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Simulation-based Interpretation and Alignment of
High-Resolution Optical and SAR Images

Stefan Auer, Isabel Hornig, Michael Schmitt Senior Member, IEEE, Peter Reinartz Member, IEEE

Abstract—The successful alignment of optical and SAR satellite
data requires that we account for the effects of sensor-specific
geometric distortion, which is a consequence of the different
imaging concepts of the sensors. This paper introduces SimGeoI,
a simulation framework for the object-related interpretation of
optical and SAR images, as a solution to this problem. Using
meta-information from the images and a digital surface model
as input, the processor follows the steps of scene definition,
ray tracing, image generation, geo-coding, interpretation layer
generation, and image part extraction. Thereby, for the first
time, object-related sections of optical and SAR images are
automatically identified and extracted in world coordinates under
consideration of 3-D object shapes. A case study for urban scenes
in Munich and London, based on WorldView-2 images and high-
resolution TerraSAR-X data, confirms the potential of SimGeoI
in the context of a perspective-independent and object-focused
analysis of high-resolution satellite data.

Index Terms—Data Fusion, Optical Data, SAR Data, Digital
Surface Model, Simulation, Interpretation, Urban Areas, High-
resolution Imaging, Ray Tracing

I. INTRODUCTION

From the geometric viewpoint, the alignment of optical
data and synthetic aperture radar (SAR) data, captured by
airborne or spaceborne sensors, is hampered by fundamental
differences of the underlying imaging concepts. In the optical
domain portions of reflected sun light are collected in an
image plane, often with an orthographic projection along
the flight track and a perspective projection in across-track
direction (pushbroom concept). It is preferable that optical data
is captured from near-nadir perspectives in order to balance
image distortion and localization accuracy, and to minimize
occultation. However, optical data may also be acquired from
off-nadir perspectives for 3-D reconstruction tasks or for sup-
porting spontaneous image acquisition (e.g. in the context of
natural disasters). Synthetic aperture radar images are obtained
from radar signals (with a power distribution over a known
chirp signal) which are emitted from an antenna, the signal
power backscatter from ground targets is then collected along
a synthetic aperture. In a post-processing step, the spatial
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resolution of the final SAR image is obtained by matched-
filtering along both image axes (azimuth, range) and the
assumption of a target nature (direct signal response, stationary
target during the data acquisition). The principle of strong off-
nadir viewing perspectives (typically between 25◦ and 50◦)
is characteristic for SAR systems in order to provide the
necessary sensibility for target distance differences and to
identify the direction of the signal response across the line-of-
flight (left or right).

As a result of the imaging concepts, the off-nadir perspec-
tives of the sensors lead to different and contrary distortion
effects in the image data, especially for 3-D objects like
buildings or trees (see e.g. [1] or [2]). Considering this
fundamental difference in imaging, it is clear that a straight-
forward overlay of high-resolution optical data and SAR data
is only possible for scenes without elevated objects. However,
typical scenes of interest are often comprised of man-made
structures, vegetation, and a variation of the ground level. On
the one hand, this prohibits the application of classical, pixel-
based image fusion methods, which are well-established for
remote sensing imagery with similar characteristics [3]. On the
other hand, the matching of corresponding image parts, which
is often needed for image registration or stereogrammetry,
becomes a non-trivial task [4], [5]. By proposing the multi-
sensor simulation framework SimGeoI (simulator of geo-
referenced interpretation layers), this paper provides the basis
for the joint exploitation of SAR and optical data for objects
of interest. In more detail, SimGeoI considers the geometric
projection effects pertinent to both sensors, which allows for
the extraction of corresponding image parts in optical and SAR
images despite the difference of sensor type and perspective.
Based on that, the image parts aligned through SimGeoI can
be used in subsequent data fusion steps, which focus on an
object-based (where objects refer to, e.g. individual building
facades) rather than a pixel-based analysis. This actual fusion
step, however, is not within the scope of this paper.

The paper is organized as follows. In Section II, the ba-
sic structure and functionality of the simulation environment
SimGeoI is introduced. In Section III, the methodology of
GeoRayOpt for the simulation of optical data is introduced.
Section IV compares core elements of GeoRayOpt and Geo-
RaySAR and emphasizes the main differences between the two
types of simulations. Experimental results of the application
of SimGeoI are shown in Section V, followed by discussion
on opportunities and limitations in Section VI. Finally, con-
clusions are drawn in Section VII.
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II. THE SIMULATION FRAMEWORK SIMGEOI

A. Related work

SimGeoI is designed as a framework to relate high-
resolution satellite images of SAR and optical sensors se-
mantically via 3-D space, exploiting geometric a priori scene
knowledge. It can thus be a useful tool in solving the alignment
problem which is a necessary prerequesite for subsequent
SAR-optical data fusion [6]. Related work in the field of
remote sensing is mostly concerned with connecting 3-D
geometry with either optical or SAR image data. As examples
for the first group, changes between digital elevation data
and optical satellite data are identified in [7]. Classification
methods based on the joint analysis of laserscanning point
clouds and optical data are reported in [8]. The impact of
scene geometry and sensor perspective has to be accounted
for in the field of pan-sharpening where multi-sensor fusion is
usually enabled by ortho-correction [9]. In [10], representing
the second group, prominent SAR image signatures (persistent
scatterers) are localized at buildings and mapped into slant
view optical images for subsequent refinement steps. In the
”SARptical” framework developed by Wang et al. [11], [12], a
3-D point cloud, which is generated by co-registration of point
clouds derived from SAR tomography and optical dense stereo
matching, is used to link SAR and optical image data. An
example for pioneering work in the field of simulation-based
change detection from SAR and optical remote sensing data
is [13]. The authors use optical data for the manual extraction
of building parameters. The resulting 3-D model is thereafter
inserted into an iterative SAR image simulation procedure
in order to identify building changes. A fully automated
process for scene modeling and simulation is not yet proposed.
Another example is presented by Ali et al., who integrate 3-D
city models into the analysis of changes based on SAR images,
using optical images for the validation [14]. The impact of
geometric projection effects due to object height, however,
is not accounted for. In [15], features extracted from optical
images, SAR images and LiDAR data are jointly exploited
for scene classification. The analysis is based on co-registered
data sets. Again, the impact of object height in the context of
optical and SAR imaging (distance dependence) is neglected.

In comparison to the work above, SimGeoI aims at auto-
matically defining the link between SAR images and optical
images, while retaining the original image data. In this context,
it can use digital surface models (DSM) from arbitrary sources
and even GIS data in the form of CityGML information. For
solving the problem, SimGeoI provides interpretation layers
to relate complementary parts of the image data on the object
level. In that regard, the geometry of the input DSM constitutes
the connecting element between the different image data.
Multi-sensor image fusion tasks are mostly restricted to rather
coarse resolutions and rural or semi-urban scenes (e.g. [16],
[17]). SimGeoI aims at providing the necessary basis for
exploiting individual scene objects in urban areas with high-
resolution optical and SAR data.

The first steps towards the SimGeoI framework were carried
out in a case study aiming to analyze the impact of different ac-
quisition concepts of SAR and optical images [18]. The study

was restricted to the special case of opposed sensor viewing
directions where the object shape matches in both images.
An automated simulation environment for the interpretation
of SAR imagery – named GeoRaySAR – was introduced in
[19]. Similar to SimGeoI, it uses a manually pre-filtered DSM
(based on LiDAR data) and focuses on relating different SAR
image acquisitions in the context of urban change detection.
Based on GeoRaySAR, first methods for object-related change
detection are presented in [20].

The work presented in this paper extends the simulation idea
of GeoRaySAR in several aspects and introduces the resulting
generalized processor SimGeoI. It contributes to the open
directions indicated above, i.e. automated alignment of optical
and SAR images in their original geometry, consideration of
sensor-specific projections and image semantics, and mini-
mization of input data for the support of realistic scenarios.
Thus, SimGeoI provides an important part of a complete
data fusion pipeline: after the SimGeoI-based alignment of
corresponding image parts, they can be further analyzed in
order to retrieve results on object-level.

B. Basics on SimGeoI
In essence, SimGeoI refers to a framework containing

two elements: GeoRaySAR [21], which enables to simulate
interpretation layers for SAR images, and GeoRayOpt, a newly
developed component for the simulation of interpretation
layers for optical data. The type of simulation is triggered
by the input to the processing chain. The first input is the
image meta file which is related to a geo-referenced optical
image or SAR image with UTM coordinates. It contains
the necessary information for defining the simulation settings
(sensor perspective, image properties, scene average height)
and is interpreted automatically. As second input a DSM in
UTM coordinates describes the geometric prior knowledge for
the scene. It is used to generate the scene model which refers to
the steps filtering, DSM decomposition into normalized DSM
and DTM, triangulation of the surface, and model translation
into the language of a ray tracer. The simulated images
are geocoded automatically based on the DSM coordinates
and the extracted image meta information. The combinations
of simulated images for the DSM, normalized DSM and
DTM model lead to the final output of SimGeoI: dedicated
interpretation layers for optical and SAR images in the form
of binary masks, which enable to extract object-related parts
from the satellite images (captured e.g. with different sensor
type, perspective, and spatial resolution).

An adapted version of POV-Ray [22], an open source ray
tracer, is the core element of the simulator, providing either
optical images (rendered image) or output information for
the simulation of SAR images (azimuth, range, and elevation
coordinates of signal, signal strength, signal reflection level)
at the same time. SimGeoI follows the same procedure for
optical and SAR data: interpretation of image meta-data, scene
model definition, calculation of simulation parameters, image
simulation, geocoding, and generation of binary interpretation
layers. Core elements vary in order to account for the differ-
ences between optical and SAR imaging (see Sections III for
GeoRayOpt and Section IV for GeoRaySAR).
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An overview of the processing steps is shown in Fig. 1.
Parts addressed in detail in this paper are marked in red,
whereas the pre-processing of DSMs is described in [23] and
basic GeoRaySAR in [19]. Compared to [19], the simulation
environment has been generalized in two ways: 1) scene inter-
pretation is now possible with satellite DSMs instead of pre-
filtered DSMs from airborne sensors, 2) scene interpretation is
now extended to optical images (GeoRayOpt), complementing
the basis for data alignment.

The preparation of input models for SimGeoI is realized in
several steps:

• DTM (necessary input 1): A digital terrain model is gen-
erated from the input DSM using the method described in
[24] (parameters: scanline extent, height threshold, slope
threshold; see case study in Section V; note: alternative
algorithms are possible, e.g. [25] or [26]). The DTM
is used for defining a horizontal plane describing the
spatial extent of ground surfaces in the scene (required
for the combination of simulation results in the context
of interpretation layers).

• DSM (input 2): A DSM pre-processing step is activated
[23]. Given a multi-spectral orthorectified image, trees are
identified and removed from the DSM model based on
the Normalized Difference Vegetation Index (NDVI) and
a height threshold on the difference between the current
DSM and the DTM (note: flat vegetated surfaces remain
part of the ground surface). Median filtering accomplishes
the final DSM by smoothing of the DSM surface. For
the case studies presented in the paper, the ortho-image
is derived from the optical data which was used for
generating the DSM.

• nDSM (input 3): The nDSM is derived from the pre-
filtered DSM based on a height threshold (height differ-
ence > 0.1 m between pre-filtered DSM and DTM). It is
expected to represent mostly building parts of sufficient
height and scale. In contrast, man-made objects with little
elevation (vehicles, poles) are suppressed during DTM
generation, by the application of an appropriate height
threshold, e.g. 5 m, and during DSM filtering. Note that
the nDSM obtains the original heights of the DSM.

• Building models (derived from input 3): For the second
interpretation level, focused on building blocks, segments
of sufficient extent in the nDSM are identified as building
objects based on a minimum size threshold for connected
segments (see [19]).

SimGeoI calls the simulation chain for the DSM, the nDSM
and the DTM, respectively. The resulting simulated images are
used to generate binary images and combined to interpretation
layers (see Section III-C for optical images and Section II for
SAR images). The final goal is to separate foreground from
background in optical and SAR satellite images in order to
extract image parts of interest. Extended scenes are processed
with overlapping tiles [23], where the sensor perspective is
interpolated from the meta data for each tile.

The following parameters are extracted / calculated from
the meta file of the image and used while conducting the
simulation process (equal for optical and SAR images):

DSMInput Filtering ?

Multispectral satellite image Input is omitted

Preprocessing

Simulation

Generation of layers

DTM Generation

Filtering ?
Yes

preprocessed DSM

Yes No

nDSM Generation

No

GeoRayOpt

Combination

further parameter

Calculation of plane

Repeated call of simulator

settingsSatellite image

of different simulation results

GeoRaySAR or GeoRayOptGeoRaySAR

with different input modelsSimGeoI

Fig. 1: Automated simulation environment (red: developed and
implemented methodology; black: integrated existing work).

• the local signal incidence angle θ (interpolated based on
the known values at image corners)

• the reference height Href related to geo-coding of the
data

• the pixel spacing ξSE in east direction and ξSN in north
direction (context: UTM coordinate system)

In case of GeoRayOpt, three additional parameters are
extracted: the angle of view β (line of sight of the optical
sensor projected on the ground plane) as well as the azimuth
angle αsun and elevation angle εsun of the sun during image
acquisition. Parameter β is derived from exploiting the Ra-
tional Polynomial Coefficients (RPCs) attached to the image,
which define the camera model of the optical sensor [27].
In case of GeoRaySAR, only the sensor heading angle γ is
required as additional parameter.

The second input to the processor is geometric prior knowl-
edge of the scene of interest, which is described by surface
models (DSM, nDSM, DTM). The models are represented
by raster data in the UTM coordinate system, with pixel
values describing height (see Fig. 2). Besides height values,
the following information is required for the input model
(extracted or calculated from the meta file of the DSM):
• the pixel spacing ξLE in east direction and ξLN in north

direction
• the model length L in east direction and width W in north

direction with
L = Nc · ξLE
W = Nr · ξLN

(1)

where Nc is the number of columns and Nr the number
of rows of the DSM. Given the maximum and minimum
height, the middle height Hmid and DSM height extent H is
calculated (see Fig. 2):

Hmid =
(Hmax +Hmin)

2
(2)
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H = Hmax −Hmin (3)

The surface model (either DSM, nDSM) is translated into
the POV-Ray format using standard Delaunay triangulation
(see Fig. 2 as an example for the DSM). In order to mark the
scene coverage the DTM is represented by a plane positioned
at the median height of the scene (alternative: triangulation of
true DTM). Thereafter, the processing steps are equal for each
input model (see below).

L
W

H

ξLE

ξLE

ξLN

ξLN

Hmin

Hmid

Hmax

Fig. 2: 3-D model generation from the DSM (2.5D raster im-
age with height values triangulated to surface); red: bounding
box of the DSM, describing the DSM extent.

III. GEORAYOPT - CORE ELEMENTS

This section summarizes peculiarities of SimGeoI related
to simulations in the context of optical images. The main

differences with respect to GeoRaySAR (see Section IV)
refer to the following steps: parameter calculation for ray
tracing, image generation, geo-coding, and the generation of
interpretation layers.

A. Calculation of Parameters for Ray Tracing

For finalizing the model scene definition the following
information is required (note: x and z define the horizontal
position, y-axis refers to object height in POV-Ray):

1) Scene center: the center of the surface model bounding
box (see Fig. 2) is calculated by

⇀

Xcp=

xcpycp
zcp

 =

 L−ξLE

2
Hmid
W−ξLN

2

 (4)

2) Camera position: an orthographic projection is used and
the position is calculated by

⇀

Xca=

xcayca
zca

 =

 xcp
ycp +

D
tan (θ)

zcp +D

 (5)

with D being the horizontal distance between the
sensor position and the scene center. As an orthographic
projection is used, the parameter D can be an arbitrary
positive number.

3) Signal source: the sun is represented by a signal source
emitting parallel light at the position

⇀

X li=

xliyli
zli

 =

xcp + sin (α′sun) ·D
ycp + tan (εsun) ·D
zcp + cos (α′sun) ·D

 (6)

with α′sun = αsun − β.

4) Image size: the number of image columns and rows
(rounded to the next integer) is defined by

Nc,img =
Limg
ξSE

Nr,img =
Wimg

ξSN · cos θ

(7)

where Nc,img and Nr,img are the number of image
columns and rows. Parameters Limg and Wimg define
the length and width of the DSM bounding box in the
image plane (unit: meter), considering the perspective of
the camera with respect to the DSM.

B. Geocoding of Simulated Image

The ray tracing procedure is conducted in a local image
coordinate system which results in a rendered image without
UTM coordinates. Thus, for superimposing the image onto
the optical image, geocoding is necessary. This includes two
main steps which are explained next.
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C2

C2
C1 C1

W

L

Rotation

Lrot

Wrot

Y (North)

X(East)

Y (North)

X(East)

Cutting

Fig. 3: Geocoding for DSM example based on the model
geometry; starting point: rendered optical image (image coor-
dinates), black color marks image parts without DSM response
during ray tracing; green frame: rotated image in north-east
orientation (no absolute coordinates, yet); blue: area covered
by DSM and its UTM coordinates; red: cropped image in
north-east orientation with UTM coordinates.

1) Exploitation of DSM information: The main principle
of the first step of geocoding is visualized in Fig. 3, showing
rotations and cropping for an example image rendered by the
ray tracer. Firstly, for obtaining an image orientation in the
north-easterly direction, the rendered image is rotated by ρ =
180◦−β−360◦ (if ρ > 0◦: anti-clockwise rotation; if ρ < 0◦:
clockwise rotation). Thereafter, the length Lrot and the width
Wrot of the rotated image are calculated by

Lrot = ||M · cos (δ) + L||
Wrot = ||M · sin (δ) +W ||

(8)

where M = H · tan (θ) is the displacement of points on the
top level of the DSM bounding box in the image, depending
on the bounding box height H and the signal incidence angle
θ (maximum impact of DSM heights). The direction of the
displacement equals the sensor’s line-of-sight projected in the
image plane. Note that the displacement is zero if the camera’s
line-of-sight equals the nadir direction with respect to the
DSM bounding box (top view). Parameter δ defines the angle
between the UTM east axis and the line of sight of the optical
sensor (anti-clockwise). It is calculated as

δ =

{
90◦ − β if β ∈ [0◦, 90◦]

360◦ − β + 90◦ if β ∈ ]90◦, 360◦[
(9)

For relating the simulated image with the UTM coordinates
of the input model (see blue rectangle in Fig. 3), the image
frame marked in green is reduced by intervals C1 in horizontal
and C2 in vertical direction, i.e.

C1 = ||W · cos (δ) · sin (δ)||
C2 = ||L · cos (δ) · sin (δ)||

(10)

resulting in the final image (marked in red in Fig. 3). The
top-left pixel of the image now corresponds to the UTM
coordinates of the top-left DSM pixel (Xmodel, Ymodel). Based
on that, coordinates can be assigned to all other image pixels.

2) Consideration of different projection planes: The second
step of geocoding accounts for the projection planes of the
satellite image and the simulated image (see Fig. 4). The height
used for simulation is the minimum model height Hmin which
is different to the projection height Href of the satellite image.
The height difference leads to a constant shift between the two
images which has to be compensated for. After calculating
the relative shift, the coordinates of the simulated image are
adapted using

Xgeo = Ximg − (Href −Hmin) · tan (θ) · cos (α)
Ygeo = Yimg + (Href −Hmin) · tan (θ) · sin (α)

(11)

with α = β+90◦ defining the angle of the horizontal image
axis with respect to the UTM north direction (clockwise; note:
horizontal image axis is always orthogonal to the sensor’s line-
of-sight).

C. Scene interpretation

The scene interpretation is based on combining simulation
results from the different elevation models (DSM, DTM,
nDSM) and different illumination settings. Scene objects rep-
resented by the geometric model are assigned with strong dif-
fuse signal reflection to ensure their visibility (specular reflec-
tions and signal multiple reflections are suppressed), whereas
scene background without representation by the model leads
to black pixels in the simulated image. The simulations with
DSMs, nDSMs, and DTMs as separate input models and
different illumination settings (option L1: signal direction =
camera line of sight; option L2: signal direction = direction
of sun light) yield different gray value images. The translation
of pixel amplitudes (values > 0 set to 1, values 0 remain)
leads to binary images which are combined to provide the
interpretation layers.

Table I summarizes the interpretation layers for optical
images and the underlying simulation combinations. Defining
the signal source and optical camera at the same position and
simulating the optical image for the nDSM provides the extent
of buildings in the scene. Using the same signal source and
combining the simulations of the DSM (full scene response)
and the nDSM (building response), the extent of ground parts
is identified. Combining the simulations of the DSM (full
scene response) and the DTM (terrain response) areas without
object information can be located. Using the signal source for
representing sun light (information derived from the image
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LoS

⇀

XgeoHref

Hmin

⇀

Ximg

Hdiff > 0

θ

90◦ − θ

Hmin

Href

Hdiff < 0

θ

90◦ − θ

⇀

Xgeo

Fig. 4: Geocoding: impact of different projection planes for
optical simulation. The coverage of the image plane is marked
with green lines. The red lines represent the DSM geometry
whose simulated optical image is projected onto the plane
marked in blue (at minimum height of the DSM). The cyan
line indicates the extent of the optical satellite image on
its projection plane. The shift (in UTM coordinates) to be
compensated is marked by the purple arrow.

meta file) the simulation with the nDSM provides the extent
of illuminated building parts. Combining the simulation of
the DSM (illuminated model parts) with the simulation of
the nDSN (illuminated building parts) provides the extent
of illuminated ground parts. The extent of sun shadow is
obtained by combining the simulation of the DSM (full extent
of shadow) with the simulation of the DTM (represented by
plane→ image without shadow). Shadowed building parts are
identified by combining the layers ”Building (full extent)” and
”Building (illuminated)”. Shadowed ground parts are obtained
by combining the layers ”Ground (full extent)” and ”Ground
(illuminated)”.

IV. GEORAYSAR - CORE ELEMENTS

This section summarizes the core elements related to Geo-
RaySAR considering the characteristics of SAR imaging. As
for scene interpretation, Table II summarized the simulated
layers (see [19] for details).

TABLE I: Combination of simulation results to derive inter-
pretation layers for optical images; L1: signal source at sensor
position; L2: signal source representing sun illumination (sig-
nal incidence angle derived from image meta file).

Layers

Simulation L1 L2

DSM nDSM DTM DSM nDSM

L1

Building
(full extent)

x

Ground (full
extent)

x x

No DSM in-
formation

x x

L2

Building (il-
luminated)

x

Ground (illu-
minated)

x x

No DSM in-
formation

x x

Sun shadow x x

Building
(shadowed)

origin: combination of ”Building” layers

Ground
(shadowed)

origin: combination of ”Ground” layers

A. Calculation of Image Size

The size of the simulated SAR image is given by

Nc,img =
Limg
ξSE

Nr,img =
Wimg

ξSN · sin θ

(12)

where Nc,img and Nr,img are the number of columns and
rows of the image. Parameters Limg and Wimg define the
azimuth extent and range extent of the DSM bounding box in
the SAR image plane, considering the perspective of the SAR
sensor with respect to the DSM. The parameters ξSE and ξSN
represent the SAR image pixel spacing values in easterly and
northerly direction.

B. Generation of SAR Images

In the case of GeoRaySAR, depth information derived from
ray tracing is exploited. The maximum signal reflection level
is limited to 2 in order to focus on direct signal response
and signal double reflections in the model scene (higher order
reflection levels are possible but not reasonable due to the
limited level of detail of the DSM). The SAR image layers
are generated based on the ray tracing output: azimuth and
range coordinates, signal strength, and signal reflection level.
To this end, a regular image grid is defined in azimuth and
ground range where signal contributions are collected for each
pixel [28]. The necessary parameters for simulation are derived
from the image meta file.

C. Geocoding of Simulated SAR Image

The procedure of geocoding is the same as for the optical
image, except for the differences summarized below.
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For orienting the simulated SAR image in north-east direc-
tion, it is rotated by ρ = 90◦− γ+360◦. In case ρ > 0◦, the
rotation is applied anti-clockwise, otherwise clockwise. Points
on top of the DSM bounding box are displaced with

M = H · tan (90◦ − θ) (13)

The parameter δ, defining the angle between the UTM east
axis and the line of sight of the SAR sensor (anti-clockwise),
is

δ = 360◦ − γ (14)

Finally, the relative shift of the simulated image, necessary
due to different projection planes related to the simulated
image and the real SAR image (see Fig. 5), is calculated as

Xgeo = Ximg + (Href −Hmin) · tan (90◦ − θ) · cos (α)
Ygeo = Yimg − (Href −Hmin) · tan (90◦ − θ) · sin (α)

(15)

with α = γ defining the angle of the horizontal image axis
with respect to the UTM north direction. Equaling α to γ
corresponds to a right-looking SAR sensor (orthogonal to the
line-of-flight), where the image azimuth axis corresponds to
the line-of-flight (heading) of the sensor. The argument of the
tangent considers the projection of elevated objects towards
the SAR sensor.

TABLE II: Combination of simulation results to derive inter-
pretation layers for SAR images; L1: signal source represent-
ing the antenna of the SAR sensor.

Layers

Simulation L1

DSM nDSM DTM

L1

Building lay-
over

x

Ground x

No DSM in-
formation

x x

Signal dou-
ble reflection

x

Shadow x x

V. CASE STUDY ON SCENE INTERPRETATION

The basic task of SimGeoI in the case study is to identify
corresponding image parts of scene contents despite the differ-
ence of sensor type (imaging concept, signal wavelength) and
sensor perspective. For both sensors, simulation parameters
are automatically derived from interpreting the corresponding
image meta files. The parameters for DTM generation (scan-
line length: 121 pixels, height threshold: 5 m, slope threshold:
30◦) and DSM pre-processing [23] are kept stable.

LoS = Range

⇀

Xgeo Href

Hmin
⇀

Ximg

Hdiff > 0

θ

90◦ − θ

90◦ − θ

θ
⇀

XgeoHref

Hdiff < 0

Hmin

Fig. 5: Geocoding: impact of different projection planes for
SAR simulation. The coverage of the image plane is marked
with green lines. The red lines represent the DSM geometry
whose simulated SAR image is projected onto the plane
marked in blue (at minimum height of the DSM). The cyan
line indicates the extent of the SAR image on its projection
plane. The shift (in UTM coordinates) to be compensated is
marked by the purple arrow.

A. Test Data

The functionality of the SimGeoI framework is exemplified
for two urban test sites (Munich and London). The Munich
test site covers a small part of the city center including the
Frauenkirche (church) and non-regular building blocks in its
surrounding. Parts of the scene are covered by trees and roads.
A WorldView-2 data take (see, e.g., [29] for information on
the sensor) is used to provide two sorts of input information: a
panchromatic standard product (see Fig. 7a and data properties
on the left of Table III) and a multispectral orthophoto (see Fig.
7b; spatial resolution: 0.5 m). The latter is generated based on
a DSM which has been reconstructed from four WorldView-2
images (see Fig. 6a) using a semi-global matching method
(SGM) [30]. The horizontal and vertical resolution of the
WorldView-2-based DSM is 0.5 m and 1 m, respectively.
Figure 6 shows the impact of DSM pre-processing (removal of
trees, smoothing of building outlines). A spotlight TerraSAR-
X image (see [31] for sensor characteristics) concludes the
Munich data set (see data properties on the left of Table IV).

The second test site covers an extended urban scene in
London which is characterized by varying building types
and densities (see Fig. 14). It has been selected as the site
variability imposes challenges on the DSM pre-processing.
Moreover, it includes tall buildings where characteristic ge-
ometric projection effects of the sensors are prominent. As
above, a high-resolution DSM (source: World-View-2 images;
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method: SGM; resolution: 0.5 m in horizontal and 1 m
in vertical direction) is combined with a WorldView-2 Pan
image (see data properties on the right of Table III)), an
orthorectified multispectral image (spatial resolution: 0.5 m)
and a TerraSAR-X spotlight image (see data properties on
the right of Table IV). The pre-processing of the DSM is
conducted the same way as for the Munich scene.

TABLE III: WorldView-2 data properties for test sites (geo-
referenced, level 2A).

Munich London
Pixel spacing (east, north) 0.5 m 0.5 m
Off-nadir angle (at scene center) 14.5◦ 10.8◦

Scene azimuth angle 189.0◦ 208.7◦

Sun azimuth angle 154.7◦ 177.2◦

Sun elevation angle 62.1◦ 27.6◦

Acquisition date 2010-07-12 2011-10-22

TABLE IV: TerraSAR-X data properties for test sites (geo-
referenced, level 1B).

Munich London
Azimuth resolution 1.14 m 1.14 m
Ground range resolution 1.0 m 1.0 m
Pixel spacing (east, north) 0.5 m 0.5 m
Signal incidence angle (at scene center) 49.9◦ 41.0◦

Orbit descending ascending
Acquisition date 2008-08-06 2008-05-05

(a) Original DSM from WorldView-2
data

(b) Preprocessed DSM

Fig. 6: Comparison of original and preprocessed DSM (re-
moved trees, smoothed building outlines).

B. Interpretation of Munich scene

SimGeoI follows the steps: simulation, thresholding of the
simulated images, definition of interpretation layers, and image
part extraction. Exemplifying the first step, Fig. 8 shows
simulated optical images for the Munich scene (based on the
nDSM and the image meta file of the WorldView-2 image).
The full extent of scene objects is derived by defining the
signal source at the position of the camera (see Fig. 8a). Except
for the region without nDSM coverage, no pixel amplitudes
are zero. Darker pixels are related to steep surfaces, where
the reflection model (equal to the one introduced in [32])
yields weak signal responses (small angle between ray and
surface model). The impact of the DSM height resolution is

(a) Panchromatic WorldView-2 satel-
lite image

(b) Multispectral WorldView-2 satel-
lite image (ortho photo)

Fig. 7: Example: Input data for optical simulation using
SimGeoI.

obvious as the limited height accuracy of 1 m leads to height
steps. Ground parts remain dark in the images as they are
not geometrically represented by the nDSM (no ray-surface
intersections). Adapting the signal source to sun illumination
leads to an image marking only illuminated building parts
(Fig. 8a). As an example, thresholding and combining both
images leads to three interpretation layers (building - full
extent, building - illuminated, building - shadowed; compare
Table I).

(a) Case 1: light source at camera
position

(b) Case 2: light source at sun posi-
tion

Fig. 8: Simulation of optical images for scene nDSM.

Fig. 9 shows simulated SAR images based on the TerraSAR-
X image meta file. The image of single reflections (Fig. 9a)
indicates the impact of the distance-dependent imaging in
range direction. Elevated building parts are mapped towards
the SAR sensor due to smaller range values (image acquisition
on a descending orbit → projection towards near east). The
image of signal double reflections (Fig. 9b) marks the position
of corner lines which represent double and triple reflections at
facades [33].

Figs. 10 and 11 color-code the binary interpretation layers
for the optical and SAR perspective, respectively. Both the
impact of sensor perspective and imaging concept are distin-
guishable. The strong off-nadir view of the SAR-sensor leads
to extended image parts related to facades and shadow. In
contrast, the optical layers emphasize information for roof
parts and ground, which is partly interrupted by sun shadow.

Using the binary masks, corresponding parts are extracted
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(a) Direct signal response

(b) Signal double reflection

Fig. 9: Simulation of SAR images for scene DSM.

from the satellite images (see collected examples in Figs.
12 and 13). Besides the individual interpretability of the
sensor data, it is seen that building and ground parts of
the WorldView-2 image can be linked to the TerraSAR-X
image, even if the data is captured from a different perspective
and with different imaging concepts. Besides, sensor-specific
shadow types can be marked (sun shadow, sensor shadow).
The impact of sun shadow in the optical image is prominent
for high buildings, e.g. both towers of the Frauenkirche in the
scene center.

C. Interpretation of London scene

Fig. 15 presents a composite of selected interpretation layers
for the London test site, as above focused on buildings, ground,
shadow areas, and vegetation. Illuminated ground parts and
shadowing effects indicate the difference between the lines-of-
sight of both sensors. The different appearance of individual
building blocks is caused by the geometric distortion effects
pertinent to the sensors. It is clearly seen that creating a classic
straight-forward overlay of the optical and the SAR image
would lead to mis-matches at almost all parts of the scene.
Instead, SimGeoI allows for the semantic alignment of corre-
sponding image parts from both sensor images using simulated

Fig. 10: Interpretation layers for WorldView-2 image; blue:
shadow; green: ground (illuminated); red: building (illumi-
nated); magenta: trees; gray: no coverage by DSM.

Fig. 11: Interpretation layers for TerraSAR-X
image; blue: shadow; green: ground; red: building
(layover+foreshortening); magenta: trees; cyan: signal
double reflection (mostly overlayed with building layer);
gray: no coverage by DSM.

imaging geometries and a priori known 3D information of the
ground scene as connecting elements.

A selection of extracted parts from the WorldView-2 and
TerraSAR-X images is shown in Fig. 16, focusing on building
pixels (top), ground pixels (center) and shadow areas (bottom).
The extraction is bound to the full scene as the input model
to SimGeoI is the full DSM. Hence, a next step may continue
with deriving representative measures for buildings, ground,
and shadow parts in the scene. The temporal difference be-
tween the WorldView-2 image (DSM data have same date) and
the TerraSAR-X image opens the door for object monitoring
(see [20] in the context of SAR image pairs). To support this,
interpretation has to be continued for individual buildings.

Following the concept in [19] for GeoRaySAR, building
segments are extracted from the scene nDSM and assigned
with individual IDs (criterion: segments with more than 2000
pixels; result: 47 building models). Thereafter, SimGeoI is
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(a) Building parts (full extent) (b) Building parts (illuminated by
sun)

(c) Ground parts (full extent) (d) Ground parts (illuminated by sun)

(e) Sun shadow (full extent) (f) Shadowed building parts

Fig. 12: Extracted image parts from WorldView-2 image using
interpretation layers. Background marked by white color.

used to generate interpretation layers for each building (optic:
building full extent, building illuminated, shadowed building
parts; SAR: building layover, layover + double reflection,
double reflection, shadow). As an example, Fig. 17 compares
the ”building full extent” layer for the optic image with
the ”building layover” layer for the SAR image for selected
buildings. On the one hand, it can be seen that the full building
object is extracted from the sensor data due to the considera-
tion of the geometric projection effects. On the other hand,
the examples indicate the opportunity to monitor buildings
(ear-marked by input model IDs) with incoming multi-modal
satellite data over time. In this context, the analysis can be
focused on the appearance of building structures as scene
background is removed from the start.

The results for building 29 reveal room for improvement as

(a) Buildings (direct response) (b) Ground parts

(c) Double reflection (d) Shadow areas

Fig. 13: Extracted image parts from TerraSAR-X image using
interpretation layers. Background marked by white color.

two building blocks are mistakenly connected in the nDSM.
Hence, integrating more sophisticated methods for building
model extraction from the nDSM is an interesting task for the
future.

D. Comparison

The following aspects are of interest when comparing inter-
pretation layers for the WorldView-2 image and the TerraSAR-
X image:
• Complementarity: Parts of both sensor images are re-

lated based on the geometric description of objects. The
alignment of the data is not hampered by the imaging
concept (which is modeled by SimGeoI), varying sensor
perspectives and resolutions (considered by the interpre-
tation of the image meta files). For the scene at hand, the
gain of aligning the WorldView-2 image and TerraSAR-
X image is obvious: the optical image, acquired in near-
nadir direction, provides multi-spectral information about
the top of objects as well as for most ground parts; the
SAR image is sensible for object heights and contributes
image signatures for facades.

• Shadow: In case of SAR simulations, shadow relates to
image areas without direct signal response (note: multi-
reflections may be located in that area as exemplified in
[34]). In the context of optical simulations, the shadow
layer marks areas with sun shadow.

• DSMs: The applicability of WorldView-2 DSM for scene
interpretation is encouraging for realistic scenarios, e.g.
near-real time change detection tasks, as the amount
of necessary input data is reduced compared to the
results presented in [19] relying on LiDAR point clouds.
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(a) WorldView-2 image

(b) TerraSAR-X image

(c) Digital surface model

Fig. 14: London data set.

Moreover, there is no time shift between the DSM and the
optical data, which serves as optimal basis in the context
of change detection applications.

• Localization: The interpretation layers are provided in
UTM coordinates. Importantly, the localization accuracy
of the WorldView-2-based DSM is sufficient to generate
layers for the TerraSAR-X image, i.e., no additional shift
correction is necessary.

• Noise: The ”optical” layers appear smoother and less
noisy than the ”SAR” layers. This is related to the fact
that the optical images are generated based on regular
sampling (constant ray density in the image plane) and fo-
cused on direct signal response. In case of SAR imaging,
simulated signal contributions are irregularly distributed
in distance, locally compressed (layover, foreshortening),
and interrupted due to occlusions (shadow). Moreover,
signal double reflections between DSM parts are consid-
ered as additional source of information, which partly
leads to ”ghost” image signatures without physically
existing counterpart in reality.

(a) WorldView-2: blue: shadow; green: ground (illuminated); red: building
(illuminated); magenta: trees; gray: no coverage by DSM.

(b) TerraSAR-X: blue: shadow; green: ground; red: building (lay-
over+foreshortening); magenta: trees; cyan: signal double reflection (mostly
overlayed with building layer); gray: no coverage by DSM.

Fig. 15: Interpretation layers for London test site.

VI. DISCUSSION

The experiments shown in Section V confirm the potential
of the SimGeoI environment for an object-related alignment
or comparison of high-resolution SAR and optical satellite
images. The following points, however, need further consid-
eration.

A. Comments on the methodology

It is important to note that the simulation components in
SimGeoI, GeoRaySAR and GeoRayOpt, are not designed to
simulate realistic remote sensing images. By purely concen-
trating on the geometric knowledge of the scene and ignoring
radiometric properties, it allows us to incorporate prior knowl-
edge into subsequent image processing steps, which enables
object-related alignment of high-resolution SAR and optical
imagery. Subsequent analysis steps (e.g. related to actual data
fusion or change detection) can work with images in their
original geometry. The full extent of objects in the image can
be exploited, which is of importance for slant view image
acquisitions (possible for optical images, standard for SAR
images). Ortho-projection is not required any more for joining
the data. This is a particularly interesting aspect if the focus of
the intended remote sensing analysis lies on vertical structures
(e.g. facades), as they are usually removed completely in true
ortho-imagery.
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(a) WorldView-2: buildings (full extent) (b) TerraSAR-X: buildings

(c) WorldView-2: ground (d) TerraSAR-X: ground

(e) WorldView-2: sun shadow (f) TerraSAR-X: shadow

Fig. 16: London test site: extracted image parts from WorldView-2 and TerraSAR-X images using interpretation layers.
Background with no value marked by white color.

Since the core of the simulation routines is built around
ray tracing, no specific geometric projections are involved, i.e.
it is possible to steer the spatial sampling of the simulation
results based on prior knowledge extracted from the image
meta data, which can be used to modify the ray density
according to the desired result. Furthermore, SimGeoI enables
to process extended scenes by resorting to scene tiling. Thus,
the generation of interpretation layers is not bounded by
any constraints. On the other hand, the tiling is linked to
interpolated values for the point-of-view angle of the sensor,
i.e. small discontinuities are derived in the overlapping region
of two neighboring tiles.

B. Comments on the input data
Since SimGeoI is designed to incorporate prior knowledge

into the object-related interpretation of high-resolution SAR

and optical data by image simulation, its power stands and
falls with the quality of the input data. Here, the following
remarks have to be made:
• The DSM as core element: The DSM is the combining el-

ement for identification of the object-related image parts,
which are subsequently used to establish a connection
between the images. The DSM object can represent the
full scene (see results for Munich test site), individual
objects (see results of London test site), or object parts
(see [20] for the application of GeoRaySAR in the
context of object-related change detection). While linking
strongly different image spaces via 3-D space provides a
powerful solution for the otherwise difficult alignment
problem, this also comes with a certain disadvantage:
The quality of the simulated layers depends on the input
DSM. Thus, erroneous DSM models directly propagate
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(a) WV-2: building 22 (b) WV-2: building 28 (c) WV-2: building 29 (d) WV-2: building 45

(e) TS-X: building 22 (f) TS-X: building 28 (g) TS-X: building 29 (h) TS-X: building 45

Fig. 17: London test site: extracted image parts from WorldView-2 and TerraSAR-X images for individual building blocks.
Optical: building - full extent; SAR: building layover. Background with no value marked by white color.

into errors in the interpretation layers and, hence, the
interpretation of the scenes (see Fig. 17g). In that regard,
the localization of DSMs derived from optical stereo im-
agery, the filtering of raw DSMs, and the decomposition
of DSMs into DTMs and nDSMs are specifically prone to
errors due to the high variability of building types. Thus,
improvements of the methodology are of great value
in order to feed SimGeoI with better geometric scene
knowledge. This is of particular importance, because the
use of more reliable non-spaceborne DSMs, e.g. derived
from airborne laserscanning, will usually be prohibited by
the associated high planning efforts, and the significant
need for man-power, equipment and costs.

• Extendability to GIS data: Besides DSMs, 3-D GIS
models may be used as input data. In [35], an interface
to CityGML data [36] has been realized and exemplified,
indicating the potential related to the input source.

• Parameter setting: All simulation and transformation pa-
rameters are derived directly from interpreting the image
meta information. This serves the transferability of the
method as no empirical decisions are necessary.

• Differences in time: Temporal differences have to be
taken into account in case of combinations of sensor
sources (e.g. DSMs from optical satellite data and images
from SAR sensor). These do not hamper the simulation-
based method which relies on the DSM and the image
meta data (not the image content). Therefore, the resulting
image interpretation layers can be also used to detect
changes in the scene (e.g. newly constructed buildings

at expected ground or shadow parts, removed or partly
changed buildings at expected building sites; see [20]).

C. Opportunities

Although this article is mainly meant to introduce the
framework SimGeoI for relating SAR and optical remote
sensing images via 3-D object space, the authors already want
to highlight several potential opportunities that will arise if the
framework is used to exploit geometric scene knowledge:

First and foremost, SimGeoI will enable an object-related
analysis of VHR optical and SAR images in multi-temporal
multi-sensor environments, i.e. in the context of change de-
tection or monitoring applications. It will provide a much
greater flexibility when it comes to any image-to-image com-
parison task. While hitherto mostly single-sensor comparisons
(similar-angle SAR-SAR or optical-optical) were possible for
high resolutions and complex scenes, SimGeoI allows the
comparison of SAR and optical data acquired from arbitrary
viewing angles, which is beneficial both for spontaneous
change detection tasks (e.g. in the frame of disaster moni-
toring) and for continuous monitoring exploiting all available
data sources without restriction.

In addition, SimGeoI opens the door for combining the
strengths of optical and SAR data in the context of urban
surface model generation. While optical imagery provides
highly accurate stereo reconstruction capabilities, images fa-
miliar to the human perception system, and multi-spectral
information, SAR provides excellent localization accuracy,
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strong sensitivity to object heights, polarimetric information,
and a high stability of signal intensities over time.

Examples for the potential of complementary data fusing
are provided in the following:
• Example 1: The limited height sensitivity of dense match-

ing using optical data can benefit from the height sensi-
tivity of SAR data (either based on the simulated object
extent or the interferometric phase). As a pre-step, the
image sections related to the object of interest have to be
identified.

• Example 2: Persistent scatterer interferometry [37] or
SAR tomography [38] provide relative height and de-
formation estimates. GeoRaySAR may help to identify
appropriate regions for selecting the reference point (note:
focus on height reference; no gain w.r.t. phase stability)
and to include object-related scene knowledge (geometry
via layers and spectral information from optical sensors).

• Example 3: Urgent situations require the analysis of re-
mote sensing data in near-real time. Given the coordinates
of the scene of interest, sections of pre-event and post-
event optical or SAR images can be related to objects
and analyzed to identify object changes. In this context,
the term object relates to the input 3-D shape, e.g. a city
model, a building block or a facade of interest.

Last, but not least, a significant amount of multi-sensor data
fusion research lies in the application of machine-learning
methods [6]. However, in particular, deep networks require
high amounts of training data, which must either be provided
by time-consuming and expensive manual labeling, or by
ground truth field campaigns. Thus, automated training data
generation has become a major challenge in remote sensing
research. SimGeoI can help to generate training data automat-
ically for basic scene classes.

VII. SUMMARY AND CONCLUSION

This paper has introduced SimGeoI (Simulator for Geo-
coded Images), a simulator for the automated interpretation of
optical images and SAR images based on given knowledge on
the scene geometry (digital surface model, DSM) and remote
sensing imagery (including image meta files). The integrated
nature of the simulator has been detailed with focus on the
new component GeoRayOpt for optical data, complementing
the existing component GeoRaySAR for SAR data.

Inherent to the procedure, optical images and SAR images
can be aligned in the context of objects of interest by ex-
tracting the corresponding parts from satellite images. The
method resolves the impact of geometric distortion effects and
provides the basis for the joint exploitation of multi-modal
data captured from different perspectives. The method benefits
most in case the geometric knowledge is inherent to given
image data (in the paper: DSM derived from WorldView-2
data). Then, unnecessary differences in time are avoided and
multi-spectral information can be considered when defining
the scene model, e.g. for identifying DSM parts representing
trees.

Simulation results have been presented for test sites in
Munich and London, using a set of WorldView-2 images and a

TerraSAR-X spotlight SAR image, respectively. Based on the
results, properties of the method, the role of the input DSM
as connecting element and promising research opportunies in
the context of SimGeoI have been discussed.

In summary, the potential of SimGeoI for providing a
solution to the alignment problem, which is non-trivial for
very-high-resolution remote sensing imagery of complex urban
scenes, has been demonstrated. By providing a semantically
annotated connection between corresponding image parts,
which can, e.g., relate to individual buildings, further analysis
of the related objects in subsequent data fusion or change
detection procedures becomes possible.

Future work will focus on the integration of further sources
of scene knowledge and improving the extraction of building
models. Furthermore, the impact of DSM quality and input
parameters on the accuracy of output layers has to be evaluated
in detail. Applications of SimGeoI will concentrate on tasks in
the context of city monitoring, change detection and machine
learning.
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