling Target Satellite. Master Thesis,      % 

%          Technische Universität München, 2016.                                    % 

%                                                                                   % 

% Copyright: Caroline Buckner                                                       % 

% Last edited: 22 Dec 2016                                                          % 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

function Oinf = MRPIsetforTracking(A,K,M,X,U,lambda,n,m) 424 
  425 
%% Unpacking polytopes      426 
    Hx=X.H(:,1:n);        % State constraint 427 
    kx=X.H(:,n+1); 428 
    Hu=U.H(:,1:m);       % Input constraint 429 
    ku=U.H(:,m+1); 430 
 431 
%% Build constraint set combining state + actuation spaces     432 
    Hz=blkdiag(Hx,Hu); 433 
    kz = [kx; ku]; 434 
  435 
%% Incorporate parameterized 𝜃-space     436 
    Ho=blkdiag(Hx,Hz*M); 437 
    ko = [kx; lambda*kz]; 438 
    O = Polyhedron(Ho,ko); 439 
  440 
%%  Compute presets 441 
    O1 = preset(O,A,K,M,X,U,n,m); 442 
    O2 = preset(O1,A,K,M,X,U,n,m); 443 
     444 
%% Iteratively compare presets until Maximal set is found    445 
    while O2~=O1 446 
  447 
        O1 = O2; 448 
        O2 = preset(O1,A,K,M,X,U,n,m); 449 
  450 
    end 451 
    Oinf = O2;     452 
end 453 
  454 
  455 
%% Function for computing pre-sets 456 
function PreSet = preset(O,A,K,M,X,U,n,m) 457 
     458 
% Unpack polytopes 459 
    Hx=X.H(:,1:n);              % State constraint 460 
    kx=X.H(:,n+1); 461 



136  Appendix 

DLR-IB-RM-OP-2017-17 

    Hu=U.H(:,1:m);       % Input constraint 462 
    ku=U.H(:,m+1); 463 
    Ho=O.A;        % Set incorporating 𝜃-space 464 
    ko=O.b; 465 
     466 
    L = [-K eye(m)]*M; 467 
     468 
 469 
%  Build preset inequalities 470 
    Hp=[Ho*A; [Hx zeros(size(Hx,1),size(L,2))]; Hu*[K L]]; 471 
    kp=[ko;kx;ku]; 472 
     473 
% convert to polyhedron 474 
    PreSet=Polyhedron(Hp,kp); 475 
       476 
end 477 

 478 

Now, the function which builds the MPT controller TBRMPCcontroller is given. 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Double Pendulum: Tube-based robust model predictive controller                    % 

% --------------------------------------------------------------------------------- % 

% This function constructs a controller object with the additional tube-based robust% 

% MPC constraints and offset cost.                                                  % 

% --------------------------------------------------------------------------------- % 

% function ctrl=TBRMPCcontroller(sys,params)                                        % 

%                                                                                   % 

%   Parameters:                                                                     % 

%       sys     :  MATLAB discrete state space object                               % 

%       params  :  parameter structure containing the fields:                       %  

%                 .Xtight    :  tightened state constraint set                      % 

%                 .Utight    :  tightened ctrl constraint set                       % 

%                 .Oinf      :  terminal constraint set / invariant set for tracking% 

%                 .W         :  disturbance bounds                                  % 

%                 .Z         :  approximated mRPI set                               % 

%                 .Mtheta    :  matrix describing parametrization                   % 

%                 .Q         :  state weighting matrix                              % 

%                 .R         :  control input weighting matrix                      %  

%                 .P         :  terminal weighting matrix                           % 

%                 .T         :  offset weighting matrix                             % 

%                 .Kdr       :  disturbance rejection controller                    % 

%                 .N         :  prediction horizon                                  % 

%                                                                                   %  

%   Returns:      ctrl       :  the controller - YALMIP optimization object         % 

%                                                                                   %        

% --------------------------------------------------------------------------------- % 

% FROM: C. Buckner. Tube-based Model Predictive Control for the Approach Maneuver   % 

%          of a Spacecraft to a free-tumbling Target Satellite. Master Thesis,      % 

%          Technische Universität München, 2016.                                    % 

%                                                                                   % 

% Copyright: Caroline Buckner                                                       % 

% Last edited: 22 Dec 2016                                                          % 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

function ctrl=TBRMPCcontroller(sys,params) 479 
   480 
%% Unpack system 481 
display(sprintf('\twelcome to controller...\n')) 482 
display(sprintf('\t\tunpacking system....\n')) 483 
[A B C D]=ssdata(sys);       % System matrices 484 
[n m]=size(B);       % State and input dimensions 485 
nu=1;         % Control horizon = 1 486 
  487 
%% Unpack sets 488 
display(sprintf('\t\tunpacking sets....\n')) 489 
Ho=params.Oinf.H(:,1:4);                                    % Invariant set for tracking 490 
ko=params.Oinf.H(:,5); 491 
  492 
Hz=params.Z.H(:,1:2);                                              % mRPI 493 



Software   137 

DLR-IB-RM-OP-2017-17 

kz=params.Z.H(:,3); 494 
  495 
Axtight=params.Xtight.H(:,1:2);                             % Tightened state constraints 496 
bxtight=params.Xtight.H(:,3); 497 
  498 
Autight=params.Utight.H(:,1:2);                            % Tightened input constraints 499 
butight=params.Utight.H(:,3); 500 
  501 
display(sprintf('\t\tbuild optimization problem...\n')) 502 
  503 
%% Optimization variables 504 
v=sdpvar(repmat(m,1,params.N),repmat(1,1,params.N));  % Nominal actuation 505 
z=sdpvar(repmat(n,1,params.N+1),repmat(1,1,params.N+1));  % Nominal state 506 
x=sdpvar(n,1);        % Real state 507 
theta_bar=sdpvar(2,1);      % Artificial steady state 508 
theta=sdpvar(2,1);       % Steady state 509 
  510 
  511 
%% Helper matrices - breakdown space into state and actuation 512 
Mx=[eye(n) zeros(n,m)]*params.Mtheta; 513 
Mu=[zeros(m,n) eye(m)]*params.Mtheta; 514 
  515 
  516 
display(sprintf('\t\tbuild objective function and constraints....\n')) 517 
%% Objective functions and constraints  518 
objfunc=0; 519 
constraint=[]; 520 
  521 
% k=1:N step cost 522 
for k=1:params.N 523 
   objfunc=objfunc+0.5*((z{k}-Mx*theta_bar)'*params.Q*(z{k}-Mx*theta_bar)+... 524 
       (v{k}-Mu*theta_bar)'*params.R*(v{k}-Mu*theta_bar));  525 
   constraint=[constraint, z{k + 1}==A*z{k}+B*v{k}];  526 
   constraint=[constraint, Axtight*z{k}<=bxtight, Autight*v{k}<=butight]; 527 
end 528 
% Terminal cost k=N+1 529 
objfunc=objfunc+0.5*(z{params. N + 1}-Mx*theta_bar)'*params.P*(z{params.N + 1}-Mx*theta_bar); 530 
constraint=[constraint, Ho*[z{params. N + 1};theta_bar]<=ko]; 531 
% Offset cost 532 
objfunc=objfunc+0.5*((theta_bar-theta)'*params.T*(theta_bar-theta)); 533 
% Terminal set constraint 534 
constraint=[constraint, Hz*(x-z{1})<=kz]; 535 
  536 
% Nominal output 537 
nomout=[v{1}+params.K*(x-z{1});z{1}]; 538 
  539 
% Controller object 540 
display(sprintf('\t\tsending to optimizer....\n')) 541 
options=sdpsettings('verbose',0); 542 
ctrl=optimizer(constraint,objfunc,options,[x,theta],nomout); 543 
  544 
display(sprintf('\t\tleaving controller....\n')) 545 
  546 
end 547 

 

  



138  Appendix 

DLR-IB-RM-OP-2017-17 

And finally, the function used for the simulation of the controller, TBRMPCsimulator: 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Double Pendulum: Tube-based robust model predictive controller simulation         % 

% --------------------------------------------------------------------------------- % 

%This function simulates the control behaviour for a given set point and init state.% 

% --------------------------------------------------------------------------------- % 

% function [x,z,u,y] = TBRMPCsimulator(sys,ctrl,Nsim,x0,theta,w)                    % 

%                                                                                   % 

%   Parameters:                                                                     % 

%       sys     :  MATLAB discrete state space object                               % 

%       params  :  parameter structure containing the fields:                       %  

%                 .Xtight    :  tightened state constraint set                      % 

%                 .Utight    :  tightened ctrl constraint set                       % 

%                 .Oinf      :  terminal constraint set / invariant set for tracking% 

%                 .W         :  disturbance bounds                                  % 

%                 .Z         :  approximated mRPI set                               % 

%                 .Mtheta    :  matrix describing parametrization                   % 

%                 .Q         :  state weighting matrix                              % 

%                 .R         :  control input weighting matrix                      %  

%                 .P         :  terminal weighting matrix                           % 

%                 .T         :  offset weighting matrix                             % 

%                 .Kdr       :  disturbance rejection controller                    % 

%                 .N         :  prediction horizon                                  % 

%                                                                                   %  

%   Returns:      ctrl       :  the controller - YALMIP optimization object         % 

%                                                                                   %        

% --------------------------------------------------------------------------------- % 

% FROM: C. Buckner. Tube-based Model Predictive Control for the Approach Maneuver   % 

%          of a Spacecraft to a free-tumbling Target Satellite. Master Thesis,      % 

%          Technische Universität München, 2016.                                    % 

%                                                                                   % 

% Copyright: Caroline Buckner                                                       % 

% Last edited: 22 Dec 2016                                                          % 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  548 
function [x,z,u,y] = TBRMPCsimulator(sys,ctrl,Nsim,x0,theta,w) 549 
  550 
%% Unpack system 551 
display(sprintf('\twelcome to simulator....\n')) 552 
display(sprintf('\t\tunpacking system....\n')) 553 
[A B C D]=ssdata(sys);      % System matrices 554 
[n,m]=size(B);       % state and input dimensions 555 
 556 
%% Initialize solution vectors 557 
display(sprintf('\t\tbuilding sim vectors....\n')) 558 
x=[x0,zeros(n,Nsim)];      % Real state 559 
z=zeros(n,Nsim);             % Nominal state 560 
u=zeros(m,Nsim);             % Robust actuation 561 
y=zeros(1,Nsim);              % Output 562 
  563 
%% Control action at each simulation step 564 
display(sprintf('\t\tctrl at ea time step....\n')) 565 
for k=1:Nsim 566 
     567 
    op=ctrl{[x(: , k) theta]};     % Call controller 568 
     569 
    if max(isnan(op))==1                    % Exception catching for infeasibility 570 
        error(['Problem has become infeasible']) 571 
    end 572 
     573 
    u(:,k)=op(1:m);      % Robust actuation from controller 574 
    z(:,k)=op(m+1:end);     % Nominal state from controller 575 
    x(:,k+1)=A*x(:,k)+B*u(:,k)+w(:,k);      % Determine real successive state from system 576 
    y(:,k)=C*x(:,k);     % System output 577 
end 578 
end 579 
  

 



Software   139 

DLR-IB-RM-OP-2017-17 

B. Satellite Rendezvous controller design 

The controller for the satellite rendezvous problem was designed in chapter 7. The designed parameters and 

sets were determined using the following script. Any function calls made within this program will be referenced 

to a function defined in the preceding section or given following this main function. 

 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Satellite Rendezvous: tube-based robust MPC design script                         % 

% --------------------------------------------------------------------------------- % 

% This script details the design process of the tube-based robust model predictive  % 

% controller for the satellite rendezvous problem (refer to: Part 2, particularly   % 

% chapter 8). The process begins with the robust constraints. The disturbance       % 

% rejection gain and then the mRPI set are determined. The tightened                % 

% constraints are thereby given. Subsequently, the terminal (invariant set          % 

% for tracking) and admissible sets and the region of attraction are                % 

% determined. The nominal controller is set as an mpc object in                     % 

% 'SatRend_controller_MPC_toolbox_initscript.m'                                     % 

% --------------------------------------------------------------------------------- % 

% --------------------------------------------------------------------------------- % 

% FROM: C. Buckner. Tube-based Model Predictive Control for the Approach Maneuver   % 

%          of a Spacecraft to a free-tumbling Target Satellite. Master Thesis,      % 

%          Technische Universität München, 2016.                                    % 

%                                                                                   % 

% Copyright: Caroline Buckner                                                       % 

% Last edited: 22 Dec 2016                                                          % 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

   1 
clc 2 
clear all 3 
  4 
%% Define discrete model 5 
nOrbit=0.0012;                                                     % orbital rate 6 
  7 
Ac=[         0 0          0         1        0 0                % Continuous state matrix 8 
             0 0          0         0        1 0 9 
             0 0          0         0        0 1 10 
    3*nOrbit^2 0          0         0 2*nOrbit 0 11 
             0 0          0 -2*nOrbit        0 0 12 
             0 0 3*nOrbit^2         0        0 0]; 13 
 14 
Bc=[0 0 0                                                      % Continuous input matrix 15 
    0 0 0 16 
    0 0 0 17 
    1 0 0 18 
    0 1 0 19 
    0 0 1]; 20 
Cc=eye(6);                                                     % Continuous output matrix 21 
  22 
sys=ss(Ac,Bc,Cc,[],0.5);                                % Discretized state space, Ts=0.5                                                         23 
  24 
[A,B,C,D]=ssdata(sys); 25 
n=6;                                                            % Model matrix dimensions  26 
m=3;                                                            % (refer to chapter 3) 27 
p=6; 28 
  29 
%% Define polytopic constraints 30 
% State constraint - relative position and velocity 31 
Ax=[-1 0 0 0 0 0 32 
    1 0 0 0 0 0 33 
    0 -1 0 0 0 0 34 
    0 1 0 0 0 0 35 
    0 0 -1 0 0 0 36 
    0 0 1 0 0 0 37 
    0 0 0 -1 0 0 38 
    0 0 0 1 0 0 39 



140  Appendix 

DLR-IB-RM-OP-2017-17 

    0 0 0 0 -1 0 40 
    0 0 0 0 1 0 41 
    0 0 0 0 0 -1 42 
    0 0 0 0 0 1]; 43 
bx=[100 44 
    100  45 
    100 46 
    100 47 
    100 48 
    100 49 
    1 50 
    1 51 
    1 52 
    1 53 
    1 54 
    1]; 55 
  56 
% Actuation constraint 57 
%|F|max=65N -> 4.3e-2 m/s^2 58 
Au=[-1 0 0 59 
    1 0 0 60 
    0 -1 0 61 
    0 1 0 62 
    0 0 -1 63 
    0 0 1]; 64 
bu=0.0433333*ones(6,1); 65 
  66 
 67 
  68 
% Disturbance bound 69 
r=4.6662;                                       % radius of sphere (refer to chapter 7) 70 
Aw=[-1 0 0 0 0 0 71 
    1 0 0 0 0 0 72 
    0 -1 0 0 0 0 73 
    0 1 0 0 0 0 74 
    0 0 -1 0 0 0 75 
    0 0 1 0 0 0 76 
    0 0 0 1 0 0 77 
    0 0 0 -1 0 0 78 
    0 0 0 0 1 0 79 
    0 0 0 0 -1 0 80 
    0 0 0 0 0 1 81 
    0 0 0 0 0 -1]; 82 
  83 
bw=[r*ones(6,1); zeros(6,1)]; 84 
  85 
% Create state, input, disturbance polyhedrons 86 
doubleX=Polyhedron(Ax,bx); 87 
doubleU=Polyhedron(Au,bu); 88 
scriptW=Polyhedron(Aw,bw); 89 
  90 
%% LQR parameters 91 
% Values initially chosen. Tuned to: 92 
Q=10e5*eye(6);                                                        % State weights              93 
R=100*eye(3);                                                         % Actuation weights 94 
[Klqr Plqr e]=dlqr(A,B,Q,R);           % determine LQR gain and sol. to Riccatti equation 95 
Klqr=-Klqr; 96 
  97 
  98 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 99 
%% Determination of the disturbance rejection gain 100 
% Refer to section 5.2.1  101 
display(sprintf('\nDetermining K_dr CL dist rejection gain....\n')) 102 
  103 
% Set constants 104 
a=zeros(6,1);                                    % zeros vector 105 
p=0.4;                                % weight on control constraint (rho, refer to [25]) 106 
wVert=scriptW.V;                                 % vertices of disturbance bound 107 
l=(1/(65/1500))*Au;                              % normalized input 108 



Software   141 

DLR-IB-RM-OP-2017-17 

h=[(1/100)*Ax(1:6,:); Ax(7:12,:)];               % and state constraint inequalities 109 
           110 
cvx_begin sdp quiet                               % optimization problem: 111 
    variable Y(3,6) 112 
    variable W(6,6) symmetric 113 
    variable Gamma(1,1) banded(0,1) 114 
  115 
    lamda=1e-5; 116 
                  117 
    minimize (Gamma)                              % minimize optimization parameter Gamma 118 
    subject to 119 
        [lamda*W,a,(A*W+B*Y)';a',1-lamda,wVert(1,:);(A*W+B*Y),wVert(1,:)',W]>=0 120 
        [lamda*W,a,(A*W+B*Y)';a',1-lamda,wVert(2,:);(A*W+B*Y),wVert(2,:)',W]>=0 121 
        [lamda*W,a,(A*W+B*Y)';a',1-lamda,wVert(3,:);(A*W+B*Y),wVert(3,:)',W]>=0 122 
        [lamda*W,a,(A*W+B*Y)';a',1-lamda,wVert(4,:);(A*W+B*Y),wVert(4,:)',W]>=0 123 
        [lamda*W,a,(A*W+B*Y)';a',1-lamda,wVert(5,:);(A*W+B*Y),wVert(5,:)',W]>=0 124 
        [lamda*W,a,(A*W+B*Y)';a',1-lamda,wVert(6,:);(A*W+B*Y),wVert(6,:)',W]>=0 125 
        [lamda*W,a,(A*W+B*Y)';a',1-lamda,wVert(7,:);(A*W+B*Y),wVert(7,:)',W]>=0 126 
        [lamda*W,a,(A*W+B*Y)';a',1-lamda,wVert(8,:);(A*W+B*Y),wVert(8,:)',W]>=0 127 
        [p^2,(Y'*l(1,:)')';(Y'*l(1,:)'),W]>=0 128 
        [p^2,(Y'*l(2,:)')';(Y'*l(2,:)'),W]>=0 129 
        [p^2,(Y'*l(3,:)')';(Y'*l(3,:)'),W]>=0 130 
        [p^2,(Y'*l(4,:)')';(Y'*l(4,:)'),W]>=0 131 
        [p^2,(Y'*l(5,:)')';(Y'*l(5,:)'),W]>=0 132 
        [p^2,(Y'*l(6,:)')';(Y'*l(6,:)'),W]>=0 133 
        [Gamma,(W*h(1,:)')';(W*h(1,:)'),W]>=0 134 
        [Gamma,(W*h(2,:)')';(W*h(2,:)'),W]>=0 135 
        [Gamma,(W*h(3,:)')';(W*h(3,:)'),W]>=0 136 
        [Gamma,(W*h(4,:)')';(W*h(4,:)'),W]>=0 137 
        [Gamma,(W*h(5,:)')';(W*h(5,:)'),W]>=0 138 
        [Gamma,(W*h(6,:)')';(W*h(6,:)'),W]>=0 139 
cvx_end                                              % To obtain a W and Y which give the  140 
Kdr=Y*inv(W);                                        % disturbance rejection gain 141 
Pdr=inv(W); 142 
   143 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 144 
% Now use Kdr to determine mRPI set 145 
% refer to section 5.2.2, Algorithms 5-1 and 5-2, [33, 63] 146 
 147 
display(sprintf('Determining OPT mRPI....\n')) 148 
  149 
Akc=A+B*Kdr;                                                                          150 
  151 
H=[r 0 0 0 0 0                                           % Non-singular matrix to define  152 
    0 r 0 0 0 0                                          % disturbance bound as zonotope 153 
    0 0 r 0 0 0 154 
    0 0 0 1 0 0 155 
    0 0 0 0 1 0 156 
    0 0 0 0 0 1];  157 
  158 
eps=0.01;                                                % Percentage difference 159 
  160 
s=1;                                                                                  161 
  162 
alpha_goal=norm(inv(H)*(Akc^(s-1))*H,Inf);     % Find initial alpha from support function 163 
  164 
Mplus=zeros(n,1);Mminus=zeros(n,1);        % Initialize sum and difference of error bound 165 
As=Akc^(s-1);                              % Determine initial error bound 166 
  167 
for count=1:n 168 
   Mplus(count)=Mplus(count)+supportfunc(Aw,bw,As(count,:)');   % refer to definition of  169 
   Mminus(count)=Mminus(count)+supportfunc(Aw,bw,-As(count,:)');   %  supportfunc() above 170 
end 171 
  172 
Msum=max(max(Mplus),max(Mminus)); 173 
  174 
display('Current (eps/(eps+Msum)), alpha_goal, Msum are:') 175 
  176 
while alpha_goal >= ((eps)/(eps+Msum));     % While alpha is greater than the error bound 177 



142  Appendix 

DLR-IB-RM-OP-2017-17 

 178 
     fprintf('\t%d \t %d \t %d\n',(eps/(eps+Msum)), alpha_goal, Msum) 179 
    180 
    s=s+1;             % Increment s 181 
    182 
    alpha_goal=norm(inv(H)*(Akc^(s-1))*H,Inf);       % Calculate the new alpha from  183 

 % support function 184 
    As=Akc^(s-1);                                    % Raise Akc to current power of s 185 
    186 
   for count1=1:n 187 
       Mplus(count1)=Mplus(count1)+supportfunc(Aw,bw,As(count1,:)');    % Determine new  188 

% error bound 189 
       Mminus(count1)=Mminus(count1)+supportfunc(Aw,bw,-As(count1,:)'); 190 
   end 191 
    192 
   Msum=max(max(Mplus),max(Mminus)); 193 
    194 
End 195 
Ba=[1 0 0 0 0 0                               % Unit norm ball for definition of scriptW 196 
    0 1 0 0 0 0                               % as a zonotope 197 
    0 0 1 0 0 0 198 
    0 0 0 1 0 0 199 
    0 0 0 0 1 0 200 
    0 0 0 0 0 1 201 
    -1 0 0 0 0 0 202 
    0 -1 0 0 0 0 203 
    0 0 -1 0 0 0 204 
    0 0 0 -1 0 0 205 
    0 0 0 0 -1 0 206 
    0 0 0 0 0 -1]; 207 
Bb=Polyhedron(Ba,[ones(3,1);zeros(3,1);ones(3,1);zeros(3,1)]); 208 
Bi=Bb; 209 
for i=1:1:s-1 210 
    Bi=Bi*Bb; 211 
end 212 
Hz=[]; 213 
for i=1:1:s                                                           % Using obtained s,  214 
    Hz=[Hz Akc^(s-i)*H]; 215 
end 216 
Z=plus(((1-alpha_goal)^-1)*Hz*Bi,(eye(n)-Akc)^-1*a);                        % Obtain mRPI 217 
  218 
%% Tightened constraints 219 
Xtight=minus(doubleX,Z);                     % equations (7-14)-(7-17)  220 
KZ=mtimes(Kdr,Z); 221 
Utight=minus(doubleU,KZ); 222 
display('tight constraints obtained') 223 
  224 
% Split the polyhedrons into A matrix and b vector of inequalities  225 
doubleZ=mtimes(Xtight,Utight); 226 
Az=doubleZ.H(:,1:9); 227 
bz=doubleZ.H(:,10); 228 
  229 
Autight=Utight.H(:,1:3); 230 
butight=Utight.H(:,4); 231 
Axtight=Xtight.H(:,1:6); 232 
bxtight=Xtight.H(:,7); 233 
  234 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 235 
%% PARAMETERIZATION of targets and set points 236 
display('parameterizing') 237 
[Mtheta Ntheta]=ssCharacterization(sys);    % Refer to following function  238 
                                                            % definition 239 
L=[-Klqr eye(m)]*Mtheta;                                    % Form CL matrices, refer to 240 
(4-54)  241 
Ae=[A+B*Klqr B*L;zeros(n,n) eye(n)];     % CL system 242 
  243 
%% Determine invariant set for tracking 244 
display('set for tracking') 245 
lambda=0.99; 246 



Software   143 

DLR-IB-RM-OP-2017-17 

Oinf=MRPIsetforTracking(Ae,Klqr,Mtheta,Xtight,Utight,lambda,n,m);     % Refer to function  247 
           % definition above 248 

display('projecting') 249 
Ox=projection(Oinf,1:length(Ac));     % Project into state space 250 
display('Ox Obtained') 251 
  252 
%% Admissible states, inputs, outputs 253 
Theta=Polyhedron(Az*Mtheta,bz); 254 
Xa=affineMap(Theta,... 255 
    [eye(size(Ax,2)),zeros(size(Ax,2),size(Au,2))]*Mtheta); 256 
Ua=affineMap(Theta,...  257 
    [zeros(size(Au,2),size(Ax,2)) eye(size(Au,2))]*Mtheta); 258 
Ya=affineMap(Theta,Ntheta); 259 
  260 
 261 
 262 
 263 
%% Region of attraction 264 
display(sprintf('reg attraction')) 265 
Xrat=regAttraction(sys,Ox,Xtight,Utight,40);         % Refer to function  266 
Xra=Xrat+Z;                % definition above 267 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 268 
  269 
%% Control parameters 270 
display(sprintf('Building controller object....\n')) 271 
  272 
display(sprintf('\tInit....\n')) 273 
params.Q=Q;                                                          % State weights  274 
params.R=R;                                                          % Input weights 275 
params.P=Plqr;                                                  % LQR sol to Riccatti eq 276 
params.W=scriptW;                                                    % uncertainty bound 277 
params.Z=Z;                                                          % mRPI 278 
params.K=Kdr;                                                % disturbance rejection gain 279 
params.Xtight=Xtight;                                        % tightened state constraint 280 
params.Utight=Utight;                                        % tightened input constraint 281 
params.Oinf=Oinf;                                            % invariant set for tracking 282 
params.T=1000*Plqr;                                                  % offset weight 283 
params.N=40;                                                         % prediction horizon 284 
params.Nsim=1201;                            % simulation horizon in [timesteps], = 600 s 285 
z_s1=[1.97;0;4.23;0;0;0;0;0;0];                                      % nominal set point 286 
params.theta=Mtheta'*z_s1;                                 % the previous in theta space 287 
params.Mtheta=Mtheta;                                      % parameterization matrices 288 
params.Ntheta=Ntheta; 289 
refdata=load('C:\Users\Carly\Desktop\DLR\Data\tumble\tumble_wy_3_5_orbital_plane_step05se290 
c_1.dat');                                                         % reference data 291 
  292 
%% Initialize controller 293 
SatRend_controller_MPC_toolbox_initscript   % Refer to the following definition 294 

 

  



144  Appendix 

DLR-IB-RM-OP-2017-17 

This main function calls two functions additional to those described in part A. First, the function 

ssCharacterization determines the parameterization matrices 𝑀𝜃 and 𝑁𝜃. 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Parameterization method for relating between targets and set points               % 

% --------------------------------------------------------------------------------- % 

% Parameterizing the relationship of targets and set points using the method        % 

% given in [1]                                                                      % 

% --------------------------------------------------------------------------------- % 

% function [Mtheta,Ntheta]=ssCharacterization(sys)                                  % 

%                                                                                   % 

%     Parameter: sys: state space system                                            % 

%                                                                                   % 

%     Returned:                                                                     % 

%           Mtheta : matrix relating states+actuation to parameterization           % 

%                       varbiale Theta                                              % 

%           Ntheta : matrix relating output to parameterization                     % 

%                       varbiale Theta                                              % 

% --------------------------------------------------------------------------------- % 

% FROM: C. Buckner. Tube-based Model Predictive Control for the Approach Maneuver   % 

%          of a Spacecraft to a free-tumbling Target Satellite. Master Thesis,      % 

%          Technishe Universität München, 2016.                                     % 

%                                                                                   % 

% Copyright: Caroline Buckner                                                       % 

% Last edited: 22 Dec 2016                                                          % 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

function [Mtheta,Ntheta]=ssCharacterization(sys) 295 
% unpack system 296 
[A,B,C,D]=ssdata(sys); 297 
n=size(A,2); 298 
m=size(B,2); 299 
p=size(C,1); 300 
  301 
% Build E and F (refer to section 4.4.2 302 
E=[A-eye(n) B;C zeros(p,m)]; 303 
F=[zeros(n,p); eye(p)]; 304 
r=rank(E); 305 
  306 
% SVD on matrix E 307 
[U,S,V]=svd(E); 308 
Up = U(:,r+1:end); 309 
U = U(:,1:r);      310 
Vp = V(:,r+1:end); 311 
V = V(:,1:r); 312 
S = S(1:r,1:r); 313 
  314 
% Build Mtheta, Ntheta 315 
if r==(n+p) 316 
   G=eye(p); 317 
else 318 
    G=[F'*Up null((F'*Up)')]; 319 
end 320 
  321 
if r==(n+m) 322 
    Mtheta=V/S*U'*F*G; 323 
    Ntheta=G; 324 
else 325 
    Mtheta=[V/S*U'*F*G Vp]; 326 
    Ntheta=[G zeros(p,n+m-r)]; 327 
end 328 
end 329 

  



Software   145 

DLR-IB-RM-OP-2017-17 

Second, the initialization script for the mpc controller object to be used in simulation, 

SatRend_controller_MPC_toolbox_initscript. 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% mpc Controller Object initiation script                                           % 

% --------------------------------------------------------------------------------- % 

% This script initializes the Model Predictive Control toolbox controller object    % 

% to be used with the accompanying simulation. Sample time = 0.5 s.                 % 

% --------------------------------------------------------------------------------- % 

% --------------------------------------------------------------------------------- % 

% FROM: C. Buckner. Tube-based Model Predictive Control for the Approach Maneuver   % 

%          of a Spacecraft to a free-tumbling Target Satellite. Master Thesis,      % 

%          Technische Universität München, 2016.                                    % 

%                                                                                   % 

% Copyright: Caroline Buckner                                                       % 

% Last edited: 22 Dec 2016                                                          % 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  330 
%% Initialize constants 331 
  332 
n=0.0012;                                              % target orbital rate [rad/s] 333 
% Nsim=600;                                            % simulation horizon [s]   334 
Ts=0.5;                                                % sample time [s]        335 
                                                       % initial state 336 
dx=39; 337 
dy=39; 338 
dz=4.23; 339 
ddx=0; 340 
ddy=0; 341 
ddz=0; 342 
 343 
%% SS model of the system 344 
% Continuous time model  345 
A=[     0 0      0    1   0 0             % State matrix 346 
        0 0      0    0   1 0 347 
        0 0      0    0   0 1 348 
    3*n^2 0      0    0 2*n 0 349 
        0 0      0 -2*n   0 0 350 
        0 0 -3*n^2    0   0 0]; 351 
 B=[0 0 0        % Input matrix 352 
    0 0 0 353 
    0 0 0 354 
    1 0 0 355 
    0 1 0 356 
    0 0 1]; 357 
C=eye(6);         % Output matrix 358 
D=zeros(6,3);        % Feedthrough matrix 359 
  360 
sys=ss(A,B,C,[]);                                        % Combine into a state space 361 
model/object 362 
[A,B,C,D]=ssdata(sys); 363 
  364 
% Discretized SS model  365 
sysd=c2d(sys,0.5) 366 
[Ad,Bd,Cd,Dd]=ssdata(sysd); 367 
  368 
% Extended SS for MPC, incorporating offset cost 369 
A=[        1 0        0     0.5 0.0003   0 0 0 0 0 0 0; 370 
   -2.16e-10 1        0 -0.0003    0.5   0 0 0 0 0 0 0; 371 
           0 0        1       0      0 0.5 0 0 0 0 0 0; 372 
     2.16e-6 0        0       1 0.0012   0 0 0 0 0 0 0; 373 
   -1.296e-9 0        0 -0.0012      1   0 0 0 0 0 0 0; 374 
           0 0 -2.16e-6       0      0   1 0 0 0 0 0 0 375 
           0 0        0       0      0   0 0 0 0 0 0 0 376 
           0 0        0       0      0   0 0 0 0 0 0 0 377 
           0 0        0       0      0   0 0 0 0 0 0 0 378 
           0 0        0       0      0   0 0 0 0 0 0 0 379 
           0 0        0       0      0   0 0 0 0 0 0 0 380 
           0 0        0       0      0   0 0 0 0 0 0 0]; 381 



146  Appendix 

DLR-IB-RM-OP-2017-17 

B=[   0.125   5e-5     0; 382 
      -5e-5  0.125     0; 383 
          0      0 0.125; 384 
        0.5 0.0003     0; 385 
    -0.0003    0.5     0; 386 
          0      0   0.5 387 
          0      0     0 388 
          0      0     0 389 
          0      0     0 390 
          0      0     0 391 
          0      0     0 392 
          0      0     0]; 393 
C=[eye(12)]; 394 
D=zeros(12,3); 395 
   396 
%% SS model for control 397 
sysx=ss(A,B,C,D,0.5); 398 
sysy=minreal(sysx); 399 
 400 
%% mpc Object 401 
controller_tumbling3d=mpc(sysx,0.5,40,1) 402 
  403 
%% Controller constraints 404 
% Horizons 405 
controller_tumbling3d.PredictionHorizon=40; 406 
controller_tumbling3d.ControlHorizon=1; 407 
  408 
 409 
 410 
% Nominal actuation min/max constraints 411 
controller_tumbling3d.MV(1).Min=-0.043313455523267; 412 
controller_tumbling3d.MV(1).Max=0.043313455525738; 413 
controller_tumbling3d.MV(2).Min=-0.043333299864778; 414 
controller_tumbling3d.MV(2).Max=0.043333300135222; 415 
controller_tumbling3d.MV(3).Min=-0.043313449862363; 416 
controller_tumbling3d.MV(3).Max=0.043313449859726; 417 
  418 
% Nominal state constraints 419 
controller_tumbling3d.OV(1).Min=-95.333305708733178; 420 
controller_tumbling3d.OV(1).Max=95.333306340018140; 421 
controller_tumbling3d.OV(2).Min=-95.333306023326998; 422 
controller_tumbling3d.OV(2).Max=95.333306025424321; 423 
controller_tumbling3d.OV(3).Min=-95.333305714396644; 424 
controller_tumbling3d.OV(3).Max=95.333306334354674; 425 
controller_tumbling3d.OV(4).Min=-1.000000000000000; 426 
controller_tumbling3d.OV(4).Max=0.999999684357523; 427 
controller_tumbling3d.OV(5).Min=-1.000000000892764; 428 
controller_tumbling3d.OV(5).Max=0.999999999107236; 429 
controller_tumbling3d.OV(6).Min=-1.000000000000000; 430 
controller_tumbling3d.OV(6).Max=0.999999690020980; 431 
  432 
% State and actuation weights  433 
controller_tumbling3d.W.ManipulatedVariables=100*eye(3); 434 
controller_tumbling3d.W.OutputVariables=[10e5 0 0 0 0 0 0 0 0 0 0 0 435 
                                            0 10e5 0 0 0 0 0 0 0 0 0 0 436 
                                            0 0 10e5 0 0 0 0 0 0 0 0 0 437 
                                            0 0 0 10e5 0 0 0 0 0 0 0 0 438 
                                            0 0 0 0 10e5 0 0 0 0 0 0 0 439 
                                            0 0 0 0 0 10e5 0 0 0 0 0 0 440 
                                            0 0 0 0 0 0 0 0 0 0 0 0 441 
                                            0 0 0 0 0 0 0 0 0 0 0 0 442 
                                            0 0 0 0 0 0 0 0 0 0 0 0 443 
                                            0 0 0 0 0 0 0 0 0 0 0 0 444 
                                            0 0 0 0 0 0 0 0 0 0 0 0 445 
                                            0 0 0 0 0 0 0 0 0 0 0 0]; 446 
  447 
% Terminal state and offset weights and (invariant set for tracking) 448 
% terminal constraint 449 
Y=struct('Weight',[1.000000000031104,1,1.000000000003456,2.000009600000385,... 450 



Software   147 

DLR-IB-RM-OP-2017-17 

    2.000009600038402,2.000000000003456,1000*1.000000000031104,1000,... 451 
    452 
1000*1.000000000003456,1000*2.000009600000385,1000*2.000009600038402,1000*2.0000000000034453 
56],... 454 
    'Min',[-95.333305708733192,-95.333306023327012,-95.333305714396658,-1,-1,-1,... 455 
            -0.276806311745190,-46.445315091220948,-2.757660444863814e+02,... 456 
            -1.333304627419510e+02,-1.343679944982861e+02,-1.465918324789734e+02],... 457 
    'Max',[95.333306340029267,95.333306025435476,95.333306334365830,... 458 
            0.999999684357523,0.999999999107237,0.999999690020981,... 459 
            6.086883384630116e+02,6.125513619825520e+02,4.495870645805429e+02,... 460 
            7.589576390831120,7.416002199688840,0.066603242987696]); 461 
U=struct('Weight',[10,10,10]); 462 
  463 
setterminal(controller_tumbling3d,Y,U) 464 
  465 
% Set inital conditions of controller 466 
state=mpcstate(controller_tumbling3d,[39,39,4.23,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,467 
0],[],[0,0,0],[]); 468 

 

The following scripts was used in the design the of parameter 𝜆 for the determination of 𝐾𝑑𝑟. 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Satellite Rendezvous Kdr design: determination of lambda                          % 

% --------------------------------------------------------------------------------- % 

% This script produces an l-curve for the Kdr determining optimization problem.     % 

% --------------------------------------------------------------------------------- % 

% --------------------------------------------------------------------------------- % 

% FROM: C. Buckner. Tube-based Model Predictive Control for the Approach Maneuver   % 

%          of a Spacecraft to a free-tumbling Target Satellite. Master Thesis,      % 

%          Technishe Universität München, 2016.                                     % 

%                                                                                   % 

% Copyright: Caroline Buckner                                                       % 

% Last edited: 22 Dec 2016                                                          % 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

%% Define discrete model 469 
nOrbit=0.0012;                                                 % orbital rate 470 
  471 
Ac=[         0 0          0         1        0 0            % Continuous state matrix 472 
             0 0          0         0        1 0 473 
             0 0          0         0        0 1 474 
    3*nOrbit^2 0          0         0 2*nOrbit 0 475 
             0 0          0 -2*nOrbit        0 0 476 
             0 0 3*nOrbit^2         0        0 0]; 477 
Bc=[0 0 0                                                   % Continuous input matrix 478 
    0 0 0 479 
    0 0 0 480 
    1 0 0 481 
    0 1 0 482 
    0 0 1]; 483 
Cc=eye(6);                                              % Continuous output matrix 484 
  485 
sys=ss(Ac,Bc,Cc,[],0.5);                                % Discretized state space, Ts=0.5                                                         486 
  487 
[A,B,C,D]=ssdata(sys); 488 
  489 
n=6;                                                         % Model matrix dimensions  490 
m=3;                                                         % (refer to chapter 3) 491 
p=6; 492 
  493 
%% Define polytopic constraints 494 
% State constraint - relative position and velocity 495 
Ax=[-1 0 0 0 0 0 496 
    1 0 0 0 0 0 497 
    0 -1 0 0 0 0 498 
    0 1 0 0 0 0 499 
    0 0 -1 0 0 0 500 
    0 0 1 0 0 0 501 



148  Appendix 

DLR-IB-RM-OP-2017-17 

    0 0 0 -1 0 0 502 
    0 0 0 1 0 0 503 
    0 0 0 0 -1 0 504 
    0 0 0 0 1 0 505 
    0 0 0 0 0 -1 506 
    0 0 0 0 0 1]; 507 
bx=[100 508 
    100  509 
    100 510 
    100 511 
    100 512 
    100 513 
    1 514 
    1 515 
    1 516 
    1 517 
    1 518 
    1]; 519 
  520 
% Actuation constraint 521 
%|F|max=65N -> 4.3e-2 m/s^2 522 
Au=[-1 0 0 523 
    1 0 0 524 
    0 -1 0 525 
    0 1 0 526 
    0 0 -1 527 
    0 0 1]; 528 
bu=0.0433333*ones(6,1); 529 
  530 
  531 
% Disturbance bound 532 
r=4.6662;                                         % radius of sphere  533 
Aw=[-1 0 0 0 0 0 534 
    1 0 0 0 0 0 535 
    0 -1 0 0 0 0 536 
    0 1 0 0 0 0 537 
    0 0 -1 0 0 0 538 
    0 0 1 0 0 0 539 
    0 0 0 1 0 0 540 
    0 0 0 -1 0 0 541 
    0 0 0 0 1 0 542 
    0 0 0 0 -1 0 543 
    0 0 0 0 0 1 544 
    0 0 0 0 0 -1]; 545 
  546 
bw=[r*ones(6,1); zeros(6,1)]; 547 
  548 
% Create polyhedrons 549 
doubleX=Polyhedron(Ax,bx); 550 
doubleU=Polyhedron(Au,bu); 551 
scriptW=Polyhedron(Aw,bw); 552 
  553 
  554 
  555 
  556 
%% LQR parameters 557 
% Values initially chosen. Tuned to: 558 
Q=10e5*eye(6);                                                   % State weights              559 
R=100*eye(3);                                                    % Actuation weights 560 
[Klqr Plqr e]=dlqr(A,B,Q,R);          % determine LQR gain and sol. to Riccati equation 561 
Klqr=-Klqr; 562 
  563 
  564 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 565 
%% Determination of the disturbance rejection gain 566 
display(sprintf('\nDetermining K_dr CL dist rejection gain....\n')) 567 
  568 
% Set constants 569 
a=zeros(6,1);                                                             % zeros vector 570 



Software   149 

DLR-IB-RM-OP-2017-17 

p=0.4;                                % weight on control constraint (rho, refer to [25]) 571 
wVert=scriptW.V;                                    % vertices of disturbance bound 572 
l=(1/(65/1500))*Au;                                 % normalized input 573 
h=[(1/100)*Ax(1:6,:); Ax(7:12,:)];                  % and state constraint inequalities 574 
  575 
    lamda=1e-5; 576 
    k=0; 577 
for lamda=1e-10:1e-9:1e-5                           % iteratively conduct optimization 578 
    lamda                                           % store determined gamma for each 579 
lambda  580 
    k=k+1;                                          % to determine correct lambda to 581 
minimize  582 
cvx_begin sdp quiet                                 % gamma 583 
    variable Y(3,6) 584 
    variable W(6,6) symmetric 585 
    variable Gamma(1,1) banded(0,1) 586 
  587 
  588 
                  589 
    minimize (Gamma) 590 
    subject to 591 
        [lamda*W,a,(Ac*W+Bc*Y)';a',1-lamda,wVert(1,:);(Ac*W+Bc*Y),wVert(1,:)',W]>=0 592 
        [lamda*W,a,(Ac*W+Bc*Y)';a',1-lamda,wVert(2,:);(Ac*W+Bc*Y),wVert(2,:)',W]>=0 593 
        [lamda*W,a,(Ac*W+Bc*Y)';a',1-lamda,wVert(3,:);(Ac*W+Bc*Y),wVert(3,:)',W]>=0 594 
        [lamda*W,a,(Ac*W+Bc*Y)';a',1-lamda,wVert(4,:);(Ac*W+Bc*Y),wVert(4,:)',W]>=0 595 
        [lamda*W,a,(Ac*W+Bc*Y)';a',1-lamda,wVert(5,:);(Ac*W+Bc*Y),wVert(5,:)',W]>=0 596 
        [lamda*W,a,(Ac*W+Bc*Y)';a',1-lamda,wVert(6,:);(Ac*W+Bc*Y),wVert(6,:)',W]>=0 597 
        [lamda*W,a,(Ac*W+Bc*Y)';a',1-lamda,wVert(7,:);(Ac*W+Bc*Y),wVert(7,:)',W]>=0 598 
        [lamda*W,a,(Ac*W+Bc*Y)';a',1-lamda,wVert(8,:);(Ac*W+Bc*Y),wVert(8,:)',W]>=0 599 
        [p^2,(Y'*l(1,:)')';(Y'*l(1,:)'),W]>=0 600 
        [p^2,(Y'*l(2,:)')';(Y'*l(2,:)'),W]>=0 601 
        [p^2,(Y'*l(3,:)')';(Y'*l(3,:)'),W]>=0 602 
        [p^2,(Y'*l(4,:)')';(Y'*l(4,:)'),W]>=0 603 
        [p^2,(Y'*l(5,:)')';(Y'*l(5,:)'),W]>=0 604 
        [p^2,(Y'*l(6,:)')';(Y'*l(6,:)'),W]>=0 605 
        [Gamma,(W*h(1,:)')';(W*h(1,:)'),W]>=0 606 
        [Gamma,(W*h(2,:)')';(W*h(2,:)'),W]>=0 607 
        [Gamma,(W*h(3,:)')';(W*h(3,:)'),W]>=0 608 
        [Gamma,(W*h(4,:)')';(W*h(4,:)'),W]>=0 609 
        [Gamma,(W*h(5,:)')';(W*h(5,:)'),W]>=0 610 
        [Gamma,(W*h(6,:)')';(W*h(6,:)'),W]>=0 611 
cvx_end 612 
  613 
gamma1(k,:)=[lamda Gamma]; 614 
  615 
end 616 
 617 
 618 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Satellite Rendezvous Kdr design: determination of rho                             % 

% --------------------------------------------------------------------------------- % 

% This script produces an l-curve for the Kdr determining optimization problem.     % 

% --------------------------------------------------------------------------------- % 

% --------------------------------------------------------------------------------- % 

% FROM: C. Buckner. Tube-based Model Predictive Control for the Approach Maneuver   % 

%          of a Spacecraft to a free-tumbling Target Satellite. Master Thesis,      % 

%          Technishe Universität München, 2016.                                     % 

%                                                                                   % 

% Copyright: Caroline Buckner                                                       % 

% Last edited: 22 Dec 2016                                                          % 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

%% Define discrete model 619 
nOrbit=0.0012;                                                         % orbital rate 620 
  621 
Ac=[         0 0          0         1        0 0            % Continuous state matrix 622 
             0 0          0         0        1 0 623 
             0 0          0         0        0 1 624 
    3*nOrbit^2 0          0         0 2*nOrbit 0 625 



150  Appendix 

DLR-IB-RM-OP-2017-17 

             0 0          0 -2*nOrbit        0 0 626 
             0 0 3*nOrbit^2         0        0 0]; 627 
Bc=[0 0 0                                                    % Continuous input matrix 628 
    0 0 0 629 
    0 0 0 630 
    1 0 0 631 
    0 1 0 632 
    0 0 1]; 633 
Cc=eye(6);                                                 % Continuous output matrix 634 
  635 
sys=ss(Ac,Bc,Cc,[],0.5);                                % Discretized state space, Ts=0.5                                                         636 
  637 
[A,B,C,D]=ssdata(sys); 638 
  639 
n=6;                                                    % Model matrix dimensions  640 
m=3;                                                    % (refer to chapter 3) 641 
p=6; 642 
  643 
%% Define polytopic constraints 644 
% State constraint - relative position and velocity 645 
Ax=[-1 0 0 0 0 0 646 
    1 0 0 0 0 0 647 
    0 -1 0 0 0 0 648 
    0 1 0 0 0 0 649 
    0 0 -1 0 0 0 650 
    0 0 1 0 0 0 651 
    0 0 0 -1 0 0 652 
    0 0 0 1 0 0 653 
    0 0 0 0 -1 0 654 
    0 0 0 0 1 0 655 
    0 0 0 0 0 -1 656 
    0 0 0 0 0 1]; 657 
bx=[100 658 
    100  659 
    100 660 
    100 661 
    100 662 
    100 663 
    1 664 
    1 665 
    1 666 
    1 667 
    1 668 
    1]; 669 
  670 
% Actuation constraint 671 
%|F|max=65N -> 4.3e-2 m/s^2 672 
Au=[-1 0 0 673 
    1 0 0 674 
    0 -1 0 675 
    0 1 0 676 
    0 0 -1 677 
    0 0 1]; 678 
bu=0.0433333*ones(6,1); 679 
  680 
  681 
% Disturbance bound 682 
r=4.6662;                                         % radius of sphere (refer to chapter 7) 683 
Aw=[-1 0 0 0 0 0 684 
    1 0 0 0 0 0 685 
    0 -1 0 0 0 0 686 
    0 1 0 0 0 0 687 
    0 0 -1 0 0 0 688 
    0 0 1 0 0 0 689 
    0 0 0 1 0 0 690 
    0 0 0 -1 0 0 691 
    0 0 0 0 1 0 692 
    0 0 0 0 -1 0 693 
    0 0 0 0 0 1 694 



Software   151 

DLR-IB-RM-OP-2017-17 

    0 0 0 0 0 -1]; 695 
  696 
bw=[r*ones(6,1); zeros(6,1)]; 697 
  698 
% Create polyhedrons 699 
doubleX=Polyhedron(Ax,bx); 700 
doubleU=Polyhedron(Au,bu); 701 
scriptW=Polyhedron(Aw,bw); 702 
  703 
  704 
  705 
  706 
%% LQR parameters 707 
% Values initially chosen. Tuned to: 708 
Q=10e5*eye(6);                                                  % State weights              709 
R=100*eye(3);                                                   % Actuation weights 710 
[Klqr Plqr e]=dlqr(A,B,Q,R);              % determine LQR gain and sol. to Riccati 711 
equation 712 
Klqr=-Klqr; 713 
  714 
  715 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 716 
%% Determination of the disturbance rejection gain 717 
display(sprintf('\nDetermining K_dr CL dist rejection gain....\n')) 718 
  719 
% Set constants 720 
a=zeros(6,1);                                        % zeros vector 721 
wVert=scriptW.V;                                     % vertices of disturbance bound 722 
l=(1/(65/1500))*Au;                                  % normalized input 723 
h=[(1/100)*Ax(1:6,:); Ax(7:12,:)];                   % and state constraint inequalities 724 
  725 
    lamda=1e-5; 726 
    k=0; 727 
for p=0.05:0.01:0.99                              % iteratively conduct optimization 728 
    p                                                                                 729 
    k=k+1;                                                                            730 
cvx_begin sdp quiet                                                                   731 
    variable Y(3,6) 732 
    variable W(6,6) symmetric 733 
    variable Gamma(1,1) banded(0,1) 734 
  735 
  736 
                  737 
    minimize (Gamma) 738 
    subject to 739 
        [lamda*W,a,(Ac*W+Bc*Y)';a',1-lamda,wVert(1,:);(Ac*W+Bc*Y),wVert(1,:)',W]>=0 740 
        [lamda*W,a,(Ac*W+Bc*Y)';a',1-lamda,wVert(2,:);(Ac*W+Bc*Y),wVert(2,:)',W]>=0 741 
        [lamda*W,a,(Ac*W+Bc*Y)';a',1-lamda,wVert(3,:);(Ac*W+Bc*Y),wVert(3,:)',W]>=0 742 
        [lamda*W,a,(Ac*W+Bc*Y)';a',1-lamda,wVert(4,:);(Ac*W+Bc*Y),wVert(4,:)',W]>=0 743 
        [lamda*W,a,(Ac*W+Bc*Y)';a',1-lamda,wVert(5,:);(Ac*W+Bc*Y),wVert(5,:)',W]>=0 744 
        [lamda*W,a,(Ac*W+Bc*Y)';a',1-lamda,wVert(6,:);(Ac*W+Bc*Y),wVert(6,:)',W]>=0 745 
        [lamda*W,a,(Ac*W+Bc*Y)';a',1-lamda,wVert(7,:);(Ac*W+Bc*Y),wVert(7,:)',W]>=0 746 
        [lamda*W,a,(Ac*W+Bc*Y)';a',1-lamda,wVert(8,:);(Ac*W+Bc*Y),wVert(8,:)',W]>=0 747 
        [p^2,(Y'*l(1,:)')';(Y'*l(1,:)'),W]>=0 748 
        [p^2,(Y'*l(2,:)')';(Y'*l(2,:)'),W]>=0 749 
        [p^2,(Y'*l(3,:)')';(Y'*l(3,:)'),W]>=0 750 
        [p^2,(Y'*l(4,:)')';(Y'*l(4,:)'),W]>=0 751 
        [p^2,(Y'*l(5,:)')';(Y'*l(5,:)'),W]>=0 752 
        [p^2,(Y'*l(6,:)')';(Y'*l(6,:)'),W]>=0 753 
        [Gamma,(W*h(1,:)')';(W*h(1,:)'),W]>=0 754 
        [Gamma,(W*h(2,:)')';(W*h(2,:)'),W]>=0 755 
        [Gamma,(W*h(3,:)')';(W*h(3,:)'),W]>=0 756 
        [Gamma,(W*h(4,:)')';(W*h(4,:)'),W]>=0 757 
        [Gamma,(W*h(5,:)')';(W*h(5,:)'),W]>=0 758 
        [Gamma,(W*h(6,:)')';(W*h(6,:)'),W]>=0 759 
cvx_end 760 
  761 
gamma1(k,:)=[p]; 762 
Kdr=Y*inv(W); 763 



152  Appendix 

DLR-IB-RM-OP-2017-17 

Kdr                                                                                   764 
end765 
 1 



Software   153 

DLR-IB-RM-OP-2017-17 

C. Satellite Rendezvous simulator 

The controller for the satellite rendezvous maneuver was implemented in Simulink using the MPC controller 

block from the Model Predictive Control toolbox and several custom function blocks. Recall from sections 8.3.5 

and 8.3.6 that several simulations were constructed for testing the limitations and characteristics of the 

controller. However, there are only a couple of basis controllers. The simulators will be sorted accordingly. 

First, the simulator used to obtain the results in sections 8.3.1 to 8.3.3 as presented in section 8.1. 

Figure Appendix - 1 Simulink simulator for Tube-base robust MPC of satellite rendezvous 



154  Appendix 

DLR-IB-RM-OP-2017-17 

The optional settings activated in the Model Predictive Control toolbox block labelled Nominal MPC controller 

(orange) are the estimated states output and actuation target inputs. The controller and initial controller state 

set in SatRend_controller_MPC_toolbox_initscript above are selected for use here. The code used 

to operate each block is given in the following. First, the Model block is presented. 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% MODEL BLOCK: Simulation state and output estimation                               % 

% --------------------------------------------------------------------------------- % 

% This function handles state initialization and updates for the simuluation.       % 

% --------------------------------------------------------------------------------- % 

% [realX,mo,current_state,theta_out,c,wout]  = fcn(controlU)                        % 

%                                                                                   % 

% Block input:                                                                      % 

%       controlU : robust control action, input u to the state space model          % 

%                                                                                   % 

% Block outputs:                                                                    % 

%       realX :  current real state of the system                                   % 

%       mo    :  current nominal state of the system                                % 

%       wout  :  current position disturbance                                       % 

%                                                                                   % 

% --------------------------------------------------------------------------------- % 

% FROM: C. Buckner. Tube-based Model Predictive Control for the Approach Maneuver   % 

%          of a Spacecraft to a free-tumbling Target Satellite. Master Thesis,      % 

%          Technische Universität München, 2016.                                    % 

%                                                                                   % 

% Copyright: Caroline Buckner                                                       % 

% Last edited: 22 Dec 2016                                                          % 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  2 
  3 
function [realX,mo,current_state,theta_out,c,wout]  = Model(controlU) 4 
%#codegen 5 
  6 
%% Set system variables initial conditions for the states and system model 7 
  8 
persistent time                                       % Time-step counter (=0.5[s]) 9 
if isempty(time)                                      % If not set,1 10 
    time=1;                                           % then set time to first time step. 11 
end 12 
  13 
persistent dx                                    % Relative position: radial [m] 14 
if isempty(dx)                                   % If not set, 15 
    dx=39;                                       % set to initial radial position state. 16 
end 17 
persistent dy                                    % Relative position: along-track [m] 18 
if isempty(dy)                                   % If not set, 19 
    dy=39;                                       % set to initial along-track  20 
end                                              % position state. 21 
persistent dz                                    % Relative position: cross-track [m] 22 
if isempty(dz)                                   % If not set, 23 
    dz=4.23;                                     % set to initial cross-track 24 
end                                              % position state. 25 
persistent ddx                                   % Relative velocity: radial [m/s] 26 
if isempty(ddx)                                  % If not set, 27 
    ddx=0;                                       % set to initial radial velocity state. 28 
end 29 
persistent ddy                                   % Relative velocity: along-track [m/s] 30 
if isempty(ddy)                                  % If not set, 31 
    ddy=0;                                       % set to initial along-track  32 
end                                              % position state. 33 
persistent ddz                                   % Relative velocity: cross-track [m/s] 34 
if isempty(ddz)                                  % If not set, 35 
    ddz=0;                                       % set to initial cross-track  36 
end                                              % position state. 37 
persistent w                                     % Initialize disturbance 38 



Software   155 

DLR-IB-RM-OP-2017-17 

if isempty(w) 39 
   w=zeros(12,1); 40 
end 41 
persistent theta                                 % Initialize theta state 42 
if isempty(theta) 43 
    theta=zeros(6,1); 44 
Mtheta=[ -0.185551526369166, 0.018117071393572, 0.047743479379178, 0.706328547648448,                45 

0.005820151954137, 0.032651318626743; 46 
  -0.002300266364531, -0.182713737993363, 0.060394004339685, -0.007604460874062,    47 

0.706008414024590, 0.038656066811025; 48 
  -0.051013496976408, -0.057658466070907, -0.176380728691161, -0.032282424810556, 49 

      -0.038964665502406, 0.705293981181349; 50 
   0.185551526369166, -0.018117071393571, -0.047743479379178, 0.706328547648448, 51 

       0.005820151954136, 0.032651318626743; 52 
   0.002300266364531, 0.182713737993363, -0.060394004339685, -0.007604460874062, 53 

0.706008414024590, 0.038656066811025; 54 
   0.051013496976408, 0.057658466070907, 0.176380728691161, -0.032282424810556, 55 

      -0.038964665502406, 0.705293981181349; 56 
   0.185546807312485, -0.018555662630504, -0.047598740020594, 0.706343747015220, 57 

       0.004125706617421, 0.032558403012700; 58 
   0.002745590027817, 0.182670257022019, -0.060508588690195, -0.005909272359706, 59 

       0.706022382389280, 0.038734429975730; 60 
   0.051013717354715, 0.057658715155481, 0.176381490655910, -0.032282285350481, 61 

-0.038964497175050, 0.705290934311349]; 62 
    z_s1=[1.97;0;4.23;0;0;0;0;0;0]; 63 
    theta=Mtheta'*z_s1;  64 
end 65 
persistent next_state                                % Initialize persistent variable to 66 
if isempty(next_state)                               % carry over state to next time step 67 
    next_state=zeros(1,12); 68 
    next_state=[dx dy dz ddx ddy ddz theta']; 69 
end 70 
  71 
persistent data                                  % Initialize variable to hold reference 72 
if isempty(data)                                 % Only load reference data if it has not 73 
     74 
data=load('C:\Users\Carly\Desktop\DLR\Data\tumble\tumble_wy_3_5_orbital_plane_step05sec_175 
.dat');                                          % yet been loaded. 76 
end 77 
  78 
if isempty(controlU)                             % Set initial input value 79 
    controlU=[data(1,8),data(1,9),data(1,10)]'; 80 
end 81 
  82 
  83 
%% Actuation constraint assurance  84 
if controlU(1)>0.043333335388468 85 
    controlU(1)=0.043333335388468; 86 
elseif controlU(1)<-0.043333335388552 87 
    controlU(1)=-0.043333335388552; 88 
else 89 
    controlU(1)=controlU(1); 90 
end 91 
         92 
if controlU(2)>0.043333333452083 93 
    controlU(2)=0.043333333452083; 94 
elseif controlU(2)<-0.043333333449083 95 
    controlU(2)=-0.043333333449083; 96 
else 97 
    controlU(2)=controlU(2); 98 
end 99 
  100 
if controlU(3)>0.043333333333334 101 
    controlU(3)=0.043333333333334; 102 
elseif controlU(3)<-0.043333333333334 103 
    controlU(3)=-0.043333333333334; 104 
else 105 
    controlU(3)=controlU(3); 106 
end 107 
  108 



156  Appendix 

DLR-IB-RM-OP-2017-17 

%% Set parameterization matrix M_theta (refer to: sections 4.4.2 and 7.4) 109 
Mtheta=[ -0.185551526369166, 0.018117071393572, 0.047743479379178, 0.706328547648448,                110 

0.005820151954137, 0.032651318626743; 111 
  -0.002300266364531, -0.182713737993363, 0.060394004339685, -0.007604460874062,    112 

0.706008414024590, 0.038656066811025; 113 
  -0.051013496976408, -0.057658466070907, -0.176380728691161, -0.032282424810556, 114 

      -0.038964665502406, 0.705293981181349; 115 
   0.185551526369166, -0.018117071393571, -0.047743479379178, 0.706328547648448, 116 

       0.005820151954136, 0.032651318626743; 117 
   0.002300266364531, 0.182713737993363, -0.060394004339685, -0.007604460874062, 118 

0.706008414024590, 0.038656066811025; 119 
   0.051013496976408, 0.057658466070907, 0.176380728691161, -0.032282424810556, 120 

      -0.038964665502406, 0.705293981181349; 121 
   0.185546807312485, -0.018555662630504, -0.047598740020594, 0.706343747015220, 122 

       0.004125706617421, 0.032558403012700; 123 
   0.002745590027817, 0.182670257022019, -0.060508588690195, -0.005909272359706, 124 

       0.706022382389280, 0.038734429975730; 125 
   0.051013717354715, 0.057658715155481, 0.176381490655910, -0.032282285350481, 126 

-0.038964497175050, 0.705290934311349]; 127 
         128 
%% Set current states         129 
current_state=next_state; 130 
realX=current_state(1:6)'+w(1:6); 131 
  132 
%% State Update 133 
  134 
% % CTS model 135 
% % norbit=0.0012; 136 
% A=[0 0 0 1 0 0; 0 0 0 0 1 0; 0 0 0 0 0 1; 3*norbit^2 0 0 0 2*norbit 0;  137 

0 0 0 -2*norbit 0 0; 0 0 -norbit^2 0 0 0]; 138 
% B=[0 0 0; 0 0 0; 0 0 0; 1 0 0; 0 1 0; 0 0 1];  139 
% C=eye(6); 140 
% D=zeros(6,3); 141 
% % sys=ss(A,B,C,D,0.5); 142 
% % [A,B,C,D]=ssdata(sys); 143 
  144 
% %  DIS Model 145 
% %  Sample time  0.5 s  146 
% State matrix 147 
% A=[ 1 0 0 0.5 0.0003 0; -2.16e-10 1       0 -0.0003    0.5   0; 0 0 1 0 0 0.5; 148 
%      2.16e-6 0 0 1 0.0012 0; -1.296e-9 0 0 -0.0012 1 0; 0 0 -7.2e-7 0 0 1]; 149 
% Input matrix 150 
% B=[ 0.125 5e-5 0; -5e-5 0.125 0; 0 0 0.125; 0.5 0.0003 0; -0.0003 0.5 0; 0 0 0.5]; 151 
% Output matrix 152 
% C=eye(6); 153 
% Feedthrough matrix 154 
% D=zeros(6,3); 155 
  156 
% Extend to incorporate terminal theta cost, extra states only processed in 157 
% cost function in final the offset cost term. 158 
% State matrix 159 
A=[1         0 0       0.5     0.0003 0   0 0 0 0 0 0; 160 
   -2.16e-10 1 0       -0.0003 0.5    0   0 0 0 0 0 0; 161 
   0         0 1       0       0      0.5 0 0 0 0 0 0; 162 
   2.16e-6   0 0       1       0.0012 0   0 0 0 0 0 0; 163 
   -1.296e-9 0 0       -0.0012 1      0   0 0 0 0 0 0; 164 
   0         0 -2.6e-6 0       0      1   0 0 0 0 0 0 165 
   0         0 0       0       0      0   1 0 0 0 0 0 166 
   0         0 0       0       0      0   0 1 0 0 0 0 167 
   0         0 0       0       0      0   0 0 1 0 0 0 168 
   0         0 0       0       0      0   0 0 0 1 0 0 169 
   0         0 0       0       0      0   0 0 0 0 1 0 170 
   0         0 0       0       0      0   0 0 0 0 0 1]; 171 
 

 

 

 

 

 

 



Software   157 

DLR-IB-RM-OP-2017-17 

 

% Input matrix 172 
B=[0.125   5e-5   0; 173 
   -5e-5   0.125  0; 174 
    0      0      0.125; 175 
    0.5    0.0003 0; 176 
   -0.0003 0.5    0; 177 
    0      0      0.5 178 
    0 0 0 179 
    0 0 0 180 
    0 0 0 181 
    0 0 0 182 
    0 0 0 183 
    0 0 0]; 184 
% Output matrix 185 
C=[eye(12)]; 186 
% Feedthrough matrix 187 
D=zeros(12,3); 188 
  189 
  190 
% Calculate next sate and output 191 
Xplus=A*current_state'+B*controlU; 192 
Y=C*current_state'+D*controlU; 193 
dx=Xplus(1); 194 
dy=Xplus(2); 195 
dz=Xplus(3); 196 
ddx=Xplus(4); 197 
ddy=Xplus(5); 198 
ddz=Xplus(6); 199 
theta=Mtheta'*([Xplus(1);Xplus(2);Xplus(3);Xplus(4);Xplus(5);Xplus(6);controlU(1);control200 
U(2);controlU(3)]'+w(1:9)')'; 201 
theta_out=theta; 202 
  203 
next_state=[Xplus(1:6)' theta']; 204 
% Set nominal state output 205 
mo=next_state'; 206 
  207 
  208 
% Apply tube constraints and calculate next position disturbance 209 
% dist=sqrt(w(1)^2+w(2)^2+w(3)^2); 210 
if sqrt((realX(1)-current_state(1))^2)<=4.6662&&sqrt((realX(2)-211 
current_state(2))^2)<=4.6662&&sqrt((realX(3)-current_state(3))^2)<=4.6662 212 
  213 
% % % Final state (0,0,4.6662,0,0,0) 214 
%    w(1)=(-1.97/(600*2+1))*time; 215 
%    w(2)=(0-0/(600*2+1))*time; 216 
%    w(3)=((4.6662-4.23)/(600*2+1))*time; 217 
    218 
% % % Final state (-4.6662,0,0,0,0,0) 219 
%     w(1)=((-4.6662-1.97)/(600*2+1))*time; 220 
%     w(2)=((0-0)/(600*2+1))*time; 221 
%     w(3)=((0-4.23)/(600*2+1))*time; 222 
  223 
% % % Final state (1,1,4.446,0,0,0) 224 
%    w(1)=((1-1.97)/(600*2+1))*time; 225 
%    w(2)=((1-0)/(600*2+1))*time; 226 
%    w(3)=((4.446-4.23)/(600*2+1))*time; 227 
  228 
% % % Final state (1,2,4.095536893,0,0,0) 229 
%    w(1)=((1-1.97)/(600*2+1))*time; 230 
%    w(2)=((2-0)/(600*2+1))*time; 231 
%    w(3)=((4.095536893-4.23)/(600*2+1))*time; 232 
    233 
% % % Final state (-3,-2,-2.961996361,0,0,0) 234 
%    w(1)=((-3-1.97)/(600*2+1))*time; 235 
%    w(2)=((-3-0)/(600*2+1))*time; 236 
%    w(3)=((-2.961996361-4.23)/(600*2+1))*time;  237 
    238 
% % % Final state (0,-4.6662,0,0,0,0) 239 



158  Appendix 

DLR-IB-RM-OP-2017-17 

   w(1)=((0-1.97)/(600*2+1))*time; 240 
   w(2)=((-4.6662-0)/(600*2+1))*time; 241 
   w(3)=((0-4.23)/(600*2+1))*time;  242 
  243 
% % % Final state (-3,-2,-2.961996361,0,0,0) 244 
%    w(1)=((-1.97-1.97)/(600*2+1))*time; 245 
%    w(2)=((0)/(600*2+1))*time; 246 
%    w(3)=((-4.23-4.23)/(600*2+1))*time;  247 
  248 
% % % Final state (5,5,5,0,0,0) 249 
%    w(1)=((-10-1.97)/(600*2+1))*time; 250 
%    w(2)=((-10-0)/(600*2+1))*time; 251 
%    w(3)=((-10-4.23)/(600*2+1))*time; 252 
  253 
% % % Final state (-2, 4.6662, 0, 0, 0, 0) 254 
%    w(1)=((-2-1.97)/(600*2+1))*time; 255 
%    w(2)=((4.6662-0)/(600*2+1))*time; 256 
%    w(3)=((0-4.23)/(600*2+1))*time;  257 
  258 
% % % Final state (-1.97, 0, -4.23, 0, 0, 0) 259 
%    w(1)=((-1.97-1.97)/(600*2+1))*time; 260 
%    w(2)=((0-0)/(600*2+1))*time; 261 
%    w(3)=((-4.23-4.23)/(600*2+1))*time;  262 
% w(1:3)=[0;0;0]; 263 
else 264 
    w=w; 265 
end 266 
  267 
% Apply position disturbance to real state for visualization 268 
realX=next_state(1:6)'+w(1:6); 269 
  270 
% Set outputs 271 
c=controlU; 272 
wout=w(1:6); 273 
% Update time 274 
time=time+1; 275 
end 276 
  277 

The state disturbance is set by uncommenting or adding the applicable values. Next the function sending the 
reference data to the controller is given. 
 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% REFERENCE BLOCK: Simulation reference vectors                                     % 

% --------------------------------------------------------------------------------- % 

% This function parses the reference data to send the appropriately sized series of % 

% vectors to the reference and target ports of the controller block.                % 

% --------------------------------------------------------------------------------- % 

% [Setpoint, time, target]  = Ref                                                   % 

%                                                                                   % 

% Block input:                                                                      % 

%       ------                                                                      % 

%                                                                                   % 

% Block outputs:                                                                    % 

%       Setpoint :  set of vectors containing reference state values for each       % 

%                          prediction step                                          % 

%       time     :  current time step, currently used for error checking only       % 

%       target   :  reference for current actuation                                 % 

%                                                                                   % 

% --------------------------------------------------------------------------------- % 

% FROM: C. Buckner. Tube-based Model Predictive Control for the Approach Maneuver   % 

%          of a Spacecraft to a free-tumbling Target Satellite. Master Thesis,      % 

%          Technische Universität München, 2016.                                     % 

%                                                                                   % 

% Copyright: Caroline Buckner                                                       % 

% Last edited: 22 Dec 2016                                                          % 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

function [Setpoint, time, target] = Ref 

%#codegen 

  278 



Software   159 

DLR-IB-RM-OP-2017-17 

 279 
%% Set persistent and data 280 
persistent time_step;                                         % Current time step [0.5 s] 281 
if isempty(time_step) 282 
    time_step=1; 283 
end 284 
persistent data                                   % Load reference data, 285 
if isempty(data)                                  % but only if it hasn't been loaded yet 286 
    287 
data=load('C:\Users\Carly\Desktop\DLR\Data\tumble\tumble_wy_3_5_orbital_plane_step05sec_1288 
.dat'); 289 
end 290 
  291 
%% Set parameterization matrix M_theta (refer to: sections 4.4.2 and 7.4) 292 
Mtheta=[ -0.185551526369166, 0.018117071393572, 0.047743479379178, 0.706328547648448,                293 

0.005820151954137, 0.032651318626743; 294 
  -0.002300266364531, -0.182713737993363, 0.060394004339685, -0.007604460874062,    295 

0.706008414024590, 0.038656066811025; 296 
  -0.051013496976408, -0.057658466070907, -0.176380728691161, -0.032282424810556, 297 

      -0.038964665502406, 0.705293981181349; 298 
   0.185551526369166, -0.018117071393571, -0.047743479379178, 0.706328547648448, 299 

       0.005820151954136, 0.032651318626743; 300 
   0.002300266364531, 0.182713737993363, -0.060394004339685, -0.007604460874062, 301 

0.706008414024590, 0.038656066811025; 302 
   0.051013496976408, 0.057658466070907, 0.176380728691161, -0.032282424810556, 303 

      -0.038964665502406, 0.705293981181349; 304 
   0.185546807312485, -0.018555662630504, -0.047598740020594, 0.706343747015220, 305 

       0.004125706617421, 0.032558403012700; 306 
   0.002745590027817, 0.182670257022019, -0.060508588690195, -0.005909272359706, 307 

       0.706022382389280, 0.038734429975730; 308 
   0.051013717354715, 0.057658715155481, 0.176381490655910, -0.032282285350481, 309 

-0.038964497175050, 0.705290934311349]; 310 
 311 
  312 
%% Initialize vectors 313 
Setpoint=zeros(40,12); 314 
Setpoints_3D=data(:,2:7); 315 
  316 
  317 
%% Set the series of reference vectors. Prediction horizon = 40 vectors are set from the 318 
reference data for each time step 319 
  320 
if time_step+39<=1340 321 
    thets=Mtheta'*data(time_step:time_step+39,2:10)'; 322 
    Setpoint=[Setpoints_3D(time_step:time_step+39,:),thets']; 323 
elseif time_step==1341 324 
    thets=Mtheta'*data(1341,2:10)'; 325 
    Setpoint=[repmat(Setpoints_3D(1341,:),40,1),repmat(thets',40,1)]; 326 
else 327 
end 328 
  329 
%% Set the actuation target for the current prediction from reference data 330 
  331 
Ux=data(time_step,8); 332 
Uy=data(time_step,9); 333 
Uz=data(time_step,10); 334 
target=[Ux;Uy;Uz]; 335 
  336 
% Increment time 337 
time=time_step; 338 
time_step=time_step+1; 339 

  340 



160  Appendix 

DLR-IB-RM-OP-2017-17 

Next the function applying the position disturbance to the real system is given. 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% POSITION DISTURBANCE BLOCK                                                        % 

% --------------------------------------------------------------------------------- % 

% Adds the position disturbance to obtain the real state of the system.             % 

% --------------------------------------------------------------------------------- % 

% realStates = RealStates(states,stateDisturbance)                                  % 

%                                                                                   % 

% Block input:                                                                      % 

%       states            : real state before position disturbance added            % 

%       stateDisturbance  : current state disturbance                               % 

%                                                                                   % 

% Block outputs:                                                                    % 

%       realStates :  state of the disturbed system                                 % 

%                                                                                   % 

% --------------------------------------------------------------------------------- % 

% FROM: C. Buckner. Tube-based Model Predictive Control for the Approach Maneuver   % 

%          of a Spacecraft to a free-tumbling Target Satellite. Master Thesis,      % 

%          Technische Universität München, 2016.                                    % 

%                                                                                   % 

% Copyright: Caroline Buckner                                                       % 

% Last edited: 22 Dec 2016                                                          % 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  341 
function realStates = RealStates(states,stateDisturbance) 342 
realStates=states(1:6)+stateDisturbance; 343 
end 344 

 

The disturbance rejection term is determined using the following function. 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% DISTURBANCE REJECTION BLOCK                                                       % 

% --------------------------------------------------------------------------------- % 

% Determine the disturbance rejection term from the disturbance rejection gain and  % 

% the difference between the real state and the nominal state.                      % 

% --------------------------------------------------------------------------------- % 

% function [distRejTerm, dif] = DisturbanceRejection(nominalStates,realStates)      % 

%                                                                                   % 

% Block input:                                                                      % 

%       nominalStates   : nominal state                                             % 

%       realStates      : real state                                                % 

%                                                                                   % 

% Block outputs:                                                                    % 

%       distRejTerm :  additional actuation                                         % 

%       dif         :  difference between the real and nominal state                % 

%                                                                                   % 

% --------------------------------------------------------------------------------- % 

% FROM: C. Buckner. Tube-based Model Predictive Control for the Approach Maneuver   % 

%          of a Spacecraft to a free-tumbling Target Satellite. Master Thesis,      % 

%          Technische Universität München, 2016.                                     % 

%                                                                                   % 

% Copyright: Caroline Buckner                                                       % 

% Last edited: 22 Dec 2016                                                          % 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  345 
function [distRejTerm, dif] = DisturbanceRejection(nominalStates,realStates) 346 
%% Set internal variables 347 
z=nominalStates(1:6); 348 
x=realStates(1:6); 349 
 %% Set disturbance rejection gain (refer to: section 7.2) 350 
Kdr=[-0.00000432 0 0 0 -0.002399927735347 0; 351 

 0 0 0 0.002399927789568 0 0; 352 
 0 0 -0.00000432 0 0 0]; 353 

%% Calculated outputs 354 
distRejTerm=Kdr*(x-z); 355 
dif=(x-z); 356 
end 357 



Software   161 

DLR-IB-RM-OP-2017-17 

The final block is a redundancy to ensure the robust input constraint is enforced. 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Constraint enforcement                                                            % 

% --------------------------------------------------------------------------------- % 

% Error catching redundancy.                                                        % 

% --------------------------------------------------------------------------------- % 

% function u_out = ConstraintEnforcement(u_in)                                      % 

%                                                                                   % 

% Block input:                                                                      % 

%       u_in   : calculated actuation                                               % 

%                                                                                   % 

% Block outputs:                                                                    % 

%       u_out :  constraint enforced actuation                                      % 

%                                                                                   % 

% --------------------------------------------------------------------------------- % 

% FROM: C. Buckner. Tube-based Model Predictive Control for the Approach Maneuver   % 

%          of a Spacecraft to a free-tumbling Target Satellite. Master Thesis,      % 

%          Technische Universität München, 2016.                                    % 

%                                                                                   % 

% Copyright: Caroline Buckner                                                       % 

% Last edited: 22 Dec 2016                                                          % 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  358 
function u_out = ConstraintEnforcement(u_in) 359 
  360 
u_out=u_in; 361 
 362 
if u_in(1)>0.043333335388468 363 
    u_out(1)=0.043333335388468; 364 
elseif u_in(1)<-0.043333335388552 365 
    u_out(1)=-0.043333335388552; 366 
else 367 
    u_out(1)=u_in(1); 368 
end 369 
    370 
if u_in(2)>0.043333333452083 371 
    u_out(2)=0.043333333452083; 372 
elseif u_in(2)<-0.043333333449083 373 
    u_out(2)=-0.043333333449083; 374 
else 375 
    u_out(2)=u_in(2); 376 
end 377 
  378 
if u_in(3)>0.043333333333334 379 
    u_out(3)=0.043333333333334; 380 
elseif u_in(3)<-0.043333333333334 381 
    u_out(3)=-0.043333333333334; 382 
else 383 
    u_out(3)=u_in(3); 384 
end 385 
end 386 



162  Appendix 

DLR-IB-RM-OP-2017-17 

 

The Delay block steps the algebraic loop forward in time. The remainder of the blocks are either scopes or 

variable outputs to the MATLAB workspace for further processing. In the simulation used to stress the actuation 

constraints, only the Model block and Reference block are very slightly modified to increase the step through 

the reference data and the output variable names are modified to make them unique in the MATLAB 

workspace. As these changes are so minor, only the code for the new Reference and Model blocks are given 

here, grouped by step-size change. 

 

For 300 s rendezvous time: 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% MODEL BLOCK: Simulation state and output estimation for 300 s rendezvous time     % 

% --------------------------------------------------------------------------------- % 

% This function handles state initialization and updates for the simuluation.       % 

% --------------------------------------------------------------------------------- % 

% [realX,mo,current_state,theta_out,c,wout]  = fcn(controlU)                        % 

%                                                                                   % 

% Block input:                                                                      % 

%       controlU : robust control action, input u to the state space model          % 

%                                                                                   % 

% Block outputs:                                                                    % 

%       realX :  current real state of the system                                   % 

%       mo    :  current nominal state of the system                                % 

%       wout  :  current position disturbance                                       % 

%                                                                                   % 

% --------------------------------------------------------------------------------- % 

% FROM: C. Buckner. Tube-based Model Predictive Control for the Approach Maneuver   % 

%          of a Spacecraft to a free-tumbling Target Satellite. Master Thesis,      % 

%          Technische Universität München, 2016.                                    % 

%                                                                                   % 

% Copyright: Caroline Buckner                                                       % 

% Last edited: 22 Dec 2016                                                          % 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

  387 
function [realX,mo,current_state,theta_out,c,wout]  = Model(controlU) 388 
%#codegen 389 
  390 
%% Set system variables initial conditions for the states and system model 391 
persistent time                                       % Time-step counter (=0.5[s]) 392 
if isempty(time)                                      % If not set, 393 
    time=1;                                           % then set time to first time step. 394 
end 395 
  396 
persistent dx                                    % Relative position: radial [m] 397 
if isempty(dx)                                   % If not set, 398 
    dx=39;                                       % set to initial radial position state. 399 
end 400 
persistent dy                                    % Relative position: along-track [m] 401 
if isempty(dy)                                   % If not set, 402 
    dy=39;                                       % set to initial along-track  403 
end                                              % position state. 404 
persistent dz                                    % Relative position: cross-track [m] 405 
if isempty(dz)                                   % If not set, 406 
    dz=4.23;                                     % set to initial cross-track 407 
end                                              % position state. 408 
persistent ddx                                   % Relative velocity: radial [m/s] 409 
if isempty(ddx)                                  % If not set, 410 
    ddx=0;                                       % set to initial radial velocity state. 411 
end 412 
persistent ddy                                   % Relative velocity: along-track [m/s] 413 
if isempty(ddy)                                  % If not set, 414 



Software   163 

DLR-IB-RM-OP-2017-17 

    ddy=0;                                       % set to initial along-track  415 
end                                                % position state. 416 
persistent ddz                                     % Relative velocity: cross-track [m/s] 417 
if isempty(ddz)                                    % If not set, 418 
    ddz=0;                                         % set to initial cross-track  419 
end                                                % position state. 420 
persistent w                                       % Initialize disturbance 421 
if isempty(w) 422 
   w=zeros(12,1); 423 
end 424 
persistent theta                                   % Initialize theta state 425 
if isempty(theta) 426 
    theta=zeros(6,1); 427 
    Mtheta=[ -0.185551526369166, 0.018117071393572, 0.047743479379178, 0.706328547648448,                428 

0.005820151954137, 0.032651318626743; 429 
  -0.002300266364531, -0.182713737993363, 0.060394004339685, -0.007604460874062,    430 

0.706008414024590, 0.038656066811025; 431 
  -0.051013496976408, -0.057658466070907, -0.176380728691161, -0.032282424810556, 432 

      -0.038964665502406, 0.705293981181349; 433 
   0.185551526369166, -0.018117071393571, -0.047743479379178, 0.706328547648448, 434 

       0.005820151954136, 0.032651318626743; 435 
   0.002300266364531, 0.182713737993363, -0.060394004339685, -0.007604460874062, 436 

0.706008414024590, 0.038656066811025; 437 
   0.051013496976408, 0.057658466070907, 0.176380728691161, -0.032282424810556, 438 

      -0.038964665502406, 0.705293981181349; 439 
   0.185546807312485, -0.018555662630504, -0.047598740020594, 0.706343747015220, 440 

       0.004125706617421, 0.032558403012700; 441 
   0.002745590027817, 0.182670257022019, -0.060508588690195, -0.005909272359706, 442 

       0.706022382389280, 0.038734429975730; 443 
   0.051013717354715, 0.057658715155481, 0.176381490655910, -0.032282285350481, 444 

-0.038964497175050, 0.705290934311349]; 445 
    z_s1=[1.97;0;4.23;0;0;0;0;0;0]; 446 
    theta=Mtheta'*z_s1;  447 
end 448 
persistent next_state                               % Initialize persistent variable to 449 
if isempty(next_state)                              % carry over state to next time step 450 
    next_state=zeros(1,12); 451 
    next_state=[dx dy dz ddx ddy ddz theta']; 452 
end 453 
  454 
persistent data1 455 
persistent data                                  % Initialize variable to hold reference 456 
if isempty(data)                                 % Only load reference data if it has not 457 
     458 
data=load('C:\Users\Carly\Desktop\DLR\Data\tumble\tumble_wy_3_5_orbital_plane_step05sec_1459 
.dat');          % yet been loaded. 460 
end 461 
if isempty(data1)                                % Scale reference data to 300 s 462 
     data1=data(1:2:1201,:); 463 
end 464 
%% Actuation constraint assurance  465 
if controlU(1)>0.043333335388468 466 
    controlU(1)=0.043333335388468; 467 
elseif controlU(1)<-0.043333335388552 468 
    controlU(1)=-0.043333335388552; 469 
else 470 
    controlU(1)=controlU(1); 471 
end 472 
 473 
if controlU(2)>0.043333333452083 474 
    controlU(2)=0.043333333452083; 475 
elseif controlU(2)<-0.043333333449083 476 
    controlU(2)=-0.043333333449083; 477 
else 478 
    controlU(2)=controlU(2); 479 
end 480 
  481 
if controlU(3)>0.043333333333334 482 
    controlU(3)=0.043333333333334; 483 
elseif controlU(3)<-0.043333333333334 484 



164  Appendix 

DLR-IB-RM-OP-2017-17 

    controlU(3)=-0.043333333333334; 485 
else 486 
    controlU(3)=controlU(3); 487 
end 488 
  489 
%% Set parameterization matrix M_theta (refer to: sections 4.4.2 and 7.4) 490 
Mtheta=[ -0.185551526369166, 0.018117071393572, 0.047743479379178, 0.706328547648448,                491 

0.005820151954137, 0.032651318626743; 492 
  -0.002300266364531, -0.182713737993363, 0.060394004339685, -0.007604460874062,    493 

0.706008414024590, 0.038656066811025; 494 
  -0.051013496976408, -0.057658466070907, -0.176380728691161, -0.032282424810556, 495 

      -0.038964665502406, 0.705293981181349; 496 
   0.185551526369166, -0.018117071393571, -0.047743479379178, 0.706328547648448, 497 

       0.005820151954136, 0.032651318626743; 498 
   0.002300266364531, 0.182713737993363, -0.060394004339685, -0.007604460874062, 499 

0.706008414024590, 0.038656066811025; 500 
   0.051013496976408, 0.057658466070907, 0.176380728691161, -0.032282424810556, 501 

      -0.038964665502406, 0.705293981181349; 502 
   0.185546807312485, -0.018555662630504, -0.047598740020594, 0.706343747015220, 503 

       0.004125706617421, 0.032558403012700; 504 
   0.002745590027817, 0.182670257022019, -0.060508588690195, -0.005909272359706, 505 

       0.706022382389280, 0.038734429975730; 506 
   0.051013717354715, 0.057658715155481, 0.176381490655910, -0.032282285350481, 507 

-0.038964497175050, 0.705290934311349]; 508 
  509 
         510 
%% Set current states         511 
current_state=next_state; 512 
realX=current_state(1:6)'+w(1:6); 513 
  514 
  515 
%% State Update 516 
% % CTS model 517 
% % norbit=0.0012; 518 
% A=[0 0 0 1 0 0; 0 0 0 0 1 0; 0 0 0 0 0 1; 3*norbit^2 0 0 0 2*norbit 0;  519 
%      0 0 0 -2*norbit 0 0; 0 0 -norbit^2 0 0 0]; 520 
% B=[0 0 0; 0 0 0; 0 0 0; 1 0 0; 0 1 0; 0 0 1]; 521 
% C=eye(6); 522 
% D=zeros(6,3); 523 
%  524 
% % sys=ss(A,B,C,D,0.5); 525 
% % [A,B,C,D]=ssdata(sys); 526 
  527 
% %  DIS Model 528 
% %  Sample time  0.5 s  529 
% State matrix 530 
% A=[1 0 0 0.5 0.0003 0; -2.16e-10 1 0 -0.0003 0.5 0; 0 0 1 0 0 0.5; 531 
%      2.16e-6 0 0 1 0.0012 0; -1.296e-9 0 0 -0.0012 1 0; 0 0 -7.2e-7 0 0 1]; 532 
% Input matrix 533 
% B=[ 0.125 5e-5 0; -5e-5 0.125 0; 0 0 0.125; 0.5 0.0003 0; -0.0003 0.5 0; 0 0 0.5]; 534 
% Output matrix 535 
% C=eye(6); 536 
% Feedthrough matrix 537 
% D=zeros(6,3); 538 
  539 
% Extend to incorporate terminal theta cost, extra states only processed in 540 
% cost function in final the offset cost term. 541 
% State matrix 542 
A=[1 0 0 0.5 0.0003 0 0 0 0 0 0 0; -2.16e-10 1 0 -0.0003 0.5 0 0 0 0 0 0 0; 543 
   0 0 1 0 0 0.5 0 0 0 0 0 0; 2.16e-6 0 0 1 0.0012 0 0 0 0 0 0 0; 544 
   -1.296e-9 0 0 -0.0012 1 0 0 0 0 0 0 0; 0 0 -2.6e-6 0 0 1 0 0 0 0 0 0; 545 
   0 0 0 0 0 0 1 0 0 0 0 0; 0 0 0 0 0 0 0 1 0 0 0 0; 546 
   0 0 0 0 0 0 0 0 1 0 0 0; 0 0 0 0 0 0 0 0 0 1 0 0; 547 
   0 0 0 0 0 0 0 0 0 0 1 0; 0 0 0 0 0 0 0 0 0 0 0 1]; 548 
% Input matrix 549 
B=[0.125 5e-5 0; -5e-5 0.125 0; 0 0 0.125; 0.5 0.0003 0; -0.0003 0.5 0; 0 0 0.5; 0 0 0; 550 
    0 0 0; 0 0 0; 0 0 0; 0 0 0; 0 0 0]; 551 
% Output matrix 552 
C=[eye(12)]; 553 
% Feedthrough matrix 554 



Software   165 

DLR-IB-RM-OP-2017-17 

D=zeros(12,3); 555 
  556 
  557 
% Calculate next sate and output 558 
Xplus=A*current_state'+B*controlU; 559 
Y=C*current_state'+D*controlU; 560 
dx=Xplus(1); 561 
dy=Xplus(2); 562 
dz=Xplus(3); 563 
ddx=Xplus(4); 564 
ddy=Xplus(5); 565 
ddz=Xplus(6); 566 
theta=Mtheta'*([Xplus(1);Xplus(2);Xplus(3);Xplus(4);Xplus(5);Xplus(6);controlU(1);control567 
U(2);controlU(3)]'+w(1:9)')'; 568 
theta_out=theta; 569 
  570 
next_state=[Xplus(1:6)' theta']; 571 
% Set nominal state output 572 
mo=next_state'; 573 
  574 
  575 
%% Apply tube constraints and calculate next position disturbance 576 
if sqrt((realX(1)-current_state(1))^2)<=4.6662&&sqrt((realX(2)-577 
current_state(2))^2)<=4.6662&&sqrt((realX(3)-current_state(3))^2)<=4.6662 578 
% % % Final state (0,0,4.6662,0,0,0) 579 
%    w(1)=(-1.97/(600))*time; 580 
%    w(2)=(0-0/(600))*time; 581 
%    w(3)=((4.6662-4.23)/(600))*time; 582 
% % % %     583 
  584 
% % % Final state (1,1,4.446,0,0,0) 585 
%    w(1)=((1-1.97)/600)*time; 586 
%    w(2)=((1-0)/600)*time; 587 
%    w(3)=((4.446-4.23)/600)*time; 588 
% % % %  589 
% % % Final state (0,-4.6662,0,0,0,0) 590 
   w(1)=((0-1.97)/600)*time; 591 
   w(2)=((-4.6662-0)/600)*time; 592 
   w(3)=((0-4.23)/600)*time;  593 
% % % %      594 
%    w(1)=((-1.97-1.97)/(601))*time; 595 
%    w(2)=((0-0)/(601))*time; 596 
%    w(3)=((-4.23-4.23)/(601))*time;  597 
  598 
% % % % w(1:3)=[0;0;0]; 599 
else 600 
    w=w; 601 
end 602 
   603 
% Apply position disturbance to real state for visulization 604 
realX=next_state(1:6)'+w(1:6); 605 
  606 
%% Set outputs 607 
c=controlU; 608 
wout=w(1:6); 609 
% Update time 610 
time=time+1; 611 
end 612 
  613 
 

  



166  Appendix 

DLR-IB-RM-OP-2017-17 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% REFERENCE BLOCK: Simulation reference vectors for 300 s rendezvous time           % 

% --------------------------------------------------------------------------------- % 

% This function parses the reference data to send the appropriately sized series of % 

% vectors to the reference and target ports of the controller block.                % 

% --------------------------------------------------------------------------------- % 

% [Setpoint, time, target]  = Ref                                                   % 

%                                                                                   % 

% Block input:                                                                      % 

%       ------                                                                      % 

%                                                                                   % 

% Block outputs:                                                                    % 

%       Setpoint :  set of vectors containing reference state values for each       % 

%                          prediction step                                          % 

%       time     :  current time step, currently used for error checking only       % 

%       target   :  reference for current actuation                                 % 

%                                                                                   % 

% --------------------------------------------------------------------------------- % 

% FROM: C. Buckner. Tube-based Model Predictive Control for the Approach Maneuver   % 

%          of a Spacecraft to a free-tumbling Target Satellite. Master Thesis,      % 

%          Technishe Universität München, 2016.                                     % 

%                                                                                   % 

% Copyright: Caroline Buckner                                                       % 

% Last edited: 22 Dec 2016                                                          % 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

function [Setpoint, time, target] = Ref 614 
%#codegen 615 
  616 
%% Set persistent and data 617 
persistent time_step;                                        % Current time step [0.5 s] 618 
if isempty(time_step) 619 
    time_step=1; 620 
end 621 
persistent data  622 
persistent refdata                                % Load reference data, 623 
if isempty(data)                                  % but only if it hasn't been loaded yet 624 
    625 
data=load('C:\Users\Carly\Desktop\DLR\Data\tumble\tumble_wy_3_5_orbital_plane_step05sec_1626 
.dat'); 627 
    refdata=zeros(700,10); 628 
    k=1;                                                      % Scale reference to 300 s 629 
    for j=1:2:1201 630 
        refdata(k,:)=data(j,1:10); 631 
        k=k+1; 632 
    end 633 
    for k=601:1:700 634 
        refdata(k,:)=data(1201,1:10); 635 
    end 636 
end 637 
  638 
%% Set parameterization matrix M_theta (refer to: sections 4.4.2 and 7.4) 639 
Mtheta=[ -0.185551526369166, 0.018117071393572, 0.047743479379178, 0.706328547648448,                640 

0.005820151954137, 0.032651318626743; 641 
  -0.002300266364531, -0.182713737993363, 0.060394004339685, -0.007604460874062,    642 

0.706008414024590, 0.038656066811025; 643 
  -0.051013496976408, -0.057658466070907, -0.176380728691161, -0.032282424810556, 644 

      -0.038964665502406, 0.705293981181349; 645 
   0.185551526369166, -0.018117071393571, -0.047743479379178, 0.706328547648448, 646 

       0.005820151954136, 0.032651318626743; 647 
   0.002300266364531, 0.182713737993363, -0.060394004339685, -0.007604460874062, 648 

0.706008414024590, 0.038656066811025; 649 
   0.051013496976408, 0.057658466070907, 0.176380728691161, -0.032282424810556, 650 

      -0.038964665502406, 0.705293981181349; 651 
   0.185546807312485, -0.018555662630504, -0.047598740020594, 0.706343747015220, 652 

       0.004125706617421, 0.032558403012700; 653 
   0.002745590027817, 0.182670257022019, -0.060508588690195, -0.005909272359706, 654 

       0.706022382389280, 0.038734429975730; 655 
   0.051013717354715, 0.057658715155481, 0.176381490655910, -0.032282285350481, 656 

-0.038964497175050, 0.705290934311349]; 657 
         658 



Software   167 

DLR-IB-RM-OP-2017-17 

%% Initialize vectors 659 
Setpoint=zeros(40,12); 660 
  661 
  662 
%% Set the series of reference vectors. Prediction horizon = 40 vectors are set from the 663 
reference data for each time step 664 
  665 
if time_step+39<=650 666 
    thets=Mtheta'*refdata(time_step:time_step+39,2:10)'; 667 
    Setpoint=[refdata(time_step:time_step+39,2:7),thets']; 668 
     669 
elseif time_step>=602 670 
    thets=Mtheta'*refdata(602,2:10)'; 671 
    Setpoint=[repmat(refdata(602,2:7),40,1),repmat(thets',40,1)]; 672 
else 673 
end 674 
  675 
%% Set the actuation target for the current prediction from reference data 676 
Ux=refdata(time_step,8); 677 
Uy=refdata(time_step,9); 678 
Uz=refdata(time_step,10); 679 
target=[Ux;Uy;Uz]; 680 
  681 
%% Increment time 682 
time=time_step; 683 
time_step=time_step+1; 684 
  

  

For a rendezvous time of 150 s: 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% MODEL BLOCK: Simulation state and output estimation for 150 s rendezvous          % 

% --------------------------------------------------------------------------------- % 

% This function handles state initialization and updates for the simuluation.       % 

% --------------------------------------------------------------------------------- % 

% [realX,mo,current_state,theta_out,c,wout]  = fcn(controlU)                        % 

%                                                                                   % 

% Block input:                                                                      % 

%       controlU : robust control action, input u to the state space model          % 

%                                                                                   % 

% Block outputs:                                                                    % 

%       realX :  current real state of the system                                   % 

%       mo    :  current nominal state of the system                                % 

%       wout  :  current position disturbance                                       % 

%                                                                                   % 

% --------------------------------------------------------------------------------- % 

% FROM: C. Buckner. Tube-based Model Predictive Control for the Approach Maneuver   % 

%          of a Spacecraft to a free-tumbling Target Satellite. Master Thesis,      % 

%          Technische Universität München, 2016.                                    % 

%                                                                                   % 

% Copyright: Caroline Buckner                                                       % 

% Last edited: 22 Dec 2016                                                          % 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  685 
 function [realX,mo,current_state,theta_out,c,wout]  = Model(controlU) 686 
%#codegen 687 
  688 
%% Set system variables initial conditions for the states and system model 689 
  690 
persistent time                                       % Time-step counter (=0.5[s]) 691 
if isempty(time)                                      % If not set,1 692 
    time=1;                                           % then set time to first time step. 693 
end 694 
  695 
persistent dx                                     % Relative position: radial [m] 696 
if isempty(dx)                                    % If not set, 697 
    dx=39;                                        % set to initial radial position state. 698 
end 699 
persistent dy                                     % Relative position: along-track [m] 700 



168  Appendix 

DLR-IB-RM-OP-2017-17 

if isempty(dy)                                    % If not set, 701 
    dy=39;                                        % set to initial along-track  702 
end                                               % position state. 703 
persistent dz                                     % Relative position: cross-track [m] 704 
if isempty(dz)                                    % If not set, 705 
    dz=4.23;                                      % set to initial cross-track 706 
end                                               % position state. 707 
persistent ddx                                    % Relative velocity: radial [m/s] 708 
if isempty(ddx)                                   % If not set, 709 
    ddx=0;                                        % set to initial radial velocity state. 710 
end 711 
persistent ddy                                    % Relative velocity: along-track [m/s] 712 
if isempty(ddy)                                   % If not set, 713 
    ddy=0;                                         % set to initial along-track  714 
end                                                % position state. 715 
persistent ddz                                     % Relative velocity: cross-track [m/s] 716 
if isempty(ddz)                                    % If not set, 717 
    ddz=0;                                         % set to initial cross-track  718 
end                                                % position state. 719 
persistent w                                       % Initialize disturbance 720 
if isempty(w) 721 
   w=zeros(12,1); 722 
end 723 
persistent theta                                   % Initialize theta state 724 
if isempty(theta) 725 
    theta=zeros(6,1); 726 
    Mtheta=[ -0.185551526369166, 0.018117071393572, 0.047743479379178, 0.706328547648448,                727 

0.005820151954137, 0.032651318626743; 728 
  -0.002300266364531, -0.182713737993363, 0.060394004339685, -0.007604460874062,    729 

0.706008414024590, 0.038656066811025; 730 
  -0.051013496976408, -0.057658466070907, -0.176380728691161, -0.032282424810556, 731 

      -0.038964665502406, 0.705293981181349; 732 
   0.185551526369166, -0.018117071393571, -0.047743479379178, 0.706328547648448, 733 

       0.005820151954136, 0.032651318626743; 734 
   0.002300266364531, 0.182713737993363, -0.060394004339685, -0.007604460874062, 735 

0.706008414024590, 0.038656066811025; 736 
   0.051013496976408, 0.057658466070907, 0.176380728691161, -0.032282424810556, 737 

      -0.038964665502406, 0.705293981181349; 738 
   0.185546807312485, -0.018555662630504, -0.047598740020594, 0.706343747015220, 739 

       0.004125706617421, 0.032558403012700; 740 
   0.002745590027817, 0.182670257022019, -0.060508588690195, -0.005909272359706, 741 

       0.706022382389280, 0.038734429975730; 742 
   0.051013717354715, 0.057658715155481, 0.176381490655910, -0.032282285350481, 743 

-0.038964497175050, 0.705290934311349]; 744 
    z_s1=[1.97;0;4.23;0;0;0;0;0;0]; 745 
    theta=Mtheta'*z_s1;  746 
end 747 
persistent next_state                            % Initialize persistent variable to 748 
if isempty(next_state)                           % carry over state to next time step 749 
    next_state=zeros(1,12); 750 
    next_state=[dx dy dz ddx ddy ddz theta']; 751 
end 752 
  753 
persistent data1 754 
persistent data                                  % Initialize variable to hold reference 755 
if isempty(data)                                 % Only load reference data if it has not 756 
     757 
data=load('C:\Users\Carly\Desktop\DLR\Data\tumble\tumble_wy_3_5_orbital_plane_step05sec_1758 
.dat');                                          % yet been loaded. 759 
end 760 
if isempty(data1)                                % Scale reference data to 300 s 761 
     data1=data(1:4:1201,:); 762 
end 763 
  764 
%% Actuation constraint assurance  765 
if controlU(1)>0.043333335388468 766 
    controlU(1)=0.043333335388468; 767 
elseif controlU(1)<-0.043333335388552 768 
    controlU(1)=-0.043333335388552; 769 
else 770 



Software   169 

DLR-IB-RM-OP-2017-17 

    controlU(1)=controlU(1); 771 
end 772 
         773 
if controlU(2)>0.043333333452083 774 
    controlU(2)=0.043333333452083; 775 
elseif controlU(2)<-0.043333333449083 776 
    controlU(2)=-0.043333333449083; 777 
else 778 
    controlU(2)=controlU(2); 779 
end 780 
  781 
if controlU(3)>0.043333333333334 782 
    controlU(3)=0.043333333333334; 783 
elseif controlU(3)<-0.043333333333334 784 
    controlU(3)=-0.043333333333334; 785 
else 786 
    controlU(3)=controlU(3); 787 
end 788 
  789 
%% Set parameterization matrix M_theta (refer to: sections 4.4.2 and 7.4) 790 
 Mtheta=[ -0.185551526369166, 0.018117071393572, 0.047743479379178, 0.706328547648448,                791 

0.005820151954137, 0.032651318626743; 792 
  -0.002300266364531, -0.182713737993363, 0.060394004339685, -0.007604460874062,    793 

0.706008414024590, 0.038656066811025; 794 
  -0.051013496976408, -0.057658466070907, -0.176380728691161, -0.032282424810556, 795 

      -0.038964665502406, 0.705293981181349; 796 
   0.185551526369166, -0.018117071393571, -0.047743479379178, 0.706328547648448, 797 

       0.005820151954136, 0.032651318626743; 798 
   0.002300266364531, 0.182713737993363, -0.060394004339685, -0.007604460874062, 799 

0.706008414024590, 0.038656066811025; 800 
   0.051013496976408, 0.057658466070907, 0.176380728691161, -0.032282424810556, 801 

      -0.038964665502406, 0.705293981181349; 802 
   0.185546807312485, -0.018555662630504, -0.047598740020594, 0.706343747015220, 803 

       0.004125706617421, 0.032558403012700; 804 
   0.002745590027817, 0.182670257022019, -0.060508588690195, -0.005909272359706, 805 

       0.706022382389280, 0.038734429975730; 806 
   0.051013717354715, 0.057658715155481, 0.176381490655910, -0.032282285350481, 807 

-0.038964497175050, 0.705290934311349]; 808 
        809 
%% Set current states         810 
current_state=next_state; 811 
realX=current_state(1:6)'+w(1:6); 812 
  813 
  814 
%% State Update 815 
% % CTS model 816 
% % norbit=0.0012; 817 
% A=[0 0 0 1 0 0; 0 0 0 0 1 0; 0 0 0 0 0 1; 3*norbit^2 0 0 0 2*norbit 0;  818 
%      0 0 0 -2*norbit 0 0; 0 0 -norbit^2 0 0 0]; 819 
% B=[0 0 0; 0 0 0; 0 0 0; 1 0 0; 0 1 0; 0 0 1]; 820 
% C=eye(6); 821 
% D=zeros(6,3); 822 
%  823 
% % sys=ss(A,B,C,D,0.5); 824 
% % [A,B,C,D]=ssdata(sys); 825 
  826 
% %  DIS Model 827 
% %  Sample time  0.5 s  828 
% State matrix 829 
% A=[1 0 0 0.5 0.0003 0; -2.16e-10 1 0 -0.0003 0.5 0; 0 0 1 0 0 0.5; 830 
%      2.16e-6 0 0 1 0.0012 0; -1.296e-9 0 0 -0.0012 1 0; 0 0 -7.2e-7 0 0 1]; 831 
% Input matrix 832 
% B=[ 0.125 5e-5 0; -5e-5 0.125 0; 0 0 0.125; 0.5 0.0003 0; -0.0003 0.5 0; 0 0 0.5]; 833 
% Output matrix 834 
% C=eye(6); 835 
% Feedthrough matrix 836 
% D=zeros(6,3); 837 
  838 
% Extend to incorporate terminal theta cost, extra states only processed in 839 
% cost function in final the offset cost term. 840 



170  Appendix 

DLR-IB-RM-OP-2017-17 

% State matrix 841 
A=[1 0 0 0.5 0.0003 0 0 0 0 0 0 0; -2.16e-10 1 0 -0.0003 0.5 0 0 0 0 0 0 0; 842 
   0 0 1 0 0 0.5 0 0 0 0 0 0; 2.16e-6 0 0 1 0.0012 0 0 0 0 0 0 0; 843 
   -1.296e-9 0 0 -0.0012 1 0 0 0 0 0 0 0; 0 0 -2.6e-6 0 0 1 0 0 0 0 0 0; 844 
   0 0 0 0 0 0 1 0 0 0 0 0; 0 0 0 0 0 0 0 1 0 0 0 0; 845 
   0 0 0 0 0 0 0 0 1 0 0 0; 0 0 0 0 0 0 0 0 0 1 0 0; 846 
   0 0 0 0 0 0 0 0 0 0 1 0; 0 0 0 0 0 0 0 0 0 0 0 1]; 847 
% Input matrix 848 
B=[0.125 5e-5 0; -5e-5 0.125 0; 0 0 0.125; 0.5 0.0003 0; -0.0003 0.5 0; 0 0 0.5; 0 0 0; 849 
    0 0 0; 0 0 0; 0 0 0; 0 0 0; 0 0 0]; 850 
% Output matrix 851 
C=[eye(12)]; 852 
% Feedthrough matrix 853 
D=zeros(12,3); 854 
% Calculate next sate and output 855 
Xplus=A*current_state'+B*controlU; 856 
Y=C*current_state'+D*controlU; 857 
dx=Xplus(1); 858 
dy=Xplus(2); 859 
dz=Xplus(3); 860 
ddx=Xplus(4); 861 
ddy=Xplus(5); 862 
ddz=Xplus(6); 863 
theta=Mtheta'*([Xplus(1);Xplus(2);Xplus(3);Xplus(4);Xplus(5);Xplus(6);controlU(1);control864 
U(2);controlU(3)]'+w(1:9)')'; 865 
theta_out=theta; 866 
  867 
next_state=[Xplus(1:6)' theta']; 868 
% Set nominal state output 869 
mo=next_state'; 870 
  871 
  872 
%% Apply tube constraints and calculate next position disturbance 873 
if sqrt((realX(1)-current_state(1))^2)<=4.6662&&sqrt((realX(2)-874 
current_state(2))^2)<=4.6662&&sqrt((realX(3)-current_state(3))^2)<=4.6662%dist<=4.6662 875 
% % % % % % Final state (0,0,4.6662,0,0,0) 876 
% % % % % % PLOTTED 877 
%    w(1)=(-1.97/(300))*time; 878 
%    w(2)=(0-0/(300))*time; 879 
%    w(3)=((4.6662-4.23)/(300))*time; 880 
% % %  881 
% % % Final state (1,1,4.446,0,0,0) 882 
% % % %    w(1)=((1-1.97)/(600*2+1))*time; 883 
% % % %    w(2)=((1-0)/(600*2+1))*time; 884 
% % % %    w(3)=((4.446-4.23)/(600*2+1))*time; 885 
% % %  886 
% % % Final state (0,-4.6662,0,0,0,0) 887 
   w(1)=((0-1.97)/(300))*time; 888 
   w(2)=((-4.6662-0)/(300))*time; 889 
   w(3)=((0-4.23)/(300))*time;  890 
% % % %     891 
%    w(1)=((-1.97-1.97)/(300))*time; 892 
%    w(2)=((0-0)/(300))*time; 893 
%    w(3)=((-4.23-4.23)/(300))*time;  894 
  895 
% % % % w(1:3)=[0;0;0]; 896 
else 897 
    w=w; 898 
end 899 
  900 
% Apply position disturbance to real state for visualization 901 
realX=next_state(1:6)'+w(1:6); 902 
  903 
%% Set outputs 904 
c=controlU; 905 
wout=w(1:6); 906 
% Update time 907 
time=time+1; 908 
end 909 



Software   171 

DLR-IB-RM-OP-2017-17 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% REFERENCE BLOCK: Simulation reference vectors for 150 s rendezvous time           % 

% --------------------------------------------------------------------------------- % 

% This function parses the reference data to send the appropriately sized series of % 

% vectors to the reference and target ports of the controller block.                % 

% --------------------------------------------------------------------------------- % 

% [Setpoint, time, target]  = Ref                                                   % 

%                                                                                   % 

% Block input:                                                                      % 

%       ------                                                                      % 

%                                                                                   % 

% Block outputs:                                                                    % 

%       Setpoint :  set of vectors containing reference state values for each       % 

%                          prediction step                                          % 

%       time     :  current time step, currently used for error checking only       % 

%       target   :  reference for current actuation                                 % 

%                                                                                   % 

% --------------------------------------------------------------------------------- % 

% FROM: C. Buckner. Tube-based Model Predictive Control for the Approach Maneuver   % 

%          of a Spacecraft to a free-tumbling Target Satellite. Master Thesis,      % 

%          Technische Universität München, 2016.                                    % 

%                                                                                   % 

% Copyright: Caroline Buckner                                                       % 

% Last edited: 22 Dec 2016                                                          % 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

function [Setpoint, time, target] = Ref 910 
%#codegen 911 
  912 
%% Set persistent and data 913 
persistent time_step;                                         % Current time step [0.5 s] 914 
if isempty(time_step) 915 
    time_step=1; 916 
end 917 
persistent data  918 
persistent refdata                                % Load reference data, 919 
if isempty(data)                                  % but only if it hasn't been loaded yet 920 
    921 
data=load('C:\Users\Carly\Desktop\DLR\Data\tumble\tumble_wy_3_5_orbital_plane_step05sec_1922 
.dat'); 923 
    refdata=zeros(700,10); 924 
  925 
    k=1;                                          % Scale reference to 150 s 926 
    for j=1:4:1201 927 
        refdata(k,:)=data(j,1:10); 928 
        k=k+1; 929 
    end 930 
    for k=350:1:700 931 
        refdata(k,:)=data(1201,1:10); 932 
    end 933 
end 934 
     935 
%% Set parameterization matrix M_theta (refer to: sections 4.4.2 and 7.4) 936 
Mtheta=[ -0.185551526369166, 0.018117071393572, 0.047743479379178, 0.706328547648448,                937 

0.005820151954137, 0.032651318626743; 938 
  -0.002300266364531, -0.182713737993363, 0.060394004339685, -0.007604460874062,    939 

0.706008414024590, 0.038656066811025; 940 
  -0.051013496976408, -0.057658466070907, -0.176380728691161, -0.032282424810556, 941 

      -0.038964665502406, 0.705293981181349; 942 
   0.185551526369166, -0.018117071393571, -0.047743479379178, 0.706328547648448, 943 

       0.005820151954136, 0.032651318626743; 944 
   0.002300266364531, 0.182713737993363, -0.060394004339685, -0.007604460874062, 945 

0.706008414024590, 0.038656066811025; 946 
   0.051013496976408, 0.057658466070907, 0.176380728691161, -0.032282424810556, 947 

      -0.038964665502406, 0.705293981181349; 948 
   0.185546807312485, -0.018555662630504, -0.047598740020594, 0.706343747015220, 949 

       0.004125706617421, 0.032558403012700; 950 
   0.002745590027817, 0.182670257022019, -0.060508588690195, -0.005909272359706, 951 

       0.706022382389280, 0.038734429975730; 952 
   0.051013717354715, 0.057658715155481, 0.176381490655910, -0.032282285350481, 953 



172  Appendix 

DLR-IB-RM-OP-2017-17 

-0.038964497175050, 0.705290934311349]; 954 
         955 
%% Initialize vectors 956 
Setpoint=zeros(40,12); 957 
   958 
%% Set the series of reference vectors. Prediction horizon = 40 vectors are set from the 959 
reference data for each time step 960 
  961 
if time_step+39<=360 962 
    thets=Mtheta'*refdata(time_step:time_step+39,2:10)'; 963 
    Setpoint=[refdata(time_step:time_step+39,2:7),thets']; 964 
     965 
elseif time_step>=361 966 
    thets=Mtheta'*refdata(361,2:10)'; 967 
    Setpoint=[repmat(refdata(361,2:7),40,1),repmat(thets',40,1)]; 968 
else 969 
end 970 
  971 
%% Set the actuation target for the current prediction from reference data 972 
  973 
Ux=refdata(time_step,8); 974 
Uy=refdata(time_step,9); 975 
Uz=refdata(time_step,10); 976 
target=[Ux;Uy;Uz]; 977 
   978 
%% Increment time 979 
time=time_step; 980 
time_step=time_step+1; 981 
  

  

For a 75 s rendezvous: 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% MODEL BLOCK: Simulation state and output estimation for 75 s rendezvous time      % 

% --------------------------------------------------------------------------------- % 

% This function handles state initialization and updates for the simulation.       % 

% --------------------------------------------------------------------------------- % 

% [realX,mo,current_state,theta_out,c,wout]  = fcn(controlU)                        % 

%                                                                                   % 

% Block input:                                                                      % 

%       controlU : robust control action, input u to the state space model          % 

%                                                                                   % 

% Block outputs:                                                                    % 

%       realX :  current real state of the system                                   % 

%       mo    :  current nominal state of the system                                % 

%       wout  :  current position disturbance                                       % 

%                                                                                   % 

% --------------------------------------------------------------------------------- % 

% FROM: C. Buckner. Tube-based Model Predictive Control for the Approach Maneuver   % 

%          of a Spacecraft to a free-tumbling Target Satellite. Master Thesis,      % 

%          Technische Universität München, 2016.                                    % 

%                                                                                   % 

% Copyright: Caroline Buckner                                                       % 

% Last edited: 22 Dec 2016                                                          % 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

  982 
function [realX,mo,current_state,theta_out,c,wout]  = Model(controlU) 983 
%#codegen 984 
  985 
%% Set system variables initial conditions for the states and system model 986 
  987 
persistent time                                       % Time-step counter (=0.5[s]) 988 
if isempty(time)                                      % If not set,1 989 
    time=1;                                           % then set time to first time step. 990 
end 991 
  992 
persistent dx                                     % Relative position: radial [m] 993 
if isempty(dx)                                    % If not set, 994 



Software   173 

DLR-IB-RM-OP-2017-17 

    dx=39;                                        % set to initial radial position state. 995 
end 996 
persistent dy                                     % Relative position: along-track [m] 997 
if isempty(dy)                                    % If not set, 998 
    dy=39;                                        % set to initial along-track  999 
end                                               % position state. 1000 
persistent dz                                     % Relative position: cross-track [m] 1001 
if isempty(dz)                                    % If not set, 1002 
    dz=4.23;                                      % set to initial cross-track 1003 
end                                               % position state. 1004 
persistent ddx                                    % Relative velocity: radial [m/s] 1005 
if isempty(ddx)                                   % If not set, 1006 
    ddx=0;                                        % set to initial radial velocity state. 1007 
end 1008 
persistent ddy                                   % Relative velocity: along-track [m/s] 1009 
if isempty(ddy)                                  % If not set, 1010 
    ddy=0;                                        % set to initial along-track  1011 
end                                               % position state. 1012 
persistent ddz                                    % Relative velocity: cross-track [m/s] 1013 
if isempty(ddz)                                   % If not set, 1014 
    ddz=0;                                        % set to initial cross-track  1015 
end                                               % position state. 1016 
persistent w                                      % Initialize disturbance 1017 
if isempty(w) 1018 
   w=zeros(12,1); 1019 
end 1020 
persistent theta                                  % Initialize theta state 1021 
if isempty(theta) 1022 
    theta=zeros(6,1); 1023 
    Mtheta=[ -0.185551526369166, 0.018117071393572, 0.047743479379178, 0.706328547648448,                1024 

0.005820151954137, 0.032651318626743; 1025 
  -0.002300266364531, -0.182713737993363, 0.060394004339685, -0.007604460874062,    1026 

0.706008414024590, 0.038656066811025; 1027 
  -0.051013496976408, -0.057658466070907, -0.176380728691161, -0.032282424810556, 1028 

      -0.038964665502406, 0.705293981181349; 1029 
   0.185551526369166, -0.018117071393571, -0.047743479379178, 0.706328547648448, 1030 

       0.005820151954136, 0.032651318626743; 1031 
   0.002300266364531, 0.182713737993363, -0.060394004339685, -0.007604460874062, 1032 

0.706008414024590, 0.038656066811025; 1033 
   0.051013496976408, 0.057658466070907, 0.176380728691161, -0.032282424810556, 1034 

      -0.038964665502406, 0.705293981181349; 1035 
   0.185546807312485, -0.018555662630504, -0.047598740020594, 0.706343747015220, 1036 

       0.004125706617421, 0.032558403012700; 1037 
   0.002745590027817, 0.182670257022019, -0.060508588690195, -0.005909272359706, 1038 

       0.706022382389280, 0.038734429975730; 1039 
   0.051013717354715, 0.057658715155481, 0.176381490655910, -0.032282285350481, 1040 

-0.038964497175050, 0.705290934311349]; 1041 
         1042 
    z_s1=[1.97;0;4.23;0;0;0;0;0;0]; 1043 
    theta=Mtheta'*z_s1;  1044 
end 1045 
persistent next_state                               % Initialize persistent variable to 1046 
if isempty(next_state)                              % carry over state to next time step 1047 
    next_state=zeros(1,12); 1048 
    next_state=[dx dy dz ddx ddy ddz theta']; 1049 
end 1050 
  1051 
persistent data1 1052 
persistent data                                  % Initialize variable to hold reference 1053 
if isempty(data)                                 % Only load reference data if it has not 1054 
     1055 
data=load('C:\Users\Carly\Desktop\DLR\Data\tumble\tumble_wy_3_5_orbital_plane_step05sec_11056 
.dat');          % yet been loaded. 1057 
end 1058 
if isempty(data1)                                % Scale reference data to 300 s 1059 
     data1=data(1:8:1201,:); 1060 
end 1061 
  1062 
%% Actuation constraint assurance  1063 
if controlU(1)>0.043333335388468 1064 



174  Appendix 

DLR-IB-RM-OP-2017-17 

    controlU(1)=0.043333335388468; 1065 
elseif controlU(1)<-0.043333335388552 1066 
    controlU(1)=-0.043333335388552; 1067 
else 1068 
    controlU(1)=controlU(1); 1069 
end 1070 
         1071 
if controlU(2)>0.043333333452083 1072 
    controlU(2)=0.043333333452083; 1073 
elseif controlU(2)<-0.043333333449083 1074 
    controlU(2)=-0.043333333449083; 1075 
else 1076 
    controlU(2)=controlU(2); 1077 
end 1078 
  1079 
if controlU(3)>0.043333333333334 1080 
    controlU(3)=0.043333333333334; 1081 
elseif controlU(3)<-0.043333333333334 1082 
    controlU(3)=-0.043333333333334; 1083 
else 1084 
    controlU(3)=controlU(3); 1085 
end 1086 
  1087 
%% Set parameterization matrix M_theta (refer to: sections 4.4.2 and 7.4) 1088 
 Mtheta=[ -0.185551526369166, 0.018117071393572, 0.047743479379178, 0.706328547648448,                1089 

0.005820151954137, 0.032651318626743; 1090 
  -0.002300266364531, -0.182713737993363, 0.060394004339685, -0.007604460874062,    1091 

0.706008414024590, 0.038656066811025; 1092 
  -0.051013496976408, -0.057658466070907, -0.176380728691161, -0.032282424810556, 1093 

      -0.038964665502406, 0.705293981181349; 1094 
   0.185551526369166, -0.018117071393571, -0.047743479379178, 0.706328547648448, 1095 

       0.005820151954136, 0.032651318626743; 1096 
   0.002300266364531, 0.182713737993363, -0.060394004339685, -0.007604460874062, 1097 

0.706008414024590, 0.038656066811025; 1098 
   0.051013496976408, 0.057658466070907, 0.176380728691161, -0.032282424810556, 1099 

      -0.038964665502406, 0.705293981181349; 1100 
   0.185546807312485, -0.018555662630504, -0.047598740020594, 0.706343747015220, 1101 

       0.004125706617421, 0.032558403012700; 1102 
   0.002745590027817, 0.182670257022019, -0.060508588690195, -0.005909272359706, 1103 

       0.706022382389280, 0.038734429975730; 1104 
   0.051013717354715, 0.057658715155481, 0.176381490655910, -0.032282285350481, 1105 

-0.038964497175050, 0.705290934311349]; 1106 
                 1107 
%% Set current states         1108 
current_state=next_state; 1109 
realX=current_state(1:6)'+w(1:6); 1110 
  1111 
  1112 
%% State Update 1113 
% % CTS model 1114 
% % norbit=0.0012; 1115 
% A=[0 0 0 1 0 0; 0 0 0 0 1 0; 0 0 0 0 0 1; 3*norbit^2 0 0 0 2*norbit 0;  1116 
%      0 0 0 -2*norbit 0 0; 0 0 -norbit^2 0 0 0]; 1117 
% B=[0 0 0; 0 0 0; 0 0 0; 1 0 0; 0 1 0; 0 0 1]; 1118 
% C=eye(6); 1119 
% D=zeros(6,3); 1120 
%  1121 
% % sys=ss(A,B,C,D,0.5); 1122 
% % [A,B,C,D]=ssdata(sys); 1123 
  1124 
% %  DIS Model 1125 
% %  Sample time  0.5 s  1126 
% State matrix 1127 
% A=[1 0 0 0.5 0.0003 0; -2.16e-10 1 0 -0.0003 0.5 0; 0 0 1 0 0 0.5; 1128 
%      2.16e-6 0 0 1 0.0012 0; -1.296e-9 0 0 -0.0012 1 0; 0 0 -7.2e-7 0 0 1]; 1129 
% Input matrix 1130 
% B=[ 0.125 5e-5 0; -5e-5 0.125 0; 0 0 0.125; 0.5 0.0003 0; -0.0003 0.5 0; 0 0 0.5]; 1131 
% Output matrix 1132 
% C=eye(6); 1133 
% Feedthrough matrix 1134 



Software   175 

DLR-IB-RM-OP-2017-17 

% D=zeros(6,3); 1135 
  1136 
% Extend to incorporate terminal theta cost, extra states only processed in 1137 
% cost function in final the offset cost term. 1138 
% State matrix 1139 
A=[1 0 0 0.5 0.0003 0 0 0 0 0 0 0; -2.16e-10 1 0 -0.0003 0.5 0 0 0 0 0 0 0; 1140 
   0 0 1 0 0 0.5 0 0 0 0 0 0; 2.16e-6 0 0 1 0.0012 0 0 0 0 0 0 0; 1141 
   -1.296e-9 0 0 -0.0012 1 0 0 0 0 0 0 0; 0 0 -2.6e-6 0 0 1 0 0 0 0 0 0; 1142 
   0 0 0 0 0 0 1 0 0 0 0 0; 0 0 0 0 0 0 0 1 0 0 0 0; 1143 
   0 0 0 0 0 0 0 0 1 0 0 0; 0 0 0 0 0 0 0 0 0 1 0 0; 1144 
   0 0 0 0 0 0 0 0 0 0 1 0; 0 0 0 0 0 0 0 0 0 0 0 1]; 1145 
% Input matrix 1146 
B=[0.125 5e-5 0; -5e-5 0.125 0; 0 0 0.125; 0.5 0.0003 0; -0.0003 0.5 0; 0 0 0.5; 0 0 0; 1147 
    0 0 0; 0 0 0; 0 0 0; 0 0 0; 0 0 0]; 1148 
% Output matrix 1149 
C=[eye(12)]; 1150 
% Feedthrough matrix 1151 
D=zeros(12,3); 1152 
   1153 
% Calculate next sate and output 1154 
Xplus=A*current_state'+B*controlU; 1155 
Y=C*current_state'+D*controlU; 1156 
dx=Xplus(1); 1157 
dy=Xplus(2); 1158 
dz=Xplus(3); 1159 
ddx=Xplus(4); 1160 
ddy=Xplus(5); 1161 
ddz=Xplus(6); 1162 
theta=Mtheta'*([Xplus(1);Xplus(2);Xplus(3);Xplus(4);Xplus(5);Xplus(6);controlU(1);control1163 
U(2);controlU(3)]'+w(1:9)')'; 1164 
theta_out=theta; 1165 
  1166 
next_state=[Xplus(1:6)' theta']; 1167 
% Set nominal state output 1168 
mo=next_state'; 1169 
  1170 
  1171 
%% Apply tube constraints and calculate next position disturbance 1172 
if sqrt((realX(1)-current_state(1))^2)<=4.6662&&sqrt((realX(2)-1173 
current_state(2))^2)<=4.6662&&sqrt((realX(3)-current_state(3))^2)<=4.6662 1174 
% % % % % % Final state (0,0,4.6662,0,0,0) 1175 
% % % % % % PLOTTED 1176 
%    w(1)=(-1.97/(151))*time; 1177 
%    w(2)=(0-0/(151))*time; 1178 
%    w(3)=((4.6662-4.23)/(151))*time; 1179 
% % %  1180 
% % % Final state (1,1,4.446,0,0,0) 1181 
% % % %    w(1)=((1-1.97)/(151))*time; 1182 
% % % %    w(2)=((1-0)/(151))*time; 1183 
% % % %    w(3)=((4.446-4.23)/(151))*time; 1184 
% % %  1185 
% % % Final state (0,-4.6662,0,0,0,0) 1186 
   w(1)=((0-1.97)/(151))*time; 1187 
   w(2)=((-4.6662-0)/(151))*time; 1188 
   w(3)=((0-4.23)/(151))*time;  1189 
% % % %     1190 
%    w(1)=((-1.97-1.97)/(151))*time; 1191 
%    w(2)=((0-0)/(151))*time; 1192 
%    w(3)=((-4.23-4.23)/(151))*time;  1193 
  1194 
% % % % w(1:3)=[0;0;0]; 1195 
else 1196 
    w=w; 1197 
end 1198 
  1199 
% Apply position disturbance to real state for visualization 1200 
realX=next_state(1:6)'+w(1:6); 1201 
  1202 
%% Set outputs 1203 



176  Appendix 

DLR-IB-RM-OP-2017-17 

c=controlU; 1204 
wout=w(1:6); 1205 
% Update time 1206 
time=time+1; 1207 
end 1208 
 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% REFERENCE BLOCK: Simulation reference vectors for 75 s rendezvous time            % 

% --------------------------------------------------------------------------------- % 

% This function parses the reference data to send the appropriately sized series of % 

% vectors to the reference and target ports of the controller block.                % 

% --------------------------------------------------------------------------------- % 

% [Setpoint, time, target]  = Ref                                                   % 

%                                                                                   % 

% Block input:                                                                      % 

%       ------                                                                      % 

%                                                                                   % 

% Block outputs:                                                                    % 

%       Setpoint :  set of vectors containing reference state values for each       % 

%                          prediction step                                          % 

%       time     :  current time step, currently used for error checking only       % 

%       target   :  reference for current actuation                                 % 

%                                                                                   % 

% --------------------------------------------------------------------------------- % 

% FROM: C. Buckner. Tube-based Model Predictive Control for the Approach Maneuver   % 

%          of a Spacecraft to a free-tumbling Target Satellite. Master Thesis,      % 

%          Technische Universität München, 2016.                                     % 

%                                                                                   % 

% Copyright: Caroline Buckner                                                       % 

% Last edited: 22 Dec 2016                                                          % 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

function [Setpoint, time, target] = Ref 1209 
%#codegen 1210 
  1211 
%% Set persistent and data 1212 
persistent time_step;                                         % Current time step [0.5 s] 1213 
if isempty(time_step) 1214 
    time_step=1; 1215 
end 1216 
persistent data  1217 
persistent refdata                                % Load reference data, 1218 
if isempty(data)                                  % but only if it hasn't been loaded yet 1219 
    1220 
data=load('C:\Users\Carly\Desktop\DLR\Data\tumble\tumble_wy_3_5_orbital_plane_step05sec_11221 
.dat'); 1222 
    refdata=zeros(700,10); 1223 
  1224 
    k=1;                                                       % Scale reference to 75 s 1225 
    for j=1:8:1201 1226 
        refdata(k,:)=data(j,1:10); 1227 
        k=k+1; 1228 
    end 1229 
    for k=350:1:700 1230 
        refdata(k,:)=data(1201,1:10); 1231 
    end 1232 
end 1233 
     1234 
%% Set parameterization matrix M_theta (refer to: sections 4.4.2 and 7.4) 1235 
Mtheta=[ -0.185551526369166, 0.018117071393572, 0.047743479379178, 0.706328547648448,                1236 

0.005820151954137, 0.032651318626743; 1237 
  -0.002300266364531, -0.182713737993363, 0.060394004339685, -0.007604460874062,    1238 

0.706008414024590, 0.038656066811025; 1239 
  -0.051013496976408, -0.057658466070907, -0.176380728691161, -0.032282424810556, 1240 

      -0.038964665502406, 0.705293981181349; 1241 
   0.185551526369166, -0.018117071393571, -0.047743479379178, 0.706328547648448, 1242 

       0.005820151954136, 0.032651318626743; 1243 
   0.002300266364531, 0.182713737993363, -0.060394004339685, -0.007604460874062, 1244 

0.706008414024590, 0.038656066811025; 1245 
   0.051013496976408, 0.057658466070907, 0.176380728691161, -0.032282424810556, 1246 

      -0.038964665502406, 0.705293981181349; 1247 



Software   177 

DLR-IB-RM-OP-2017-17 

   0.185546807312485, -0.018555662630504, -0.047598740020594, 0.706343747015220, 1248 
       0.004125706617421, 0.032558403012700; 1249 

   0.002745590027817, 0.182670257022019, -0.060508588690195, -0.005909272359706, 1250 
       0.706022382389280, 0.038734429975730; 1251 

   0.051013717354715, 0.057658715155481, 0.176381490655910, -0.032282285350481, 1252 
-0.038964497175050, 0.705290934311349]; 1253 

         1254 
%% Initialize vectors 1255 
Setpoint=zeros(40,12); 1256 
  1257 
%% Set the series of reference vectors. Prediction horizon = 40 vectors are set from the 1258 
reference data for each time step 1259 
  1260 
if time_step+39<=360 1261 
    thets=Mtheta'*refdata(time_step:time_step+39,2:10)'; 1262 
    Setpoint=[refdata(time_step:time_step+39,2:7),thets']; 1263 
     1264 
elseif time_step>=361 1265 
    thets=Mtheta'*refdata(361,2:10)'; 1266 
    Setpoint=[repmat(refdata(361,2:7),40,1),repmat(thets',40,1)]; 1267 
else 1268 
end 1269 
  1270 
%% Set the actuation target for the current prediction from reference data 1271 
Ux=refdata(time_step,8); 1272 
Uy=refdata(time_step,9); 1273 
Uz=refdata(time_step,10); 1274 
target=[Ux;Uy;Uz]; 1275 
  1276 
%% Increment time 1277 
time=time_step; 1278 
time_step=time_step+1; 1279 
  

And finally for a rendezvous time of 37.5 s:  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% MODEL BLOCK: Simulation state and output estimation for a rendezvous time of 37.5s% 

% --------------------------------------------------------------------------------- % 

% This function handles state initialization and updates for the simulation.        % 

% --------------------------------------------------------------------------------- % 

% [realX,mo,current_state,theta_out,c,wout]  = fcn(controlU)                        % 

%                                                                                   % 

% Block input:                                                                      % 

%       controlU : robust control action, input u to the state space model          % 

%                                                                                   % 

% Block outputs:                                                                    % 

%       realX :  current real state of the system                                   % 

%       mo    :  current nominal state of the system                                % 

%       wout  :  current position disturbance                                       % 

%                                                                                   % 

% --------------------------------------------------------------------------------- % 

% FROM: C. Buckner. Tube-based Model Predictive Control for the Approach Maneuver   % 

%          of a Spacecraft to a free-tumbling Target Satellite. Master Thesis,      % 

%          Technische Universität München, 2016.                                    % 

%                                                                                   % 

% Copyright: Caroline Buckner                                                       % 

% Last edited: 22 Dec 2016                                                          % 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

  

function [realX,mo,current_state,theta_out,c,wout]  = Model(controlU) 1280 
%#codegen 1281 
  1282 
%% Set system variables initial conditions for the states and system model 1283 
  1284 
persistent time                                      % Time-step counter (=0.5[s]) 1285 
if isempty(time)                                     % If not set, 1286 
    time=1;                                          % then set time to first time step. 1287 
end 1288 



178  Appendix 

DLR-IB-RM-OP-2017-17 

  1289 
persistent dx                                     % Relative position: radial [m] 1290 
if isempty(dx)                                    % If not set, 1291 
    dx=39;                                        % set to initial radial position state. 1292 
end 1293 
persistent dy                                     % Relative position: along-track [m] 1294 
if isempty(dy)                                    % If not set, 1295 
    dy=39;                                        % set to initial along-track  1296 
end                                               % position state. 1297 
persistent dz                                     % Relative position: cross-track [m] 1298 
if isempty(dz)                                    % If not set, 1299 
    dz=4.23;                                      % set to initial cross-track 1300 
end                                               % position state. 1301 
persistent ddx                                    % Relative velocity: radial [m/s] 1302 
if isempty(ddx)                                   % If not set, 1303 
    ddx=0;                                        % set to initial radial velocity state. 1304 
end 1305 
persistent ddy                                    % Relative velocity: along-track [m/s] 1306 
if isempty(ddy)                                   % If not set, 1307 
    ddy=0;                                         % set to initial along-track  1308 
end                                                % position state. 1309 
persistent ddz                                     % Relative velocity: cross-track [m/s] 1310 
if isempty(ddz)                                    % If not set, 1311 
    ddz=0;                                         % set to initial cross-track  1312 
end                                                % position state. 1313 
persistent w                                       % Initialize disturbance 1314 
if isempty(w) 1315 
   w=zeros(12,1); 1316 
end 1317 
persistent theta                                   % Initialize theta state 1318 
if isempty(theta) 1319 
    theta=zeros(6,1); 1320 
   Mtheta=[ -0.185551526369166, 0.018117071393572, 0.047743479379178, 0.706328547648448,                1321 

0.005820151954137, 0.032651318626743; 1322 
  -0.002300266364531, -0.182713737993363, 0.060394004339685, -0.007604460874062,    1323 

0.706008414024590, 0.038656066811025; 1324 
  -0.051013496976408, -0.057658466070907, -0.176380728691161, -0.032282424810556, 1325 

      -0.038964665502406, 0.705293981181349; 1326 
   0.185551526369166, -0.018117071393571, -0.047743479379178, 0.706328547648448, 1327 

       0.005820151954136, 0.032651318626743; 1328 
   0.002300266364531, 0.182713737993363, -0.060394004339685, -0.007604460874062, 1329 

0.706008414024590, 0.038656066811025; 1330 
   0.051013496976408, 0.057658466070907, 0.176380728691161, -0.032282424810556, 1331 

      -0.038964665502406, 0.705293981181349; 1332 
   0.185546807312485, -0.018555662630504, -0.047598740020594, 0.706343747015220, 1333 

       0.004125706617421, 0.032558403012700; 1334 
   0.002745590027817, 0.182670257022019, -0.060508588690195, -0.005909272359706, 1335 

       0.706022382389280, 0.038734429975730; 1336 
   0.051013717354715, 0.057658715155481, 0.176381490655910, -0.032282285350481, 1337 

-0.038964497175050, 0.705290934311349]; 1338 
    z_s1=[1.97;0;4.23;0;0;0;0;0;0]; 1339 
    theta=Mtheta'*z_s1;  1340 
end 1341 
persistent next_state                             % Initialize persistent variable to 1342 
if isempty(next_state)                            % carry over state to next time step 1343 
    next_state=zeros(1,12); 1344 
    next_state=[dx dy dz ddx ddy ddz theta']; 1345 
end 1346 
  1347 
persistent data1 1348 
persistent data                                  % Initialize variable to hold reference 1349 
if isempty(data)                                 % Only load reference data if it has not 1350 
     1351 
data=load('C:\Users\Carly\Desktop\DLR\Data\tumble\tumble_wy_3_5_orbital_plane_step05sec_11352 
.dat');                                          % yet been loaded. 1353 
end 1354 
if isempty(data1)                                % Scale reference data to 300 s 1355 
     data1=data(1:16:1201,:); 1356 
end 1357 
  1358 



Software   179 

DLR-IB-RM-OP-2017-17 

%% Actuation constraint assurance  1359 
if controlU(1)>0.043333335388468 1360 
    controlU(1)=0.043333335388468; 1361 
elseif controlU(1)<-0.043333335388552 1362 
    controlU(1)=-0.043333335388552; 1363 
else 1364 
    controlU(1)=controlU(1); 1365 
end 1366 
         1367 
if controlU(2)>0.043333333452083 1368 
    controlU(2)=0.043333333452083; 1369 
elseif controlU(2)<-0.043333333449083 1370 
    controlU(2)=-0.043333333449083; 1371 
else 1372 
    controlU(2)=controlU(2); 1373 
end 1374 
  1375 
if controlU(3)>0.043333333333334 1376 
    controlU(3)=0.043333333333334; 1377 
elseif controlU(3)<-0.043333333333334 1378 
    controlU(3)=-0.043333333333334; 1379 
else 1380 
    controlU(3)=controlU(3); 1381 
end 1382 
  1383 
%% Set parameterization matrix M_theta (refer to: sections 4.4.2 and 7.4) 1384 
Mtheta=[ -0.185551526369166, 0.018117071393572, 0.047743479379178, 0.706328547648448,                1385 

0.005820151954137, 0.032651318626743; 1386 
  -0.002300266364531, -0.182713737993363, 0.060394004339685, -0.007604460874062,    1387 

0.706008414024590, 0.038656066811025; 1388 
  -0.051013496976408, -0.057658466070907, -0.176380728691161, -0.032282424810556, 1389 

      -0.038964665502406, 0.705293981181349; 1390 
   0.185551526369166, -0.018117071393571, -0.047743479379178, 0.706328547648448, 1391 

       0.005820151954136, 0.032651318626743; 1392 
   0.002300266364531, 0.182713737993363, -0.060394004339685, -0.007604460874062, 1393 

0.706008414024590, 0.038656066811025; 1394 
   0.051013496976408, 0.057658466070907, 0.176380728691161, -0.032282424810556, 1395 

      -0.038964665502406, 0.705293981181349; 1396 
   0.185546807312485, -0.018555662630504, -0.047598740020594, 0.706343747015220, 1397 

       0.004125706617421, 0.032558403012700; 1398 
   0.002745590027817, 0.182670257022019, -0.060508588690195, -0.005909272359706, 1399 

       0.706022382389280, 0.038734429975730; 1400 
   0.051013717354715, 0.057658715155481, 0.176381490655910, -0.032282285350481, 1401 

-0.038964497175050, 0.705290934311349]; 1402 
  1403 
         1404 
%% Set current states         1405 
current_state=next_state; 1406 
realX=current_state(1:6)'+w(1:6); 1407 
  1408 
  1409 
%% State Update 1410 
% % CTS model 1411 
% % norbit=0.0012; 1412 
% A=[0 0 0 1 0 0; 0 0 0 0 1 0; 0 0 0 0 0 1; 3*norbit^2 0 0 0 2*norbit 0;  1413 
%      0 0 0 -2*norbit 0 0; 0 0 -norbit^2 0 0 0]; 1414 
% B=[0 0 0; 0 0 0; 0 0 0; 1 0 0; 0 1 0; 0 0 1]; 1415 
% C=eye(6); 1416 
% D=zeros(6,3); 1417 
%  1418 
% % sys=ss(A,B,C,D,0.5); 1419 
% % [A,B,C,D]=ssdata(sys); 1420 
  1421 
% %  DIS Model 1422 
% %  Sample time  0.5 s  1423 
% State matrix 1424 
% A=[1 0 0 0.5 0.0003 0; -2.16e-10 1 0 -0.0003 0.5 0; 0 0 1 0 0 0.5; 1425 
%      2.16e-6 0 0 1 0.0012 0; -1.296e-9 0 0 -0.0012 1 0; 0 0 -7.2e-7 0 0 1]; 1426 
% Input matrix 1427 
% B=[ 0.125 5e-5 0; -5e-5 0.125 0; 0 0 0.125; 0.5 0.0003 0; -0.0003 0.5 0; 0 0 0.5]; 1428 



180  Appendix 

DLR-IB-RM-OP-2017-17 

% Output matrix 1429 
% C=eye(6); 1430 
% Feedthrough matrix 1431 
% D=zeros(6,3); 1432 
  1433 
% Extend to incorporate terminal theta cost, extra states only processed in 1434 
% cost function in final the offset cost term. 1435 
% State matrix 1436 
A=[1 0 0 0.5 0.0003 0 0 0 0 0 0 0; -2.16e-10 1 0 -0.0003 0.5 0 0 0 0 0 0 0; 1437 
   0 0 1 0 0 0.5 0 0 0 0 0 0; 2.16e-6 0 0 1 0.0012 0 0 0 0 0 0 0; 1438 
   -1.296e-9 0 0 -0.0012 1 0 0 0 0 0 0 0; 0 0 -2.6e-6 0 0 1 0 0 0 0 0 0; 1439 
   0 0 0 0 0 0 1 0 0 0 0 0; 0 0 0 0 0 0 0 1 0 0 0 0; 1440 
   0 0 0 0 0 0 0 0 1 0 0 0; 0 0 0 0 0 0 0 0 0 1 0 0; 1441 
   0 0 0 0 0 0 0 0 0 0 1 0; 0 0 0 0 0 0 0 0 0 0 0 1]; 1442 
% Input matrix 1443 
B=[0.125 5e-5 0; -5e-5 0.125 0; 0 0 0.125; 0.5 0.0003 0; -0.0003 0.5 0; 0 0 0.5; 0 0 0; 1444 
    0 0 0; 0 0 0; 0 0 0; 0 0 0; 0 0 0]; 1445 
% Output matrix 1446 
C=[eye(12)]; 1447 
% Feedthrough matrix 1448 
D=zeros(12,3); 1449 
  1450 
% Calculate next sate and output 1451 
Xplus=A*current_state'+B*controlU; 1452 
Y=C*current_state'+D*controlU; 1453 
dx=Xplus(1); 1454 
dy=Xplus(2); 1455 
dz=Xplus(3); 1456 
ddx=Xplus(4); 1457 
ddy=Xplus(5); 1458 
ddz=Xplus(6); 1459 
theta=Mtheta'*([Xplus(1);Xplus(2);Xplus(3);Xplus(4);Xplus(5);Xplus(6);controlU(1);control1460 
U(2);controlU(3)]'+w(1:9)')'; 1461 
theta_out=theta; 1462 
  1463 
next_state=[Xplus(1:6)' theta']; 1464 
% Set nominal state output 1465 
mo=next_state'; 1466 
  1467 
  1468 
%% Apply tube constraints and calculate next position disturbance 1469 
if sqrt((realX(1)-current_state(1))^2)<=4.6662&&sqrt((realX(2)-1470 
current_state(2))^2)<=4.6662&&sqrt((realX(3)-current_state(3))^2)<=4.6662 1471 
% % % % % % Final state (0,0,4.6662,0,0,0) 1472 
% % % % % % PLOTTED 1473 
%    w(1)=(-1.97/(76))*time; 1474 
%    w(2)=(0-0/(76))*time; 1475 
%    w(3)=((4.6662-4.23)/(76))*time; 1476 
% % %  1477 
% % % Final state (1,1,4.446,0,0,0) 1478 
%    w(1)=((1-1.97)/(76))*time; 1479 
%    w(2)=((1-0)/(76))*time; 1480 
%    w(3)=((4.446-4.23)/(76))*time; 1481 
% % %  1482 
% % % Final state (0,-4.6662,0,0,0,0) 1483 
   w(1)=((0-1.97)/(76))*time; 1484 
   w(2)=((-4.6662-0)/(76))*time; 1485 
   w(3)=((0-4.23)/(76))*time;  1486 
% % % %     1487 
% %    w(1)=((-1.97-1.97)/(76))*time; 1488 
% %    w(2)=((0-0)/(76))*time; 1489 
% %    w(3)=((-4.23-4.23)/(76))*time;  1490 
  1491 
% % % % w(1:3)=[0;0;0]; 1492 
else 1493 
    w=w; 1494 
end 1495 
  1496 
% Apply position disturbance to real state for visualization 1497 



Software   181 

DLR-IB-RM-OP-2017-17 

realX=next_state(1:6)'+w(1:6); 1498 
  1499 
%% Set outputs 1500 
c=controlU; 1501 
wout=w(1:6); 1502 
% Update time 1503 
time=time+1; 1504 
end 1505 
 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% REFERENCE BLOCK: Simulation reference vectors for 37.5 s rendezvous time          % 

% --------------------------------------------------------------------------------- % 

% This function parses the reference data to send the appropriately sized series of % 

% vectors to the reference and target ports of the controller block.                % 

% --------------------------------------------------------------------------------- % 

% [Setpoint, time, target]  = Ref                                                   % 

%                                                                                   % 

% Block input:                                                                      % 

%       ------                                                                      % 

%                                                                                   % 

% Block outputs:                                                                    % 

%       Setpoint :  set of vectors containing reference state values for each       % 

%                          prediction step                                          % 

%       time     :  current time step, currently used for error checking only       % 

%       target   :  reference for current actuation                                 % 

%                                                                                   % 

% --------------------------------------------------------------------------------- % 

% FROM: C. Buckner. Tube-based Model Predictive Control for the Approach Maneuver   % 

%          of a Spacecraft to a free-tumbling Target Satellite. Master Thesis,      % 

%          Technische Universität München, 2016.                                    % 

%                                                                                   % 

% Copyright: Caroline Buckner                                                       % 

% Last edited: 22 Dec 2016                                                          % 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

function [Setpoint, time, target] = Ref 1506 
%#codegen 1507 
  1508 
%% Set persistent and data 1509 
persistent time_step;                                        % Current time step [0.5 s] 1510 
if isempty(time_step) 1511 
    time_step=1; 1512 
end 1513 
persistent data  1514 
persistent refdata                                % Load reference data, 1515 
if isempty(data)                                  % but only if it hasn't been loaded yet 1516 
    1517 
data=load('C:\Users\Carly\Desktop\DLR\Data\tumble\tumble_wy_3_5_orbital_plane_step05sec_11518 
.dat'); 1519 
    refdata=zeros(700,10); 1520 
  1521 
    k=1;                                                        % Scale reference to 75 s 1522 
    for j=1:16:1201 1523 
        refdata(k,:)=data(j,1:10); 1524 
        k=k+1; 1525 
    end 1526 
    for k=350:1:700 1527 
        refdata(k,:)=data(1201,1:10); 1528 
    end 1529 
end 1530 
     1531 
%% Set parameterization matrix M_theta (refer to: sections 4.4.2 and 7.4) 1532 
Mtheta=[ -0.185551526369166, 0.018117071393572, 0.047743479379178, 0.706328547648448,                1533 

0.005820151954137, 0.032651318626743; 1534 
  -0.002300266364531, -0.182713737993363, 0.060394004339685, -0.007604460874062,    1535 

0.706008414024590, 0.038656066811025; 1536 
  -0.051013496976408, -0.057658466070907, -0.176380728691161, -0.032282424810556, 1537 

      -0.038964665502406, 0.705293981181349; 1538 
   0.185551526369166, -0.018117071393571, -0.047743479379178, 0.706328547648448, 1539 

       0.005820151954136, 0.032651318626743; 1540 
   0.002300266364531, 0.182713737993363, -0.060394004339685, -0.007604460874062, 1541 



182  Appendix 

DLR-IB-RM-OP-2017-17 

0.706008414024590, 0.038656066811025; 1542 
   0.051013496976408, 0.057658466070907, 0.176380728691161, -0.032282424810556, 1543 

      -0.038964665502406, 0.705293981181349; 1544 
   0.185546807312485, -0.018555662630504, -0.047598740020594, 0.706343747015220, 1545 

       0.004125706617421, 0.032558403012700; 1546 
   0.002745590027817, 0.182670257022019, -0.060508588690195, -0.005909272359706, 1547 

       0.706022382389280, 0.038734429975730; 1548 
   0.051013717354715, 0.057658715155481, 0.176381490655910, -0.032282285350481, 1549 

-0.038964497175050, 0.705290934311349]; 1550 
 1551 
         1552 
%% Initialize vectors 1553 
Setpoint=zeros(40,12); 1554 
  1555 
  1556 
%% Set the series of reference vectors. Prediction horizon = 40 vectors are set from the 1557 
reference data for each time step 1558 
  1559 
if time_step+39<=360 1560 
    thets=Mtheta'*refdata(time_step:time_step+39,2:10)'; 1561 
    Setpoint=[refdata(time_step:time_step+39,2:7),thets']; 1562 
     1563 
elseif time_step>=361 1564 
    thets=Mtheta'*refdata(361,2:10)'; 1565 
    Setpoint=[repmat(refdata(361,2:7),40,1),repmat(thets',40,1)]; 1566 
else 1567 
end 1568 
  1569 
%% Set the actuation target for the current prediction from reference data 1570 
Ux=refdata(time_step,8); 1571 
Uy=refdata(time_step,9); 1572 
Uz=refdata(time_step,10); 1573 
target=[Ux;Uy;Uz]; 1574 
  1575 
%% Increment time 1576 
time=time_step; 1577 
time_step=time_step+1; 1578 
  

One additional simulator was constructed which does not make use of any robust terms to provide time data 

for the nominal MPC case. This simulator is given in the following. 

 

Figure Appendix - 2 Simulation of nominal control only 

The MPC controller block is the same as in the previous simulator. The basis of the Model and Reference 

blocks is similar to the above:  



Software   183 

DLR-IB-RM-OP-2017-17 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% MODEL BLOCK: Simulation state and output estimation for Nominal sim w/out tube.   % 

% --------------------------------------------------------------------------------- % 

% This function handles state initialization and updates for the simuluation.       % 

% --------------------------------------------------------------------------------- % 

% mo  = fcn(controlU)                                                               % 

%                                                                                   % 

% Block input:                                                                      % 

%       controlU : robust control action, input u to the state space model          % 

%                                                                                   % 

% Block outputs:                                                                    % 

%       mo    :  current nominal state of the system                                % 

%                                                                                   % 

% --------------------------------------------------------------------------------- % 

% FROM: C. Buckner. Tube-based Model Predictive Control for the Approach Maneuver   % 

%          of a Spacecraft to a free-tumbling Target Satellite. Master Thesis,      % 

%          Technische Universität München, 2016.                                    % 

%                                                                                   % 

% Copyright: Caroline Buckner                                                       % 

% Last edited: 22 Dec 2016                                                          % 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

function mo  = Model(controlU) 1579 
%#codegen 1580 
  1581 
%% Set system variables initial conditions for the states and system model 1582 
  1583 
persistent time                                     % Time-step counter (=0.5[s]) 1584 
if isempty(time)                                    % If not set, 1585 
    time=1;                                         % then set time to first time step. 1586 
end 1587 
  1588 
persistent dx                                    % Relative position: radial [m] 1589 
if isempty(dx)                                   % If not set, 1590 
    dx=39;                                       % set to initial radial position state. 1591 
end 1592 
persistent dy                                    % Relative position: along-track [m] 1593 
if isempty(dy)                                   % If not set, 1594 
    dy=39;                                       % set to initial along-track  1595 
end                                              % position state. 1596 
persistent dz                                    % Relative position: cross-track [m] 1597 
if isempty(dz)                                   % If not set, 1598 
    dz=4.23;                                     % set to initial cross-track 1599 
end                                              % position state. 1600 
persistent ddx                                   % Relative velocity: radial [m/s] 1601 
if isempty(ddx)                                  % If not set, 1602 
    ddx=0;                                       % set to initial radial velocity state. 1603 
end 1604 
persistent ddy                                   % Relative velocity: along-track [m/s] 1605 
if isempty(ddy)                                  % If not set, 1606 
    ddy=0;                                       % set to initial along-track  1607 
end                                              % position state. 1608 
persistent ddz                                   % Relative velocity: cross-track [m/s] 1609 
if isempty(ddz)                                  % If not set, 1610 
    ddz=0;                                       % set to initial cross-track  1611 
end 1612 
persistent next_state                            % Initialize persistent variable to 1613 
if isempty(next_state)                           % carry over state to next time step 1614 
    next_state=zeros(1,12); 1615 
    next_state=[dx dy dz ddx ddy ddz theta']; 1616 
end 1617 
persistent data                                  % Initialize variable to hold reference 1618 
if isempty(data)                                 % Only load reference data if it has not 1619 
data=load('C:\Users\Carly\Desktop\DLR\Data\tumble\tumble_wy_3_5_orbital_plane_step05sec_11620 
.dat');          % yet been loaded. 1621 
end 1622 
  1623 
if isempty(controlU) 1624 
    controlU=[data(1,8),data(1,9),data(1,10)]'; 1625 



184  Appendix 

DLR-IB-RM-OP-2017-17 

end 1626 
  1627 
%% Set current states         1628 
current_state=next_state; 1629 
realX=current_state(1:6)'+w(1:6); 1630 
  1631 
  1632 
%% State Update 1633 
% % CTS model 1634 
% % norbit=0.0012; 1635 
% A=[0 0 0 1 0 0; 0 0 0 0 1 0; 0 0 0 0 0 1; 3*norbit^2 0 0 0 2*norbit 0;  1636 
%      0 0 0 -2*norbit 0 0; 0 0 -norbit^2 0 0 0]; 1637 
% B=[0 0 0; 0 0 0; 0 0 0; 1 0 0; 0 1 0; 0 0 1]; 1638 
% C=eye(6); 1639 
% D=zeros(6,3); 1640 
%  1641 
% % sys=ss(A,B,C,D,0.5); 1642 
% % [A,B,C,D]=ssdata(sys); 1643 
  1644 
% %  DIS Model 1645 
% %  Sample time  0.5 s  1646 
% State matrix 1647 
% A=[1 0 0 0.5 0.0003 0; -2.16e-10 1 0 -0.0003 0.5 0; 0 0 1 0 0 0.5; 1648 
%      2.16e-6 0 0 1 0.0012 0; -1.296e-9 0 0 -0.0012 1 0; 0 0 -7.2e-7 0 0 1]; 1649 
% Input matrix 1650 
% B=[ 0.125 5e-5 0; -5e-5 0.125 0; 0 0 0.125; 0.5 0.0003 0; -0.0003 0.5 0; 0 0 0.5]; 1651 
% Output matrix 1652 
% C=eye(6); 1653 
% Feedthrough matrix 1654 
% D=zeros(6,3); 1655 
  1656 
% Extend to incorporate terminal theta cost, extra states only processed in 1657 
% cost function in final the offset cost term. 1658 
% State matrix 1659 
A=[1 0 0 0.5 0.0003 0 0 0 0 0 0 0; -2.16e-10 1 0 -0.0003 0.5 0 0 0 0 0 0 0; 1660 
   0 0 1 0 0 0.5 0 0 0 0 0 0; 2.16e-6 0 0 1 0.0012 0 0 0 0 0 0 0; 1661 
   -1.296e-9 0 0 -0.0012 1 0 0 0 0 0 0 0; 0 0 -2.6e-6 0 0 1 0 0 0 0 0 0; 1662 
   0 0 0 0 0 0 1 0 0 0 0 0; 0 0 0 0 0 0 0 1 0 0 0 0; 1663 
   0 0 0 0 0 0 0 0 1 0 0 0; 0 0 0 0 0 0 0 0 0 1 0 0; 1664 
   0 0 0 0 0 0 0 0 0 0 1 0; 0 0 0 0 0 0 0 0 0 0 0 1]; 1665 
% Input matrix 1666 
B=[0.125 5e-5 0; -5e-5 0.125 0; 0 0 0.125; 0.5 0.0003 0; -0.0003 0.5 0; 0 0 0.5; 0 0 0; 1667 
    0 0 0; 0 0 0; 0 0 0; 0 0 0; 0 0 0]; 1668 
% Output matrix 1669 
C=[eye(12)]; 1670 
% Feedthrough matrix 1671 
D=zeros(12,3); 1672 
  1673 
% Calculate next sate and output 1674 
Xplus=A*current_state'+B*controlU; 1675 
Y=C*current_state'+D*controlU; 1676 
dx=Xplus(1); 1677 
dy=Xplus(2); 1678 
dz=Xplus(3); 1679 
ddx=Xplus(4); 1680 
ddy=Xplus(5); 1681 
ddz=Xplus(6); 1682 
theta=Mtheta'*([Xplus(1);Xplus(2);Xplus(3);Xplus(4);Xplus(5);Xplus(6);controlU(1);control1683 
U(2);controlU(3)]'+w(1:9)')'; 1684 
theta_out=theta; 1685 
  1686 
next_state=[Xplus(1:6)' theta']; 1687 
% Set nominal state output 1688 
mo=current_state'; 1689 
next_state=Xdot'; 1690 
time=time+1; 1691 
end  1692 



Software   185 

DLR-IB-RM-OP-2017-17 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% REFERENCE BLOCK: Simulation reference vectors for Nominal sim w/out tube.         % 

% --------------------------------------------------------------------------------- % 

% This function parses the reference data to send the appropriately sized series of % 

% vectors to the reference and target ports of the controller block.                % 

% --------------------------------------------------------------------------------- % 

% [Setpoint, time, target]  = Ref                                                   % 

%                                                                                   % 

% Block input:                                                                      % 

%       ------                                                                      % 

%                                                                                   % 

% Block outputs:                                                                    % 

%       Setpoint :  set of vectors containing reference state values for each       % 

%                          prediction step                                          % 

%       time     :  current time step, currently used for error checking only       % 

%       target   :  reference for current actuation                                 % 

%                                                                                   % 

% --------------------------------------------------------------------------------- % 

% FROM: C. Buckner. Tube-based Model Predictive Control for the Approach Maneuver   % 

%          of a Spacecraft to a free-tumbling Target Satellite. Master Thesis,      % 

%          Technische Universität München, 2016.                                    % 

%                                                                                   % 

% Copyright: Caroline Buckner                                                       % 

% Last edited: 22 Dec 2016                                                          % 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

function [Setpoint, target] = Ref 1693 
%#codegen 1694 
  1695 
%% Set persistent and data 1696 
persistent time_step;                               % Current time step [0.5 s] 1697 
if isempty(time_step) 1698 
    time_step=1; 1699 
end 1700 
persistent data                                   % Load reference data, 1701 
if isempty(data)                                  % but only if it hasn't been loaded yet 1702 
data=load('C:\Users\Carly\Desktop\DLR\Data\tumble\tumble_wy_3_5_orbital_plane_step05sec_11703 
.dat'); 1704 
end 1705 
  1706 
%% Set parameterization matrix M_theta (refer to: sections 4.4.2 and 7.4) 1707 
Mtheta=[ -0.185551526369166, 0.018117071393572, 0.047743479379178, 0.706328547648448,                1708 

0.005820151954137, 0.032651318626743; 1709 
  -0.002300266364531, -0.182713737993363, 0.060394004339685, -0.007604460874062,    1710 

0.706008414024590, 0.038656066811025; 1711 
  -0.051013496976408, -0.057658466070907, -0.176380728691161, -0.032282424810556, 1712 

      -0.038964665502406, 0.705293981181349; 1713 
   0.185551526369166, -0.018117071393571, -0.047743479379178, 0.706328547648448, 1714 

       0.005820151954136, 0.032651318626743; 1715 
   0.002300266364531, 0.182713737993363, -0.060394004339685, -0.007604460874062, 1716 

0.706008414024590, 0.038656066811025; 1717 
   0.051013496976408, 0.057658466070907, 0.176380728691161, -0.032282424810556, 1718 

      -0.038964665502406, 0.705293981181349; 1719 
   0.185546807312485, -0.018555662630504, -0.047598740020594, 0.706343747015220, 1720 

       0.004125706617421, 0.032558403012700; 1721 
   0.002745590027817, 0.182670257022019, -0.060508588690195, -0.005909272359706, 1722 

       0.706022382389280, 0.038734429975730; 1723 
   0.051013717354715, 0.057658715155481, 0.176381490655910, -0.032282285350481, 1724 

-0.038964497175050, 0.705290934311349]; 1725 
  1726 
  1727 
%% Initialize vectors 1728 
Setpoint=zeros(40,12); 1729 
Setpoints_3D=data(:,2:7); 1730 
  1731 
  1732 
%% Set the series of reference vectors. Prediction horizon = 40 vectors are set from the 1733 
reference data for each time step 1734 
if time_step+39<=1340 1735 
    thets=Mtheta'*data(time_step:time_step+39,2:10)'; 1736 
    Setpoint=[Setpoints_3D(time_step:time_step+39,:),thets']; 1737 



186  Appendix 

DLR-IB-RM-OP-2017-17 

elseif time_step==1341 1738 
    thets=Mtheta'*data(1341,2:10)'; 1739 
    Setpoint=[repmat(Setpoints_3D(1341,:),40,1),repmat(thets',40,1)]; 1740 
else 1741 
end 1742 
  1743 
%% Set the actuation target for the current prediction from reference data 1744 
  1745 
Ux=data(time_step,8); 1746 
Uy=data(time_step,9); 1747 
Uz=data(time_step,10); 1748 
target=[Ux;Uy;Uz]; 1749 
  1750 
% Increment time 1751 
time=time_step; 1752 
time_step=time_step+1; 1753 
  

 

D. Validation 

The final pair of functions were used for result validation. The first of the two functions below implements the 

inverse dynamics and the second conducts the analytical CWH equation solution.  

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Validation: Inverse dynamics                                                      % 

% --------------------------------------------------------------------------------- % 

% This script implements the inverse dynamics problem on the simulated results      % 

% to evaluate the appropriateness of the simulated actuation.                       % 

% --------------------------------------------------------------------------------- % 

% --------------------------------------------------------------------------------- % 

% FROM: C. Buckner. Tube-based Model Predictive Control for the Approach Maneuver   % 

%          of a Spacecraft to a free-tumbling Target Satellite. Master Thesis,      % 

%          Technishe Universität München, 2016.                                     % 

%                                                                                   % 

% Copyright: Caroline Buckner                                                       % 

% Last edited: 22 Dec 2016                                                          % 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

  

%% Initialize constants and vectors 1 
n=0.0012;                                                                 % Orbital rate 2 
  3 
A=[        1 0        0     0.5 0.0003   0;                               % State matrix 4 
   -2.16e-10 1        0 -0.0003    0.5   0; 5 
           0 0        1       0      0 0.5; 6 
     2.16e-6 0        0       1 0.0012   0; 7 
   -1.296e-9 0        0 -0.0012      1   0; 8 
           0 0 -2.16e-6       0      0   1]; 9 
B=[       0      0   0;                                                   % Input matrix 10 
          0      0   0; 11 
          0      0   0; 12 
        0.5 0.0003   0; 13 
    -0.0003    0.5   0; 14 
          0      0 0.5]; 15 
acc=zeros(3,1201);                                                     % result vector 16 
       17 
%% Import simulation data       18 
inputData=simout8.data;                                              % robust actuation 19 
nomIP=nomActuation;                                                  % nominal actuation 20 
state=RealState;                                                     % real states 21 
nomstate=ModelOutputs;                                               % nominal states 22 
  23 
%% Inverse problem 24 
% for simulation duration 25 
for k=1:1:1200    26 



Software   187 

DLR-IB-RM-OP-2017-17 

    acc(:,k)=inv(B'*B)*B'*(state(k+1,:)'-(A*state(k,:)')); % Determine the required  27 
                  % robust actuation to obtain the suggested  28 

                                            % series of states 29 
    DRterm(:,k)=acc(:,k)-nomIP(k,:)';       % Required disturbance rejection term                                         30 
    nomacc(:,k)=inv(B'*B)*B'*(nomstate(k+1,1:6)'-(A*nomstate(k,1:6)'));% Determine  31 
                                            % required nominal actuation to obtain  32 

           % suggessed nomial states 33 
  34 
    dif1(k,:)=acc(:,k)'-inputData(k,:);     % Difference between determined  35 
                                            % and simulated robust actuation  36 
    dif2(k,:)=acc(:,k)'-nomacc(:,k)';       % Difference between determined 37 
                                            % robust and nominal actuation    38 
end 39 
  40 
%% Create figures 41 
     figure; 42 
    hold on 43 
    plot(0:0.5:600,acc)                            % plot inverse determined r. actuation 44 
    plot(0:0.5:600,inputData)                      % plot simulated robust actuation 45 
    title('Direct (simulated) and inverse determined actuation') 46 
    xlabel('Time (s)') 47 
    ylabel('Acceleration input (m/s^2)') 48 
    figure; 49 
    plot(0:0.5:599.5,dif2)                        % plot difference between robust and 50 
                                                  % nominal actuation 51 
    title('diff inv calc nom and calculated inputs') 52 
    xlabel('Time (s)') 53 
    ylabel('Acceleration (m/s^2)') 54 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Validation: Analytical solution of the CWH equations                              % 

% --------------------------------------------------------------------------------- % 

% This script implements an analytical solution of the CWH equations on the         % 

% simulated positions of the chaser.                                                % 

% --------------------------------------------------------------------------------- % 

% --------------------------------------------------------------------------------- % 

% FROM: C. Buckner. Tube-based Model Predictive Control for the Approach Maneuver   % 

%          of a Spacecraft to a free-tumbling Target Satellite. Master Thesis,      % 

%          Technishe Universität München, 2016.                                     % 

%                                                                                   % 

% Copyright: Caroline Buckner                                                       % 

% Last edited: 22 Dec 2016                                                          % 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

%% Set constants and initialize vectors/matrices  55 
n=0.0012;                                                    % orbital rate 56 
time=0:0.5:600;                                              % simulation duration 57 
num=length(time);                                % length of the simulation duration used 58 
                                                 % to initialize the following matrices 59 
Axy=zeros(2*num,4);                    % Jacobian for the radial and along-track dynamics 60 
Az=zeros(num,2);                       % Jacobian for the cross-track dynamics 61 
  62 
pos = zeros(1201,3);                   % Initialize vector of results 63 
  64 
% Import results from simulation 65 
differencePosR=simout6.data(:,1); 66 
differencePosAlongTrack=simout6.data(:,2); 67 
differencePosCrossTrack=simout6.data(:,3); 68 
  69 
%% Analytical solution 70 
% For each timestep 71 
t=0; 72 
  73 
for k=1:1:1201 74 
  75 
%Determine current Jacobian matrices     76 
Axy=[1 (4/n)*sin(n*t)-3*t 6*(sin(n*t)-n*t) 2*(cos(n*t)-1)/n; 77 
    0 2*(1-cos(n*t))/n 4-3*cos(n*t) sin(n*t)/n]; 78 



188  Appendix 

DLR-IB-RM-OP-2017-17 

  79 
Az=[cos(n*t) sin(n*t)/n]; 80 
  81 
% Determine initial conditions through inverse problem 82 
xyinit(1:4,k)=pinv(Axy)*[differencePosR(k) differencePosAlongTrack(k)]'; 83 
zinit(:,k)=pinv(Az)*differencePosCrossTrack(k); 84 
  85 
initRelPos(k,:) = [xyinit(1,k),zinit(1,k),xyinit(3,k)]; 86 
initRelVel(k,:) = [xyinit(2,k),zinit(2,k),xyinit(4,k)]; 87 
  88 
% Determine analytical positions through direct problem 89 
pos(k,1) = 90 
(2/n)*initRelVel(k,3)*cos(n*t)+((4/n)*initRelVel(k,1)+6*initRelPos(k,3))*sin(n*t)-... 91 
    (3*initRelVel(k,1)+6*n*initRelPos(k,3))*t+initRelPos(k,1)-(2/n)*initRelVel(k,3); 92 
pos(k,3) = ((-2/n)*initRelVel(k,1)-93 
3*initRelPos(k,3))*cos(n*t)+(initRelVel(k,3)/n)*sin(n*t)+... 94 
    2*initRelVel(k,1)/n+4*initRelPos(k,3); 95 
pos(k,2) = initRelPos(k,2)*cos(n*t)+initRelVel(k,2)*sin(n*t)/n; 96 
  97 
% Increment time 98 
t=t+0.5;  99 
end 100 
  101 
%% Create figure 102 
figure; 103 
hold on 104 
plot3(pos(:,1),pos(:,2),pos(:,3))                             % plot analytical solution 105 
plot3(differencePosR,differencePosCrossTrack,differencePosAlongTrack,'r')  106 

   % plot simulated solution 107 
xlabel('Alongtrack') 108 
ylabel('Crosstrack') 109 
zlabel('Radial') 110 
title('Relative position') 111 
  

 

  112 


