
ProToS: Next Generation Procedure Tool Suite for

Creation, Execution and Automation of Flight Control

Procedures

Thorsten Beck, Leonard Schlag, Jan Philipp Hamacher

Deutsches Zentrum für Luft- und Raumfahrt e. V., German Aerospace Center

Münchener Straße 20, 82234 Weßling, Germany

The Procedure Tool Suite (ProToS) is a software solution developed at the German
Space Operation Center (GSOC) as part of the GSOC-2020 Research and Development
agenda. Its purpose is to support creation and execution of Satellite Test and Flight Control
Procedures and to provide an automation framework for complex operational scenarios.
The software is currently in use at DLR for the AIT phase of the Eu:CROPIS project and
foreseen as an essential element of the automation engine for the EDRS-C mission. This
paper shall give a feature overview, present the applied design principles and the current
status of development.

I. Introduction

One of the most established and commonly used monitoring and control system (MCS) for European space
operations during the last decade is ESA’s SCOS-2000. Although continuously modernized and adapted to
new mission requirements, SCOS-2000 does by itself not support the execution of high-level flight procedures
but applies a classic telecommand based approach. Conceptual extensions to this paradigm exist for some
time1 and substantial effort has gone into commercial and open-source development of procedure frameworks2

and domain-specific languages.3 Unfortunately, these frameworks often suffer from high complexity, high
acquisition and maintenance cost or they simply do not integrate well with the products already in use
by operations engineers and satellite manufacturers. Therefore, a large part of operations nowadays is still
centered around the manual dispatch of command stacks and telemetry checks, requiring human decisions
on the level of telemetry and command packets.

The Procedure Tool Suite developed by the Mission Control and Data System team at GSOC was designed
to overcome this problem. It provides a lightweight framework for procedure development, combined with
a procedure oriented commanding front-end for the core MCS. Its main purpose, however, is the support
of modern procedure-based commanding concepts and the automation of complex operational scenarios in
distributed environments. ProToS therefore offers a scripting engine that allows creation, management and
controlled execution of mission specific automation scripts, which makes ProToS one of the most versatile
tools in the GSOC multi-mission environment.

ProToS has been designed as a multi-mission framework, capable of supporting current and foreseen future
missions at GSOC, starting at phases as early as AIT (Assembly, Integration and Test). It supports test
execution and test documentation and has been integrated into GSOCs Central Checkout System (CCS) with
the goal of providing a common procedure language for AIT and operations. It interfaces with GSOCs core
MCS GECCOS,4 an enhanced derivative of ESAs SCOS-2000 v3.1. The implementation is however generic
enough for adaption to future monitoring and control systems, in particular to the upcoming European
Ground Systems Common Core (EGS-CC), a software initiative led by ESA.

1 of 9

American Institute of Aeronautics and Astronautics



The ProToS software solution has been realized by a surprisingly small team, using an adapted agile
development approach5 which allowed very effective use of developer resources and short time intervals
between development iterations. The framework has been developed exclusively using open-source software
libraries, based on Eclipse RCP technology and licensed under the EPL.

A. Range of Application

ProToS features four main components, bundled into a single software solution:

1. A central procedure and mission database repository.

2. A procedure editor offering a graphical front-end for development of Flight Control Procedures (FCPs),
based on an existing TM/TC database definition.

3. A procedure executor, providing a user interface for procedure instantiation and execution, enabling
the operator to interact with the procedure control flow in real-time.

4. An automation engine, which allows scheduled and event triggered execution, not only of procedures,
but of arbitrary code compiled at runtime, capable of accessing procedure and system resources alike.

B. System Architecture and Deployment Scenarios

ProToS implements a three-tier architecture, featuring a central server application with a database back-end
and an arbitrary number of client applications, which makes it particularly suited for work in distributed
environments. When preferred, the application can also be deployed as a stand-alone desktop application
for single-user environments with an integrated server.

(a) Server-Client (b) Standalone

Figure 1. Deployment scenarios

For distributed preparation environments, the client-server architecture allows users to share a common
procedure repository. Procedures can be developed collaboratively, with ProToS offering typical version
control and release management capabilities. Such a setup is typically deployed in office environments where
the number of clients may range from 1-20.

Releases can easily be transferred from preparation to integration or operational domains, using an XML
based interface language. In a multi-user control room environment, ProToS provides a central execution
and automation engine. The interface to the core MCS must be centralized and is therefore implemented in
the ProToS server, which takes care of controlled procedure execution and automation. Clients in such an
environment are operated in different modes: there is always only one client able to actively interact with
the server, the remaining clients are operated in observer mode, granting read-only access to the repository
and the procedure stack.

2 of 9

American Institute of Aeronautics and Astronautics



Since all server-client communication is realized via TCP/IP protocol, more complex deployment scenarios
are realizable. Access to the procedure repository is not only possible in a shared office environment but also
from remote sites such that a repository can be shared between partners from different organizations. As
long as the network infrastructure allows it, access can be extended to the execution and automation engine,
which would allow remote maintenance or even controlled access to monitoring and command capabilities
from remote locations, a use case that might be desirable for payload operation scenarios.

C. Technologies

ProToS is based on the Eclipse Platform and written exclusively in Java. Eclipse, known to most as an
Integrated Development Environment (IDE) for a wide range of programming languages, also provides an
open source framework, commonly referred to as the rich client platform (RCP).6 RCP enables developers
to build their own applications based on the Eclipse libraries, offering a professional runtime environment
and allowing highly modular designs due to the dynamic plug-in model approach. The platform allows
fine-grained control of component design and behavior.

Figure 2. Extract of the EMF-based Proce-
dure Runtime Model

A large number of extensions and software development
kits for the Eclipse Platform are freely available and Pro-
ToS makes intensive use of the Eclipse Modeling Framework7

(EMF) for its application and runtime model. EMF offers valu-
able tooling for the creation of object-oriented domain models.
It provides a code generator for the internal API, including
adapter classes which highly simplify the creation of model-
view-controler (MVC) based GUI applications and integrates
seamlessly with existing Java GUI frameworks, such as SWT
and JFace.

In recent years, a major revision of the Eclipse Platform
has been released, known as the Eclipse 4 RCP, offering a re-
vised framework that further improves the platform’s archi-
tecture and programming model. It applies the features of
EMF to allow for a more model-based application design and
an improved service-oriented programming model, making use
of modern design patterns like dependency injection.8 ProToS
is implemented as a pure Eclipse 4 RCP application, thereby
simplifying component development and improving testability.

In environments where it is important to work collabora-
tively on large shared data repositories, it is advisable to add
an enterprise-suited persistence layer to EMF models. There
are a number of solutions available,9,10 most of them focusing
on offline editing of shared data models. A framework that stands out in this context is the CDO (Connected
Data Objects) Model Repository.11 It offers a distributed shared model framework for EMF which provides
not only a data storage back-end, but a complete server-client architecture, based on the Net4J signaling
platform. CDO allows the use of pluggable data storage back-ends, i.e. relational databases. All interac-
tions with the repository are transaction based and can be endowed with a role-based user management,
allowing fine-grained access to the procedure repository. Most importantly, CDO extends the EMF change
notification framework over an arbitrary set of clients, connected via TCP/IP. In fact, the ProToS three-tier
architecture is made possible mainly through the technology provided by the CDO framework.

All frameworks listed here, building the basis of the ProToS application, are licensed under the EPL,12

a commercial-friendly, open source license model. The EPL allows the commercial use of licensed frame-
works and a redistribution in closed-source form, as long as the developed product builds on top of these
libraries, without changing the libraries themselves. ProToS is currently distributed DLR-internally under
a proprietary license.

3 of 9

American Institute of Aeronautics and Astronautics



II. Application Modules

This section gives a brief overview of the three main application modules used for Procedure Development,
Execution and Automation, respectively. Note that the latter component is still under active development
and the description given here reflects part of the preliminary design rather than actual implementation.

A. Procedure Development

Flight Control Procedures (FCPs) in general encapsulate a set of commands, checks and decision branches
which are associated with a single activity to be performed onboard a spacecraft. FCPs are typically designed
far in advance and validated against simulations or engineering models.

The purpose of a procedure development tool is to support the engineer in generating an FCP implemen-
tation that is fully compliant with a given TM/TC database. ProToS therefore has the ability to import
the definitions of telemetry parameters, telecommands and their associated calibrations and limits from
the SCOS Mission Information Base (MIB). ProToS allows to manage more than a single MIB inside its
repository and the procedure developer can switch between different database versions in a matter of seconds.

Figure 3. Procedure Editor View

Procedure creation itself is supported by the graphical user interface providing typical editor functionality,
such as adding and removing statements or common copy, cut and paste operations.

Each created procedure consists of a header, providing meta-information on author, database version and
release and execution related information like duration, pre- and post-conditions. ProToS currently supports
creation of the following procedure elements:

• Procedure Variables

• Steps and Substeps

• Decision Steps

• Comment Statements

• Telemetry Statements

4 of 9

American Institute of Aeronautics and Astronautics



• Command Statements

• Procedure-call Statements

Procedure variables represent placeholders that can be specified during instantiation. Procedure state-
ments are collected in steps and sub-steps and can be further described by the use of comments. Telemetry
statements may contain one or several checks on a given telemetry parameter. Command statements con-
tain information about telecommand parameter values and their execution may be time-tagged, using either
relative or absolute timestamps for uplink and execution time (Figure 4).

Figure 4. Command and Telemetry Statement Definition

The procedure execution flow inside FCPs can be controlled by the use of Decision Steps. When executed,
these steps evaluate a boolean condition that can be related to an instance variable or to actual telemetry.
Depending on the result of this evaluation, a certain path through the otherwise sequential procedure is
chosen. Using Decision Steps it is also possible to pause the execution of a procedure, until the specified
condition is fulfilled. Complex workflows can be facilitated by the modular approach of Procedure-Call
Statements which allow nested calls to referenced procedures.

The procedure language has a clear XML representation, defined in an associated schema. This allows
controlled import and export and thereby convenient exchange and distribution of FCPs, internally as well
as with external partners. In order to provide backward compatibility, a number of existing export formats
have been implemented, such as the MOIS XML procedure language and SCOS stack files.

The procedure editor also provides a procedure validation framework that builds upon the definitions in
the TM/TC database. It supports basic live input validation and can check the prepared FCPs for semantic
correctness, semantic in the sense that the all statement definitions generate a valid sequence with respect to
the software’s capabilities. For instance, the creation of infinite loops in the procedure workflow is prohibited.
Of course, the task of validating a procedure against overall correctness is still a task that requires the work
of engineers, validating flight procedures against simulations or actual hardware.

5 of 9

American Institute of Aeronautics and Astronautics



Figure 5. Procedure Repository

The functionality described in this paragraph is handled on
client-side. The ProToS server merely provides the repository
(Figure 5) and thereby the ability to develop procedures in
a distributed environment. The problem of merge conflicts is
circumvented by a simple locked-for-editing mechanism.

B. Manual Procedure Execution

The ability of ProToS to interface with GSOC’s core MCS al-
lows the controlled execution of FCPs, either in an integra-
tion or an operational environment. In the procedure execu-
tion view, a static procedure definition can be instantiated and
thereby becomes a live procedure page, presenting real-time
feedback for all specified telemetry statements and the uplink
and execution state of command statements.

This is where ProToS derives the full advantage of the
EMF/CDO notification framework. The CDO repository in
this case acts as a mediator between client requests and actions and events on server side. Every change to
the server runtime model is realized by a commit transaction, triggered either on server- or client-side, and
every connected client is automatically notified of the update. The necessary internal function calls for this
mechanism are outlined in Figure 6 for the relatively simple example of sending a connection request to the
MCS.

Figure 6. Client-server interaction and notification framework, for the process of connecting ProToS with the
MCS

After instantiation, the command operator can choose between different execution modes, running the
procedure either in full, step-by-step or statement-by-statement. Steps are typically executed sequentially,
with the currently active statement highlighted in the UI, very much like in a manual command stack, but
with the advantage of supporting more complex logic based on telemetry checks and decision branches.

Through its multi-user architecture, ProToS allows simultaneous connection of an arbitrary number
of clients in observer mode. This enables other users to monitor the procedure stack while it is actively

6 of 9

American Institute of Aeronautics and Astronautics



Figure 7. Part of a Live Procedure Page with Telemetry Feedback and Execution Verification

controlled by the command operator, adding an additional level of situational awareness for the operations
team.

The TM/TC interface to the MCS is realized in a dedicated ProToS server plug-in responsible for the
MCS connection. It mediates actions and events between the ProToS server and the SCOS-2000 external
interfaces (ExIF). The ExIF allows other applications to access core MCS components like the Event model,
the Telemetry Processor or the Command Releaser. SCOS ExIF is based on CORBA, an object-oriented
middleware, allowing cross-platform communication between applications, based on an Interface Definition
Language (IDL). A Java implementation of CORBA and an IDL code generator is part of the Java Develop-
ment Kit (JDK) since the very early version 1.3. Using CORBA, ProToS is able to inject telecommands and
subscribe to updates in the telemetry or event model of SCOS-2000. Command verifications and telemetry
updates are provided via call-back methods, auto-generated from the SCOS IDL definitions.

Figure 8. A sample execution report before execution. It contains all procedure statements and a column for
comments and results

7 of 9

American Institute of Aeronautics and Astronautics



It should be pointed out that the requirements to a procedure execution tool are somewhat different when
comparing operational scenarios to an integration or test scenario. In a test environment for instance, the
validity condition on parameter input against the TM/TC database may be relaxed or even dropped com-
pletely for the sake of failure testing. Since ProToS is applied in both domains, this possibility was considered
in the design and the application behavior can be adapted via a mission-specific server configuration.

During AIT and operations alike, there is a high demand for thorough documentation of performed
activities. Since all information required for such documentation is principally available in ProToS, a number
of product exports have been implemented, such as the generation of procedure execution reports in formats
like XML or PDF. During execution, the operator or test engineer is able to add comments to the active
procedure instance, to provide additional information about the execution run (Figure 8).

C. Procedure Automation

Most operational concepts nowadays involve some level of automation. This is often motivated by the
repetitive nature of manual activities but also due to high demands on the parallel execution of activities
and the large amount of relevant input data. For most routine operational scenarios, the instructions given
inside an FCP can be executed autonomously. A fixed set of rules thereby determines the overall execution
state of an executed procedure and allows the definition of procedure entry and exit conditions as well as
automated post-actions like reporting.

The ProToS automation engine supports scheduling, automated instantiation, execution and state eval-
uation of FCPs. The state processor has inherited its internal logic from the automation engine that is
currently in use for the EDRS-A mission.13 The final state of an automated activity is either Success, Failed
or Unknown, where the latter is used in case of verification timeouts.

Since the automation of ground segment activities generally consists of more than just the autonomous
execution of FCPs, more complex scenarios were foreseen and can be realized in form of automation tasks. A
ProToS automation task can encapsulate basically any set of instructions that operates either on procedure
or platform resources. Tasks have access to parameters provided by the MCS, to the internal procedure
stack and to the file system, and they can subscribe to events or telemetry updates received from the core
MCS. When triggered, tasks are able to access the procedure stack to either automatically trigger procedure
instantiation and execution or to modify the execution state of currently active procedures.

Ground segment automation can be highly mission specific and it was a challenging task to align this
requirement with the general concept of ProToS being designed as a multi-mission tool. The current design
foresees the use of the javax.tools package, which is part of the Java Platform Standard Edition 6 (Java SE
6) and provides an API for compiling Java source at runtime. Each task then consists of a set of trigger
conditions and executable instructions in form of Java source code. They are managed by the automated task
manager plugin, which handles the compilation at runtime and guarantees the controlled execution, acting
as a life-cycle and error handler. The execution state of automated tasks can be monitored and controlled
via the client-side user interface.

The set of mission specific tasks is an integral part of the ProToS Server configuration. Each automated
task has a simple XML representation which makes it very easy to load a configuration and to manage these
tasks separately from the main application’s code base.

III. Conclusion

The GSOC Procedure Tool Suite ProToS combines a set of flight procedure related software modules in
a single framework. Its functionality covers the development, execution and automation of Flight Control
Procedures, features that in the past were either non-existent or realized in heterogeneous environments,
involving various tools with different programming and interface languages.

8 of 9

American Institute of Aeronautics and Astronautics



The support of procedure based commanding concepts together with an automation engine allows a
transition from manual telecommand-based operations to a more high-level and largely autonomous com-
manding concept, as was already demonstrated for the EDRS-A mission. The inclusion of this functionality
in a multi-mission tool suite now enables GSOC to apply the concept to any future mission, with EDRS-C
being the next candidate.

The in-house development of a customized procedure tool allowed seamless integration with existing
software and operational products used at GSOC. Its integration in the GSOC central checkout system
greatly reduced effort and cost in the adaptation of FCP deliveries, through the use of well-established
interface languages, while manufactures and integrators benefit from the automated execution- and test
report generation.

Its multi-user architecture makes ProToS particularly suited for use in distributed environments which
includes preparation, integration and control room environments. Even novel operational concepts are made
possible by the ability to connect to server resources from remote sites.

The implementation was made possible by the use of powerful open-source frameworks, which allowed
an efficient development process and low expected costs for software adaptations and maintenance.

References

1ECSS Secretariat, Space engineering - Test and operations procedure language, Space Engineering, No. ECSS-E-ST-70-
32C, ESA-ESTEC, 2008

2RHEA Group, White Paper: MOIS - Manufacturing and Operations Information System, 2014, http://www.rheagroup.
com/wp-content/uploads/2015/07/MOIS_White_paper.pdf

3SES Engineering: SPELL - Satellite Procedure Execution Language & Library, Version 2.4.4, 2015, https://

sourceforge.net/projects/spell-sat/
4Stangl, C., Braun, A., Geyer M.P., GECCOS - the new Monitoring and Control System at DLR-GSOC for Space

Operations, based on SCOS-2000, SpaceOps 2014 Conference, SpaceOps Conferences, (AIAA 2014-1602)
5Cockburn, A., Agile Software Development: The Cooperative Game, 2nd edition, Addison-Wesley Professional, 2006
6des Rivieres, J., Eclipse Platform Technical Overview, http://www.eclipse.org/articles/Whitepaper-Platform-3.1/

eclipse-platform-whitepaper.html
7Eclipse Consortium: Eclipse Modeling Framework (EMF), Version 2.8.3 (2013), http://www.eclipse.org/emf
8Arthorne, J., White Paper: e4 Technical Overview, https://www.eclipse.org/e4/resources/e4-whitepaper.php
9Eclipse Consortium: Teneo, Version 2.0.0 (2015), http://www.eclipse.org/teneo

10Eclipse Consortium: EMFStore, Version 1.7.0 (2016), http://www.eclipse.org/emfstore
11CDO Model Repository, Version 4.4.0 (2015), http://projects.eclipse.org/projects/modeling.emf.cdo
12Eclipse Public License - v 1.0, https://eclipse.org/org/documents/epl-v10.php
13Beck, T., Schmidhuber, M., Scharringhausen, J.C., Automation of Complex Operational Scenarios - Providing 24/7

Inter-Satellite Links with EDRS, SpaceOps 2016 Conference, Daejeon, Korea (submitted for publication)

9 of 9

American Institute of Aeronautics and Astronautics

http://www.rheagroup.com/wp-content/uploads/2015/07/MOIS_White_paper.pdf
http://www.rheagroup.com/wp-content/uploads/2015/07/MOIS_White_paper.pdf
https://sourceforge.net/projects/spell-sat/
https://sourceforge.net/projects/spell-sat/
http://www.eclipse.org/articles/Whitepaper-Platform-3.1/eclipse-platform-whitepaper.html
http://www.eclipse.org/articles/Whitepaper-Platform-3.1/eclipse-platform-whitepaper.html
http://www.eclipse.org/emf
https://www.eclipse.org/e4/resources/e4-whitepaper.php
http://www.eclipse.org/teneo
http://www.eclipse.org/emfstore
http://projects.eclipse.org/projects/modeling.emf.cdo
https://eclipse.org/org/documents/epl-v10.php

	Introduction
	Range of Application
	System Architecture and Deployment Scenarios
	Technologies

	Application Modules
	Procedure Development
	Manual Procedure Execution
	Procedure Automation

	Conclusion

