

Bare Metal Porting of Tasking Framework on a Xilinx Board 1

Bare metal porting of Tasking framework
on a Xilinx Board

Gopal Ashish, 2016, AESS, Embedded Systems, ISAE

Dr. Olaf Maibaum, DLR, Braunschweig
Dr. Arnaud Dion, ISAE, Toulouse, France

1 INTRODUCTION
he tasking framework is a part of a broader project

under DLR called the SCOSA (Scalable On-Board Com-
puting for Space Avionics). As the name suggests the
project deals with next generation on board computers for
space applications. The tasking framework is an already
existing and implemented framework employed by DLR.
It is DLR’s solution for distributed and parallel compu-
ting. The objective of this internship is to achieve the port-
ing of the existing framework on an evaluation board
provided by Xilinx.

2 BACKGROUND
2.1 Tasking Framework
As mentioned in the earlier section the Tasking frame-
work is used for parallel computing. The existing imple-
mentations are based upon some operating system run-
ning on the hardware. Depending on the hardware avail-
able and other project constraints the underlying operat-
ing system choice changes and this also accounts for mi-
nor changes in the framework itself.
In order to facilitate these changes in the framework with
minimum changes from an application programmer’s
perspective the framework is divided into 2 parts, an API
which the application programmer uses to access the
tasking framework, and a hardware part which specifies
implementation and classes depending on the underlying
operating system and hardware choice. As part of this
internship the API has been preserved and no changes
were made. All changes were made to the hardware sec-
tion for the bare metal implementation.
The Tasking Framework does not have any computation-
al task of its self. The framework is entrusted with the
work of providing access to resources such as memory
and CPU time to different sensors and other peripherals.
The data from these sensors access request to be pro-
cessed using the API. Each of such requests is treated as a
Task by the framework. Each task comes with an associ-
ated priority, and depending on this priority it is queued
in list. To accommodate the periodically recurring sensor
data the concept of “TaskEvent” is implemented. A
TaskEvent can be designed to be a periodic occurrence or

a onetime event. TaskEvents are merely data that are
pushed at a specific time interval. Each TaskEvent are
associated with a task. Every time some new data is
available through the Event the associated task is activat-
ed and is ready to be scheduled. A TaskEvent and its
associated Task has the highest priority among all the
tasks and hence are the first to be scheduled.

2.2 Hardware
The work done during this internship revolved around
implementing the Tasking framework on a board provid-
ed by Xilinx. The board is called the Microzed 7020. It is
based on Xilinx’s popular Zynq 7000 architecture. The
board comes equipped with two ARM Cortex A9 based
processors [3] [2] and other peripherals which form the
Processing System (PS) part and a Programmable Logic
(PL) part. The board provides the flexibility to off load
certain amount of computations on the PL from PS by
configuring the PL. However in this project the PL is con-
figured with a standard bitstream file generated using the
Vivado software to access the other peripherals on the
board. The 64 bit global timer, snoop control unit and the
Generic interrupt controller (GIC) are among the other
prominent resources used as part of this implementation.
[1]

3 DEVELOPMENT
The existing implementation makes use of the POSIX API
to achieve multi threading. Also all the existing imple-
mentations were done with an operating system running
on the hardware. The initial idea was to achieve an im-
plementation without any OS and without using the
POSIX API for threading. All the operating system de-
pendent libraries had to be eliminated and context
switching mechanisms had to be investigated to under-
stand how this can be achieved on a bare metal imple-
mentation.
All the clocking functionalities are ported to the 64 bit
global timer available on the board. Although each pro-
cessor has an independent 32 bit timer it was decided that
the global timer would be a better choice keeping in mind

T

 Bare Metal Porting of Tasking Framework on a Xilinx Board 2

issues faced in previous implementations. The clock is
calibrated to work at 333MHz. The hardware Global tim-
er provides the facility of firing an interrupt with id ID27
every time the timer register values are higher than the
comparator register value associated with the timer.[1]
This functionality is made use of in implementing
TaskEvents in the bare metal implementation of the task-
ing framework. Every time a TaskEvent request is re-
ceived the comparator registers of the timer are updated
to trigger an interrupt when the time has elapsed. The
TaskEvent processing is then implemented in the Inter-
rupt Service Routine. The GIC is configured such that
core 0 addresses this Global Timer interrupts. These
hardware interrupts have highest priority so it ensures
that these are processed first.
Both the cores are configured to work in SMP architecture
[6] with core 0 being the master core. The data associated
with the application is shared between both the cores by
marking a page of the memory as shareable. After boot
up the FSBL places the core1 in a Wait for Event (WFE)
loop. Core0 is pointed to the application which needs to
be executed after start up. Core0 performs all the configu-
rations and environment settings before starting the
Core1. We then use the Core0 to wake up the Core1. In
order to wake up Core1 we write the address of Core1’s
application at the address 0XFFFFFFF0 and issue an “sev”
command.[1] Upon receiving the event Core1 starts exe-
cuting the pointed application. In this implementation
Core1 executes a loop looking for a task that requires
processing. If Core1 is free and available core0 assigns the
processing request to Core1 else it is processed by core0
itself. Multiple options were considered for synchroniza-
tion. Most of the synchronization primitives suggested by
example in Microzed Chronicles [4] and ARM mutexes [8]
faced cache coherency issues [7]. Finally a compiler in-
trinsic statement is used to achieve the synchronization of
cores. The framework itself is executed by the Core0 in
this implementation and the Core1 only executes an exec-
utor function. This function receives an activated Task as
input and performs the computations associated with this
Task. Thus Core0 handles all the aspects of the tasking
framework and Core1 is only called upon to share the
workload. In a normal condition where there are not
many Tasks to be executed at an instant Core1 executes
the activated tasks and Core0 keeps the framework active.

4 RESULTS
After having considered multiple implementation options
the above mentioned approach was finally adopted
where all the Task events are to be scheduled on Core0 as
an interrupt and the remaining tasks are distributed
among both the cores depending on availability. The
implementation was tested for multiple scenarios and
emphasis was laid on testing for parallelism. The cores
are synchronized while accessing shared resources and
parallel behavior was observed when multiple events
were fired at the same instant.

5 CONCLUSION
As decided earlier the bare metal implementation was
successfully achieved using both the available cores. The
synchronization between the cores was a major challenge.
Since there are not many documentation regarding SMP
in bare metal on the internet ideas were taken from other
implementations to achieve synchronization. Some of the
more popular synchronization primitives had unexpected
behavior when the memory region was not cached. When
the memory was cached there were cache coherency is-
sues observed. Finally a compiler intrinsic statement is
used to achieve the synchronization between the 2 cores.
The possibility to have a block free algorithm was ex-
plored, however the algorithm suggested was considered
to be under utilization of resources available. This would
make a good proposition for future work to consider
block free implementations. Also the PL has not been
used at all for this project and it would be interesting to
consider the possibilities of employing the PL to share the
workload.

REFERENCES
[1] Technical Manual of Zynq 7000 All programmable SoC
http://www.xilinx.com/support/documentation/user_guid
es/ug585-Zynq-7000-TRM.pdf.
[2] ARM-Cortex A9 MP-core Technical Reference Manual
http://infocenter.arm.com/help/topic/com.arm.doc.ddi040
7g/DDI0407G_cortex_a9_mpcore_r3p0_trm.p df
[3] ARM-Cortex A9 Technical Reference Manual
http://infocenter.arm.com/help/topic/com.arm.doc.ddi038
8g/DDI0388G_cortex_a9_r3p0_trm.pdf
[4] Microzed Chronicles by Adam Taylor
Website:http://zedboard.org/content/microzed-chronicles
[5] Zedboard support forums
http://zedboard.org/forums/zed-english-forum
[6] AMP and SMP
http://rtcmagazine.com/articles/view/101663
[7] Cache coherency description
http://www.webopedia.com/TERM/C/cache_coherence.ht
ml
[8] Assembly Mutex
http://stackoverflow.com/questions/29783951/can-i-use-
ldrex-strex-to-implement-a-spin-lock-without-enabling-
scu-in-a-multico
[9] Vivado support
https://forums.xilinx.com/t5/Embedded-Development-
Tools/XAPP1079-in-Vivado-2015-4/td-p/678257

http://www.xilinx.com/support/documentation/user_guides/ug585-Zynq-7000-TRM.pdf
http://www.xilinx.com/support/documentation/user_guides/ug585-Zynq-7000-TRM.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0407g/DDI0407G_cortex_a9_mpcore_r3p0_trm.p%20df
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0407g/DDI0407G_cortex_a9_mpcore_r3p0_trm.p%20df
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0388g/DDI0388G_cortex_a9_r3p0_trm.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0388g/DDI0388G_cortex_a9_r3p0_trm.pdf
http://zedboard.org/content/microzed-chronicles
http://zedboard.org/forums/zed-english-forum
http://rtcmagazine.com/articles/view/101663
http://www.webopedia.com/TERM/C/cache_coherence.html
http://www.webopedia.com/TERM/C/cache_coherence.html
http://stackoverflow.com/questions/29783951/can-i-use-ldrex-strex-to-implement-a-spin-lock-without-enabling-scu-in-a-multico
http://stackoverflow.com/questions/29783951/can-i-use-ldrex-strex-to-implement-a-spin-lock-without-enabling-scu-in-a-multico
http://stackoverflow.com/questions/29783951/can-i-use-ldrex-strex-to-implement-a-spin-lock-without-enabling-scu-in-a-multico
https://forums.xilinx.com/t5/Embedded-Development-Tools/XAPP1079-in-Vivado-2015-4/td-p/678257
https://forums.xilinx.com/t5/Embedded-Development-Tools/XAPP1079-in-Vivado-2015-4/td-p/678257

	1 Introduction
	2 Background
	2.1 Tasking Framework

	3 development
	4 results
	5 Conclusion
	References

