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Abstract—We propose a multi-level semantics discovery ap-
proach for bridging the semantic gap when mining high-
resolution Polarimetric Synthetic Aperture Radar (PolSAR) re-
mote sensing images. First, an Entropy/Anisotropy/Alpha-Wishart
classifier is employed to discover low-level semantics as classes
representing the physical scattering properties of targets (e.g.,
low-entropy/surface-scattering/high-anisotropy). Then, the im-
ages are tiled into patches and each patch is modeled as a
Bag-of-Words (BoW), a histogram of the class labels. Next,
Latent Dirichlet Allocation is applied to discover their higher-level
semantics as a set of topics. Our results demonstrate that topic
semantics are close to human semantics used for basic land-cover
types (e.g., grassland). Therefore, using the topic description
(Bag-of-Topics) of PolSAR images leads to a narrower semantic
gap in image mining. Additionally, a visual exploration of the
topic descriptions helps to find semantic relationships which can
be used for defining new semantic categories (e.g., mixed land-
cover types) and designing rule-based categorization schemes.

Index Terms—PolSAR, Entropy/Anisotropy/Alpha-Wishart
classification, Bag-of-Words, Latent Dirichlet Allocation, Bag-of-
Topics, Semantic relationships.

I. INTRODUCTION

HE multitude of modern remote sensing sensors allows

us to analyze tremendous amounts of high-resolution
Earth Observation (EO) images. Therefore, developing new
Content-Based Image Retrieval (CBIR) systems being able to
extract user-desired information from existing image databases
is highly demanded. In the state-of-the-art literature, various
CBIR systems have been proposed for EO image mining
such as IP’KR [1], KIM [2], and its accelerated variant [3].
For the existing systems, semantic image interpretations are
usually provided through either manual image annotation or
user acceptance (in active learning scenarios), which require
much human effort and time, and bias the systems towards
user perspectives [4]. Moreover, due to the differences between
human image understanding and how computers interpret and
process them (the so-called semantic gap [4], [5]), many image
mining results provided by computers are still unsatisfactory.
In this letter, we propose a multi-level semantics discovery
approach for bringing computer interpretation of a particular
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Fig. 1. Stepwise low- to high-level semantics generation.

remote sensing image type, namely Polarimetric Synthetic
Aperture Radar (PolSAR) images, closer to human semantics.
This helps computers to discover existing semantic relation-
ships within images and employ them for analyzing user
queries (which are based on semantics) and provide them
with semantically meaningful relevant results. Fig. 1 shows
an overview of the proposed approach.

PolSAR images supply information with respect to the
physical scattering properties of the recorded ground targets,
retrieved by applying coherent or incoherent target decom-
position theorems to the first- and second-order polarimetric
representations [6]. A widely employed decomposition method
is Entropy/Anisotropy/Alpha (H/A/a), resulting in three param-
eters describing the physics behind the scattering processes.
These parameters lead to a superior pixel-based unsupervised
classification scheme, the H/A/a classification method [7].
A modification to this method, namely the H/A/o-Wishart
classification method [8], shows that the complex Wishart
distribution parameters improve the classification substantially.

In our proposed approach, we employ the H/A/a-Wishart
method for discovering the low-level semantics of PolSAR
images as a set of classes, representing targets by their physical
scattering properties (e.g., low-entropy surface scattering with
high anisotropy). The images are then tiled into patches, and
each image patch is modeled as a Bag-of-Words (BoW) by
generating a histogram of its assigned class labels, where
the labels are the words in the BoWs (see Fig. 2). After
that, a generative statistical model, namely Latent Dirichlet
Allocation (LDA) [9], is applied to the BoW histograms in
order to discover the latent semantics behind the image patches
as a set of topics. Our validation of the topics based on ground
truth (Google Earth') images demonstrates that they provide
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high-level semantics which are close to human semantics used
for identifying land-cover types (e.g., woody vegetation).

As the topics are the basic land-cover types existing in
the image patches, further land-cover types can be defined as
combinations of the basic land-cover types (e.g., a shoreline
is a combination of a water body, grassland, and woody vege-
tation). Thus, the image patches can be modeled by vectors of
topic mixtures, the co-called Bag-of-Topics (BoT) model [10].
The topic vectors form a multi-dimensional Euclidean space
in which each image patch is represented as a point. Since
the dimensions of this space are semantically meaningful,
it can be easily explored and assessed through immersive
visualization techniques to discover existing semantic rela-
tionships and identify new semantic categories (e.g., mixed
land-cover types). While a topic representation of images can
adapt computer image interpretation to human semantics, the
semantic relationships can be used for designing rule-based
land-cover categorization methods.

Section II reviews H/A/a-Wishart classification. Section III
describes low-level semantics discovery. Section IV briefly
introduces LDA. Section V and VI explain how to discover
high-level semantics and explore it for finding new semantics.
Section VII concludes the paper.

II. ENTROPY/ANISOTROPY/ALPHA-WISHART
CLASSIFICATION

Our test image is an F-SAR airborne complex-valued
dataset®> comprising four polarization planes (VV, HH, HV,
and VH) [11]. The data were multi-looked with a factor of 5
in azimuth direction. In order to reduce the inherent speckle
noise, POISAR data are usually delivered in a multi-looked
pixel-wise coherency matrix format 7". This matrix is a 3 x 3
Hermitian, positive, and semi-definite matrix which can be
written as:

T=U-%-U 1 (1)

where X is a diagonal matrix composed of the eigenvalues of
T (A1, A2 and A3 in descending order). The columns of U
contain the corresponding eigenvectors to the eigenvalues (u1,
ug and ug), where each wu; can be further decomposed into [6]:

. s T
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From Eq. 1 and 2 the following parameters can be computed:

3
a=>Y pia, (3)
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where p; = \;/ Z?Zl A; denotes the probability of the
eigenvalues \;. These parameters refer to the physics behind
the scattering processes. The entropy H discriminates pure and
distributed scatterers, the anisotropy A characterizes different
types of scattering [6], and the mean « angle shows the
dominant scattering mechanism,

Combinations of these parameters can lead to very good
classification schemes. For example, the scheme in Fig. 2
divides the H/« plane into nine zones (classes), from which
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Fig. 2. The H/« classification scheme (adapted from [7]). From the 18
classes, only 1-16 are feasible and are assigned as labels L1-L16 in Table 1.

Fig. 3. False-color Pauli RGB representation of our test image (left). H/A/a-
Wishart classification map together with two zoomed-in subareas (right),
where the colors correspond to the low-level semantics in Table 1.

only eight are feasible. Including anisotropy will double the
number of classes: nine for A < 0.5 (denoted by odd
labels) and nine for A > 0.5 (denoted by even labels).
The H/A/a classification method has its own drawbacks
such as the fixed boundaries of the classes, which do not
dynamically adapt to the input data. Dealing with this issue,
the authors of [8] proposed to use the parameters of the
complex Wishart distribution of the coherency matrix. This
approach employs the H/A/« classification for initializing the
classes, and then uses the Wishart parameters in an iterative
procedure to refine the classification. Its main advantages are
to consider the magnitude of the coherency matrix, which
is important in detecting surface scattering, and allowing a
dynamic adaptation of the class boundaries to the input data.

III. LOW-LEVEL SEMANTICS DISCOVERY

We apply the H/A/a — Wishart classification, based on
5 x b pixel windows, to our PolSAR test image, shown in
Fig. 3 (left), in order to retrieve a classification map with
16 classes. The class labels are then considered as low-level
semantics, which refer to the scattering properties of the
recorded targets. Fig. 3 (right) shows the classification results,
with Table I defining the color coding.

The labels in Table I can be categorized into three main
scattering mechanisms: the first six labels (L1 — L6) refer to
Multiple Scattering (MS), which usually occur in urban and
forested areas. The next six labels (L7 — L12) refer to Volume
Scattering (VS) which is usually observed in forested and
vegetated areas, while the labels L13 — L16 refer to Surface
Scattering (SS) which can be usually seen on rough land
surfaces. These scattering mechanisms can be further divided
into several subcategories depending on H, which hints to the



TABLE I
LOw-LEVEL SEMANTICS

Label

Semantics

Low-entropy multiple scattering with low anisotropy

WA Low-entropy multiple scattering with high anisotropy
Medium-entropy multiple scattering with low anisotropy

W Medium-entropy multiple scattering with high anisotropy
LS | High-entropy multiple scattering with low anisotropy
L6 | High-entropy multiple scattering with high anisotropy
L7 | Low-entropy volume scattering with low anisotropy
Low-entropy volume scattering with high anisotropy
Medium-entropy volume scattering with low anisotropy
Medium-entropy volume scattering with high anisotropy
High-entropy volume scattering with low anisotropy
IRV High-entropy volume scattering with high anisotropy
Low-entropy surface scattering with low anisotropy
Low-entropy surface scattering with high anisotropy
Medium-entropy surface scattering with low anisotropy
IR Medium-entropy surface scattering with high anisotropy

number of scatterers being present in each resolution cell, and
on A, showing the importance of the secondary scatterers.

IV. LATENT DIRICHLET ALLOCATION

A widely used statistical generative model for the discovery
of hidden semantic structures behind collections of images
is Latent Dirichlet Allocation (LDA) [9]. Assuming each
image wg, as a combination of Ny visual word-tokens, wyg =
{wq1, w4z, ..., wan, }, LDA discovers its latent semantics as
a set of k topics, where the topics are distributions over a
fixed dictionary of Ny visual words. They are supposed to
reflect semantic categories. Therefore, each image containing
different targets is represented as a mixture of the topics.

For estimating the required model parameters a and B, and
inferring the posterior distributions (i.e., the topic distributions
in the images), LDA uses approximate inference algorithms
such as variational Expectation Maximization [9].

Having the model parameters and the posterior distributions,
LDA can generate every n-th visual word-token (wg,) of each
image w, through the generative process:

plwnla,B) = [ p0ala) | 3 pleanlBa)pwinlzan, B) |d0s.

Zdn

“)

In this process, LDA chooses a k-dimensional Dirichlet
random variable 6; ~ Dir(a), corresponding to wy, where
a determines the Dirichlet distribution’s prior [9]. Then it
selects a topic-token zg4;, from the topic mixture 6, and picks
Wqyn from the multinomial probability distribution conditioned
on the selected topic, p(wdn|zdn, B). The matrix By, xk
parameterizes the visual word probabilities within the topics.

V. HIGH-LEVEL SEMANTICS DISCOVERY

Since the low-level semantics only refer to physical scatter-
ing properties, it is difficult to associate them with common
land-cover categories. Therefore, in this section we employ
LDA to discover higher-level semantics. To this end, we split
each image into adjacent patches of 64 x 64 pixels and rep-
resent each image patch as a BoW by generating a histogram
of the 16 labels in Table I assigned to that image patch; the
selected patch size of 64 x 64 pixels resulted as a compromise
between small patches keeping the semantic analysis simple
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Fig. 4. Topics discovered by LDA: the x axis denotes the 16 labels in Table
I (e.g., 1 — L1), while the y axis shows their probabilities.

Fig. 5. Topic assignments to image pixels (left) and to image patches (right).

and bigger patches capturing the spatial context of objects. By
considering each image patch as a document, we apply LDA
to the BoW models to find latent semantics as a set of topics.
In our experiments, the number of topics to be discovered was
set to six based on an educated guess. The resulting topics are
shown in Fig. 4 as probability distributions over the 16 labels.
Fig. 5 shows the topic assignments to each image pixel and
patch, where the assignments were made according to:

word i — arg{mazx[p(w;|zx)]}, (5)
patch j — arg{maz[p(zx|6;)]}. (6)

By analyzing Fig. 4 and 5, and by using precisely co-
registered Google Earth images as correct ground truth, it is
possible to reveal the semantics of the topics and the rules
connecting them to the lower-level semantics. As shown in
Table II, the probabilities of the respective types of scattering
can be written as percentages:

TABLE 11
HIGH-LEVEL SEMANTICS

Semantic rule
53% MS +34% VS + 13% SS
12% MS + 86% VS +02% SS
60% MS + 14% VS + 26% SS
00% MS +100%VS + 00% SS
00% MS + 05% VS +95% SS
00% MS + 00% VS + 100%SS

Topic Semantics
T1 | Woody vegetation
T2 | Mixed woody vegetation & shrubs
Artificial, man-made structures
Herbaceous vegetation
IR Smooth surface
T6 | Specular surface




p(docj =1t2) >0.8510

(doc‘ =t1) > 0.9911

p(doq =t3) > p(docj = t4) = 0.9662

p(docj =t6) > 0.9984

Fig. 6. Visualization of the discovered topic semantics. While discriminating
the image patches of T4 and TS is difficult due to their similar colors, they
could be separated by using PolSAR images based on their different dominant
scattering mechanisms (VS vs. SS) caused by the distinct vegetation height.

e T1 is mostly assigned to forested regions. The high MS
and VS values are due to the presence of trunks and
rich canopies of woody vegetation. In addition, the low
SS value may be caused by canopy tops or ground.
According to Fig. 4, T1’s main component is LS, which
is referred to in [7] as double-bounce scattering in a
high-entropy environment, like vegetation which has a
well developed branch and crown structure. Therefore,
we assign the semantic term woody vegetation to T1.

o T2 is most often assigned to regions covered by trees and
shrubs. The very small SS value indicates the absence
of rich canopies which allows radar waves to scatter
directly back to the sensor. The relatively large MS
value shows the small number of tree trunks. T2’s main
component is L9 which [7] refers to vegetated surfaces
with anisotropic scatterers and moderate correlation of
scatterer orientations. Thus, we assign the semantic term
mixed woody vegetation and shrubs to T2.

e T3 is mostly characterized by MS caused by building
walls and tree trunks. Additionally, VS and SS in this
topic can be caused by tree canopies and smooth surfaces
(e.g., streets, roofs), respectively. T3 is the only topic with
non-zero L1 and L2. These are referred to in [7] as double
bounce scattering events provided by isolated dielectric
and metallic dihedral scatterers. Therefore, we assign the
semantic term artificial/man-made structures to T3.

o T4 is characterized only by VS indicating that it usually
occurs in regions covered by vegetation with thin stems
which do not backscatter the incident wave. Thus, we
assign the semantic term herbaceous vegetation to T4.

o T5 is distinguished by a very large SS and a very small
VS value. This reveals thin land-cover allowing radar
waves to reach the ground. Therefore, we assign the
semantic term smooth surface to T5.

e T6 is completely composed of SS. Therefore, we assign
the semantic term specular surface to it.

Fig. 6 demonstrates the ground truth (Google Earth images)
of some image patches, which are mainly characterized by a
single topic, in order to visualize the semantics of each topic.

VI. ASSESSMENT OF HIGH-LEVEL SEMANTICS

In this section, we assess the discovered high-level seman-
tics by modeling each image patch as a vector of the extracted
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Fig. 7. The three-dimensional space spanned by TS5, T6, and T1. The
highlighted points are visualized in Fig. 8.

topics (BoT model). These vectors form a multi-dimensional
Euclidean space, the so-called topic space, in which each
image patch is represented as a point positioned according
to its topic distribution. Since the topic space dimensions are
semantically meaningful (e.g., woody vegetation), the image
patch distribution within this space is easily understandable.
When these topics are the basic land-cover types, different
topic mixtures result in various mixed land-cover types. Thus,
by navigating through the topic space, users can easily reach
the image patches containing their desired land-cover types
and define new categories of mixed land-cover types.

In order to visualize topic spaces, we select three topics and
pick up the image patches containing them. After discarding
the other topics, the chosen image patches are displayed in
a three-dimensional normalized topic space. We explore the
topic space and pick groupings of image patches from different
regions and validate their semantics via their ground truth.

A. Natural Land-Cover Variation

Our aim is to discover different natural land-cover types as
mixtures of the basic land-cover types: woody vegetation (T1),
smooth land surfaces (T5), and specular surfaces (T6). Fig. 7
shows the topic space of these topics in which the coordi-
nates are (7'1,75,76). Here, the selected image patches are
highlighted and their ground truth is shown in Fig. 8.

In Fig. 7, starting from the point (0,0,1), we expect
to have image patches of specular surfaces such as water
bodies which complies with Fig. 8 (grouping G1). By moving
toward the point (1,0,0), the proportion of the water bodies
decreases while that of the forest increases, as demonstrated in
Fig. 8 (G2) and (G3). Reaching the point (1,0,0), the image
patches are totally covered by forest, as shown in Fig. 8 (G4).
Furthermore, around the point (0.3,0.3,0.3) a mixture of
the three basic land-cover types is expected which is true
according to Fig. 8 (G5). By moving toward the point (0, 1, 0)
the land-cover types change, containing higher proportions of
grasslands as shown in Fig. 8 (G6) and (G7).

B. Natural and Man-made Land-Cover Variation

The idea is to discover various natural and man-made land-
cover types as mixtures of the basic land-cover types: mixed
woody vegetation and shrubs (T2), man-made structures (T3),
and smooth surfaces (T5). Fig. 9 shows the topic space of the
image patches in which the coordinates are (7'2,73,T'5).

As shown in Fig. 9, we selected three groupings of image
patches from various regions: one grouping around the location
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Fig. 8. Examples of new semantic classes spanned by T5, T6 and T1
corresponding to the highlighted points in Fig. 7.
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Fig. 9. The three-dimensional topic space spanned by TS5, T2, and T3. The
highlighted points are visualized in Fig. 10.

(0.5,0.1,0.1), one grouping around the location (0.3, 0.3, 0.3),
and one grouping around the location (0.1,0.6,0.1). The
visualization of their ground truth in Fig. 10 indicates that
the image patches of the first grouping are mostly covered
by sparse forest. The image patches of the second grouping
contain mixtures of all the three basic land-cover types, while
the third grouping mostly represents residential areas including
man-made structures (e.g., houses) and trees.

Altogether, representing images by their high-level seman-
tics helps us to better understand their contents and discover
new semantic categories as mixtures of high-level semantics.
This further allows us to categorize images by selecting a set
of coordinates and to partition the topic space.

VII. CONCLUSION

In this letter, we propose a multi-level approach for semantic
relationship discovery in PolSAR images. First, we extract

G1: sparse forest ~ 50% T2 +15%T3 +10%T5

G2: muedarea ~25% T2+25% T3+25% T5

:»%-i.

Fig. 10. Examples of new semantic classes spanned by T5, T2, and T3
corresponding to the highlighted points in Fig. 9.

low-level semantics (physical properties of the recorded tar-
gets) by using the H/A/a — Wishart classification method.
Then, the images are tiled into patches and modeled as BoWs
by generating histograms of the class-labels assigned to the
image patches. Next, LDA is applied to the BoWs to discover
higher-level semantics as a set of topics. Our analysis shows
that the topics refer to basic land-cover types and the image
patches covered by other land-cover types (e.g., mixed land-
cover types) are described as mixtures of the topics. Thus,
modeling image patches by the topics (BoT) helps to better un-
derstand the existing semantic relationships and identify new
land-cover type categories. The semantic relationships can be
used in designing parameter-based land-cover categorization
methods. Moreover, a topic representation of PoISAR images
helps image mining systems to adapt their results to human
semantics, thus narrowing the semantic gap.
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