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Introduction: A number of numerical mantle con-
vection studies from the past two decades have in-
vestigated the effects of very large meteorite impacts
on mantle dynamics in terrestrial planets, especially
Mars (e.g., [1, 2, 3]). On the grounds that most ob-
served craters seem to have been produced by collision-
ally evolved bodies, probably main-belt asteroids (e.g.,
[4, 5], the impactors were generally assumed to be rocky
and have material parameters similar to those of the tar-
get. However, the statistical analysis does not imply that
all craters derive from an S-type asteroid, as there is a
significant fraction of impactors whose properties differ
substantially from those of the target, and the dynam-
ical effects in the interior may be quite different even
if the final crater is similar; candidate alternative im-
pactors include C-type asteroids and comets. It is gen-
erally not possible to deduce the nature of the impactor
from the final crater, because the remnants of the im-
pactor are rarely preserved. We show by analysing scal-
ing laws how different impactors may result in the same
final crater on a given planet and investigate some dy-
namical effects for different impactor types for several
bodies in the inner Solar System.

Theory: The final crater results from the collapse of
the transient crater, and their diameters Df and Dtr are
related by empirical scaling relations. The relation be-
tween Dtr and the characteristics of the impactor is de-
rived by dimensional analysis. Combining both yields
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for complex craters, where Dimp is the diameter of the
impactor, % and %imp the densities of the target and
the impactor, vimp is the velocity of the impactor (or
rather its vertical component), Ds2c is the simple-to-
complex transition diameter, and g is gravity (e.g., [6]);
the numerical values of the coefficient and exponents
vary with certain target properties and are chosen here
to correspond to a frictionless, pore-free material. In
this equation, %imp and vimp are not known for a given
crater and may vary widely between different impactor
types. Hence the condition for two impactors 1 and 2 to
produce a final crater of the same diameter on the same
target is given by Df1 = Df2:
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for both simple and complex craters; this defines a set
of isocrater impacts. Figure 1a shows the ratio of im-
pactor diameters, δ12, for isocrater impacts, whereby

impactor 2 is chosen as a common reference impactor,
namely an S-type asteroid. The isolines thus show how
strongly the size of impactor 1 must differ from that ref-
erence in order to produce a crater of the same size, for
any combination of density and velocity, which are also
normalized to the reference.

For the dynamics of the interior, it is the subsurface
features of an impact rather than the crater that are of
primary interest, but their geometry and properties are
more difficult to study and less well described in terms
of an analytical model. In the literature (e.g., [7]), the
depth of penetration is often found to be proportional to
the square or cube root of the density ratio %imp/%, and
the impact velocity is taken to a power between 1/3 and
2/3. We combine the square-root relation for the density
with the widely used formula by [8] for the depth to the
center of the isobaric core of the shocked volume into
the relation

zic = azDimpv
bz
imp

√
%imp

%
; (3)

future numerical impact simulations should test whether
empirical fits yield an exponent of the density ratio that
is significantly different from 0.5. The ratio of the
depths of the isobaric cores for two isocrater impacts
then follows by combination with eq. 2:
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we use the value bz = 0.361 from [8] (cf. Figure 1b).
The other principal geometrical characteristic of an

impact is the size of the shocked volume, which is often
measured in terms of the size of the isobaric core, where
the shock pressure shows relatively little variation. We
choose it to be the position of the inflexion point of the
shock pressure decay curve defined by the “inverse-r”
approximation for shock pressure decay [9, 10], and ap-
plying again the isocrater criterion eq. 2, the ratio of the
isobaric cores of two isocrater impacts is

ξ12 =
rinfl1

rinfl2
= δ12
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) 1
n1(

n2−1
n2+1b2

) 1
n2

. (5)

The velocity dependences are complicated, because the
parameters b and n are, in fact, material-dependent func-
tions of vimp as well, and so the ratios become depen-
dent on the target planet as well as on the impact angle.

Apart from the geometrical relations, there are also
semi-empirical relations between impactor parameters
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Figure 1: Ratios of impactor diameters (left), depth to the center of the isobaric core (center), and melt production (right) for
impacts resulting in final craters of the same size as functions of the ratios of densities and impactor velocities according to eqs. 2,
4, and 6; the reference body for the ratios is an S-type asteroid. The symbols mark average values pertaining to the target planet
(cyan: Mercury, green: Venus, blue: Earth, gold: Moon, red: Mars, grey: all target bodies), their shapes indicating the type of
impactor being compared to the reference impactor. S-, C-, and X-type asteroids are assumed to have the same average velocities.

and the amount of melt produced in an impact. While
we rather calculate melting in the framework of the ther-
mal anomaly and the ensuing dynamics in the numerical
models, applying the empirical scaling laws to the bulk
amount of melt is a useful exercise for the purpose of a
general comparison between different impactor classes.
Combining a scaling law proposed by [11, 12], we have

λ12 =
Vm1

Vm2
=

(
%imp1

%imp2

)ν−1.29(
vimp1

vimp2

)3µ−1.68

(6)

where Vm is the melt volume and ν and µ are con-
stants related to the target. µ is experimentally found
to lie between approximately 0.47 and 0.58 for com-
monly encountered materials [11]. Those authors chose
ν = 0.67, whereas the derivation by [12] implies ν = 1,
which is the value we adopt here; ν = 0.67 would result
in a slightly larger melt volume.

All plots in Figure 1 apply to impacts of impactors that
differ in density, velocity, and size but result in a crater
of the same final diameter. The isolines in Figure 1a
show how much larger or smaller, relative to an S-type
asteroid, an impactor of some chosen density and ve-
locity has to be in order to produce the same crater; for
instance, a C-type asteroid, which is about half as dense
as an S-type asteroid but has the same velocity, would
have to a have 1.4 times the diameter, regardless of the
target, whereas a TNO-like impactor, which is even less
dense but considerably faster, would have to be about
15% smaller on Mars or the Moon but almost the same
size on Earth, Venus, or Mercury. Figure 1b shows that
the center of the isobaric core would be shallower for all
alternative impactor types, although only slightly so for
asteroid impactors. On the other hand, the melt volume
produced by alternative impactors would be larger by

up to 40% (for ν = 1), depending on impactor type and
target. The differences in melt production might allow
to resolve the non-uniqueness of the impactor type.

Models and results: We carry out numerical man-
tle convection simulations with a modified version of
STAGYY [13, 14] in which the impact is represented
as an instantaneous thermal anomaly. The models show
that the effects on the interior of isocrater impacts by
impactors of different types can vary considerably, es-
pecially between rocky impactors with low to interme-
diate velocities and fast, ice-rich impactors.
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