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1. INTRODUCTION 
 
Vehicle automation technology advances and the market entry of autonomous 
vehicles (AV) is expected within the next years (cf. Fagnant/Kockelman 2015). 
There is an uncertainty of the impacts of the introduction of AVs on travel 
demand and road traffic volume. Due to a diversity of assumptions of different 
studies, a variety of results have been published with negative as well as 
positive impact on road traffic volume. Most studies are spatially limited, e.g. 
to certain agglomerations (cf. Childress et al. 2015, Gucwa 2014). Some 
studies include autonomous sharing systems or are limited to them (cf. 
Martinez/Crist 2015, Fagnant/Kockelman 2014), other studies are limited to 
private owned vehicles (cf. Gucwa 2014). Modelled effects are e.g. the 
adjustment of values-of-travel-time-savings (cf. Childress et al. 2015, Gucwa 
2014), the mobilization of new user groups (cf. Harper et al. 2015) and an 
impact on road capacities (cf. Childress et al. 2015, Gucwa 2014). 
 
This paper presents results from modelling travel behaviour impact of 
introducing AVs into the private car fleet in Germany and the US. Five levels 
of automation technology have been defined (cf. SAE n. d.). In this study we 
limit our analysis of AVs to level four (partially autonomous vehicles) and level 
five (fully autonomous vehicles) vehicles. This limitation was selected as in the 
defined situations (i.e., all situations for level five) no human driver is 
responsible for fallback performance. 
Substantial impact on travel choice is expected if drivers do not need to attend 
to the driving task for most of a trip anymore (“brain off”). By this, a reduction 
of value-of-travel-time-savings and following from this, impact on destination 
and mode choice is assumed. As it is not allowed to move without a driver yet, 
empty trips and consequently autonomous car- and ride-sharing systems are 
not possible at this time. 
In order to model 2035 scenarios, we combine a vehicle technology diffusion 
model and an aspatial travel demand model. Two scenarios of different AV 
diffusion rates are modelled for each country, a moderate trend scenario and 
an extreme scenario with optimistic assumptions in terms of diffusion rates. 
The aspatial travel demand model consisting of trip generation, distance 
choice and mode choice is used to forecast travel by different traveller groups 
and by car availability (no car, conventional car, AV). When modelling the 
impact of driving AVs instead of conventional cars on travel behaviour, a 
reduction of access/egress times due to quicker parking and reduced value-
of-travel-time-savings for travellers with AVs are assumed, but no effects on 
road capacity. 
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The paper is organised as follows: Section 2 describes the modelling 
approaches for the vehicle technology diffusion model and the aspatial travel 
demand model. Section 3 introduces the scenarios’ assumptions of the trend 
and extreme scenario and the adaptions of the modelling system to model the 
travel demand with the existence of private AVs. Section 4 presents the 
diffusion rates of AVs into the private car fleet and resulting impact on travel 
demand. Section 5 discusses the influence of assumptions on results. 
Strengths and weaknesses of the modelling approaches are addressed. 
Further research to depict further developments of autonomous driving is 
raised. Section 6 concludes the study by naming the main methodical and 
contentwise findings. 
 
2. MODEL 
 
Two models are developed to quantify the impact of the introduction of AVs 
into the private car fleet. The first one – a vehicle technology diffusion model – 
addresses the calculation of diffusion rates of AVs into the private car fleet. 
The second one is a travel demand model to analyse mode and distance 
choice in a future context. The results from the diffusion model are used as 
input for the travel demand model. 
 
2.1 Vehicle technology diffusion model 
 
The diffusion of AV technologies is modelled by an s-shaped market-take-up. 
It is differentiated for car segments, considering the national car market. Four 
segments are distinguished for each country. In Germany the segmentation 
differs between small vehicles, compact class, medium sized vehicles and 
large vehicles. In the US small vehicles, pick-up-class, medium-sized vehicles 
and large vehicles are differentiated. The pick-up-class is handled separately 
because of the large share despite the diversity of vehicles in the pick-up 
class. The German segmentation is an adapted version of the KBA 
classification (KBA n. d.). The US classification is an adapted version of the 
vehicle type definition used in the NHTS (USDOT 2011: A-8). 
 
Differences of the diffusion rates of different car segments arise from different 
years of introduction, initial diffusion rates and parameters for the increase of 

the curve. The number of newly registered AVs 𝑃𝑡 in year 𝑡 is calculated as 
follows 
 

𝑃𝑡 = 𝑃∞ ∗ 𝑎𝑏𝑡
 (1) 

 
With: 

𝑃∞  : maximal number of newly registered AVs (with the 
assumption of a maximum 95% rate of AVs); 

𝑎  : quotient of the initial rate of newly registered AVs in the year 
of introduction; 

𝑏  : factor of growth; 

𝑡  : number of years since introduction. 
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The differences between the transport modes are set considering historical 
developments of vehicle technologies for example for driving assistance. The 
forecast of years of introduction follows published road maps e.g. of suppliers 
of automation technologies from European Road Transport Research 
Advisory Council (cf. ERTRAC 2015).  
 
The vehicle technology diffusion model distinguishes between level four and 
level five automation technologies. Level five can be seen as fully-
autonomous vehicles (cf. SAE n. d.). There is no overlapping of level four and 
level five diffusion. An integrated curve with a change from level four to level 
five diffusion is used for simplification. The diffusion of automation 
technologies follows a top down approach. Automation technologies will be 
introduced first in the luxury segment and later in the smaller vehicle 
segments. The delay as well as the initial diffusion rate and market growth 
within the different segments is adapted from the observed market take up 
automated cruise control (ACC) systems. Since there is no publicly available 
data, internet automotive classifieds such as cars.com (for the US car market) 
and mobile.de (for the German market) have been analysed for the share of 
vehicles equipped with ACC systems for each vehicle segment and model 
year within the last 15 years. It could be observed that the share of vehicles 
equipped with ACC systems in the US is significantly lower than in Germany 
mainly due to the lower share of luxury segment vehicles and longer vehicle 
lifetime resulting in a slower diffusion of such systems. 
 
2.2 Aspatial travel demand model 
 
The travel demand model approach presented here is a highly-aggregated 
macroscopic one. Macroscopic models are differentiated from microscopic as 
well as mesoscopic transport models, depending on the level of detail of 
representing transportation performance and flow representation (cf. Abdulhai 
et al. 2011:1.29). Interactions between vehicles, interaction between flows and 
capacity restraint functions are ignored in the model. Following the 
classification of Tarko/Anastasopoulos (2011: 4.2), the model is a 
transportation demand model for demand generation, based on a sequential 
four-step process, trip generation, trip distribution, modal split and trip 
assignment. The aspatial travel demand model only consists of the first three 
steps. With respect to trip distribution a distance choice model is used, 
combined with a mode choice model. There is no final traffic assignment. 
 
2.2.1 Input data 
 
Socio-demographic forecasts, travel survey data and travel cost data are the 
main exogenous data inputs for the travel demand model. 
 
Socio-demographic forecasts for the scenario year 2035 are used with 
population data differentiated by age, gender and spatial area. The national 
population projections for Germany (Destatis 2009) and for the US (USCB 
2014) for the next decades are used. Moreover forecasts of driver license 
holding rates by age cohorts have to be used. In Germany and particularly in 
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the US the rates – reported in the National household travel survey data set – 
are saturated and the future effects are foreseeable. 
 
National household travel surveys are used for trip generation and calibration 
of the distance choice and mode choice in the travel demand model. National 
household travel surveys are conducted in many countries in a comparative 
but partly dissimilar way to get an idea of how and why people travel (cf. 
Kunert et al. 2002). To compare impacts in Germany and the US, data sets of 
the MiD 2008 (BMVI n. d.) for Germany and the NHTS 2009 (USDOT n. d.) for 
the US are used. The German and the US survey are mostly comparable. 
Both data sets consist of different data, namely a household data set, a 
person data set, a trip data set and a vehicle data set. Weights are given for 
each data point. 
Due to different minimum age limits in MiD and NHTS (zero years in MiD 
2008, five years in NHTS 2009) and due to the fact that the minimum age of 
using an AV in the scenarios is at least ten years, partial data sets of persons 
of ten years and older are used. 
For the US data, the reported proxy variable “being a driver” is used instead of 
holding a driver license due to a lack of information. 
Main users of vehicles are reported in the vehicle data set and determined if 
missing. If respective main users are not completely known, main users are 
identified based on actual behaviour of the household members. 
Some missing values in the data set need a reduction of data. This concerns 
persons without a stated age value. The final step of data preparation is the 
calibration of the data set weights to meet benchmark values. We assume that 
an additional weight for correctly assigned person and trip data is better than 
the consideration of randomly aged persons. In other cases of missing data in 
a larger extent, strategies of data imputation have to be used (e.g. for non-
reported vehicle mileage). 
 
Besides assumptions of out-of-pocket costs such as fuel costs and fares, the 
use of generalised costs for mode and distance choice modelling require a 
monetised valuation-of-travel-time-savings. Beside the comparability of the 
travel survey data, the comparability of the values-of-travel-time-savings is 
necessary. Due to country-specific external effects such as GDP the values 
differ. 
For Germany the time-valuation study of Axhausen et al. (2014) is used, 
which describes a logarithmic curve of values-of-travel-time-savings over 
distance. The USDOT Departmental Guidance on Valuation of Travel Time 
(USDOT 2015) is used for US values, with an adjustment to a logarithmic 
curve. 
 
2.2.2 Model approach 
 
The aspatial travel demand model consists of a trip generation and a 
combined mode and distance choice. Besides the reweighting for trip 
generation, the assumptions of the distribution of activity locations in space 
and the idea of generalised costs as input for the logit mode choice model are 
central elements of the developed aspatial travel demand model. 
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The model distinguishes two trip purposes, namely education- and work-trips 
on the one hand (mandatory trips) and all other trips on the other hand (non-
mandatory trips). Trip purpose differentiation is important for valuation-of-
travel-time-savings and the heterogeneity of trip length distribution. 
 
The reweighting of the person and trip data aims at fulfilling the benchmark 
values by groups of persons (differentiated by age, gender, spatial area and 
driver license holding). Reweighting in this context means that the weights of 
reported trips made by a growing group of persons, with respect to share of 
total population (e.g. older people), increase and by other groups of persons 
decrease. Clustering the trips by trip purpose and car availability category 
leads to a trip table of the summarised trip weights. The total sum of the 
person weights is the total number of persons in person data. The total 
number of trips is the total number of trips per day based on the travel survey. 
The day has to be seen as an average day as all trip data from the survey is 
considered. A differentiation of weekday and weekend travel would imply the 
need of an adjusted reweighting after splitting the data set. 
 
Reweighting with regard to driver license rate forecasting follows the shares of 
groups differentiated by gender and five-year-groups. Current shares are 
forecasted into the future by adding the age difference. The most important 
shift results from the increasing ownership of driver license among older 
women in Germany. Driver license information is essential to classify car 
availability, as we assume availability if the person holds a driver license and 
the affiliated household owns at least one vehicle.  
 
Generalised costs involve variable monetary costs of a trip such as fuel costs, 
fares and monetised travel time costs. Constant fuel costs per kilometre, 
based on average consumption per 100 kilometres and a price per litre, and 
almost constant public transport ticket costs per kilometre are set. Estimated 
fares for very short public transport trips are higher using an asymptotic 
function. 
The generalised costs as explanatory variable are difficult to handle for car 
passenger mode choice decisions. The fuel price elasticity is positive for the 
car passenger mode in contrast to the car driver mode (cf. Litman 2004: 50). 
In the model, the share of car passengers is fixed for all distance bands for 
each of the trip purpose-car availability-categories. Therefore a smoothed 
function is used, because the share for many distance bands would be zero or 
one due to the discontinuity of values. 
 
Due to the lack of reported travel mode alternatives and related data, in 
particular travel time, mode choice is calibrated by an assumed choice set of 
alternatives consisting of the attributes of the reported alternative and 
generated attributes of the other alternatives. Travel modes are walk, bike, car 
driver and public transport; the car passenger mode is handled with fixed 
shares per distance band per trip purpose-car availability-category as 
described above. Travel times consist of an access/egress constant and a 
calculated travel time resulting from speed functions. The reported value for 
the chosen alternative comprises already both values, this is true for MiD and 
NHTS data.  
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Speed functions for the different travel modes have to be developed for both 
countries to calculate travel times for generated mode alternatives. These 
speed curves are logarithmic over distance but not differentiated for trip 
purposes. The speed curves are derived from used travel survey data sets. 
The missing differentiation between access/egress times and vehicle-use-
times (in-vehicle-travel-times) in the MiD and NHTS complicates to estimate 
the speed curves. A differentiation of travel speeds considering the travel 
distance for generated mode alternatives can improve a mode choice model 
(cf. Agarwal/Kickhöfer 2015: 10f.) and is regarded as necessary for analysing 
the data. 
 
The total travel times 𝑡𝑡𝑡𝑜𝑡𝑎𝑙,𝑖 of the alternatives 𝑖 are calculated by: 

 

𝑡𝑡𝑡𝑜𝑡𝑎𝑙,𝑖 = {

𝑡𝑡𝑟𝑒𝑝𝑜𝑟𝑡𝑒𝑑,𝑖 ,if 𝑖 is the reported mode alternative

𝑡𝑡𝑎𝑐𝑐𝑒𝑠𝑠|𝑒𝑔𝑟𝑒𝑠𝑠,𝑖 +
𝑑

𝑣(𝑑, 𝑖)
       , if 𝑖 is not the reported mode alternative

 (2) 

 
With: 
𝑡𝑡𝑎𝑐𝑐𝑒𝑠𝑠|𝑒𝑔𝑟𝑒𝑠𝑠,𝑖  : mode specific constant access/egress time values; 

𝑡𝑡𝑟𝑒𝑝𝑜𝑟𝑡𝑒𝑑,𝑖  : reported travel time in the travel survey for the chosen mode 

alternative; 

𝑑  : travel distance which is constant for all travel modes; 
𝑣(𝑑, 𝑖)  : distance- and mode-dependent travel speed. 
 
The mode specific constant access/egress time value is determined by an 
incremental regression analysis of the total travel times. The access/egress 
time values used in the model are set for Germany and the US as followed 
(see Table 1): 
 
Table 1: Overview of access/egress times of different modes 
used in the model for Germany and the US 

 Germany US 

𝑡𝑡𝑎𝑐𝑐𝑒𝑠𝑠|𝑒𝑔𝑟𝑒𝑠𝑠,𝑤𝑎𝑙𝑘 [min] 5 

𝑡𝑡𝑎𝑐𝑐𝑒𝑠𝑠|𝑒𝑔𝑟𝑒𝑠𝑠,𝑏𝑖𝑘𝑒 [min] 5 

𝑡𝑡𝑎𝑐𝑐𝑒𝑠𝑠|𝑒𝑔𝑟𝑒𝑠𝑠,𝑐𝑎𝑟(𝑑𝑟𝑖𝑣𝑒𝑟) [min] 5 4 

𝑡𝑡𝑎𝑐𝑐𝑒𝑠𝑠|𝑒𝑔𝑟𝑒𝑠𝑠,𝑝𝑢𝑏𝑙𝑖𝑐 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡  [min] 15 

 
A problem of estimating general speed functions for different travel modes 
based on reported mode choice alternatives is the lack of non-reported mode 
alternatives with worse characteristics. Considering the minimum public 
transport modal share in the US and the qualitative differences in public 
transport supply between big cities and the countryside, the 0.4-decile has 
been taken as average speed. Different maximum distances between the 
German and the US model result from the intranational trip lengths 
distributions modelled here. The maximum value in the German model is set 
to 512 km, the maximum value in the US model is set to 1024 km. 
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A multinomial logit-based mode choice is used. The probability 𝑝𝑖 of choosing 
a mode alternative 𝑖 from a set of alternatives 𝐽 = {walk; bike; car (driver); 
public transport} is calculated by: 
 

𝑝𝑖 =
𝑒𝑈𝑖

∑ 𝑒𝑈𝑗
𝑗=1,…,4

 (3) 

 
With: 

𝑈𝑖 : utility of a mode alternative 𝑖. 
 

The utility 𝑈𝑖 is calculated as: 
 

𝑈𝑖  = 𝛽𝑖 + 𝛽𝑔𝑐 ∗ 𝑔𝑐𝑖 (4) 

 
With: 

𝛽𝑖  : mode specific constant; 
𝑔𝑐𝑖  : mode-specific generalised costs. 
 
Table 2 gives an overview of the mode specific constants. The mode-specific 
generalised costs are a sum of travel costs as out-of-pocket costs for car and 
public transport trips only and the monetised travel time which depends of 
access/egress times, distances, speeds and the value-of-travel-time-savings. 
 
Table 2: Model parameters of the mode choice model 

 

 

trip purpose 
work/education 

other trip purposes 

 no car 
availability 

car 

availability 

no car 
availability 

car 

availability 

Germany 

mode specific constants     

 𝛽𝑤𝑎𝑙𝑘 (reference mode) 0 0 0 0 

 𝛽𝑏𝑖𝑘𝑒 -1.117 -0.894 -1.263 -1.686 

 𝛽𝑐𝑎𝑟 (𝑑𝑟𝑖𝑣𝑒𝑟) 
-4.469 +0.246 -3.318 -0.155 

 𝛽𝑃𝑇 +0.423 -0.319 -1.327 -2.470 

𝛽𝑔𝑐 -0.705 -0.589 -0.284 -0.346 

US 

mode specific constants     

 𝛽𝑤𝑎𝑙𝑘 (reference mode) 0 0 0 0 

 𝛽𝑏𝑖𝑘𝑒 -3.280 -3.143 -2.436 -3.755 

 𝛽𝑐𝑎𝑟 (𝑑𝑟𝑖𝑣𝑒𝑟) 
-5.926 +0.835 -3.593 +0.222 

 𝛽𝑃𝑇 -0.424 -2.232 -1.757 -4.053 

𝛽𝑔𝑐 -0.587 -0.386 -0.339 -0.522 

 
The model step of trip distribution is replaced by a distance choice approach 
concerning different heterogeneities of activity locations of different trip 
purposes. Distance bands of one kilometre are distinguished. Analysing travel 
survey data, the trip length distribution of different trip purposes differ resulting 
also in different average trip lengths. Among others the density of activity 
locations and the heterogeneity of activity locations for different trip purposes 
are influencing factors for this. To give an example, for shopping a 



8 
 

© AET 2016 and contributors 

supermarket in a certain distance does probably not significantly differ from 
others in a closer distance, but a workplace may be much more specialised 
than the others in a closer distance. 
Choosing trip length and travel mode for a trip depends on costs and benefits. 
To estimate a distance-based benefit, parameters for activity location density 
and heterogeneity are chosen for each trip purpose-car availability-category to 
calculate a benefit value for each distance band. Combined with generalised 
travel costs (weighted by modal shares) a distance band probability can be 
calculated. Mode choice for each distance band is independent from the 
benefit. 
 
The output from the combined mode-and-distance-choice model is a table 
with probabilities of choosing a travel mode and a distance band for a trip 
classified by trip purpose and car availability. Multiplying the probabilities by 
the appropriate trip sum from the trip table leads to modal shares over all trips. 
Multiplying the numbers by distances leads to vehicle and person kilometres 
of car mode and the alternatives. 

The total modal share 𝑃𝑖 for travel mode 𝑖 for all trips is 
 

𝑃𝑖 = ∑ (𝑛𝑡𝑝𝑐𝑐𝑎𝑡 ∗ ∑ 𝑝𝑑𝑖𝑠𝑡,𝑖,𝑡𝑝𝑐𝑐𝑎𝑡

𝑑𝑖𝑠𝑡

)

𝑡𝑝𝑐𝑐𝑎𝑡

 

 

(5) 

 
With: 

𝑡𝑝𝑐𝑐𝑎𝑡 : trip purpose-car availability-category; 
𝑛𝑡𝑝𝑐𝑐𝑎𝑡 : total number of trips from trip table for each 𝑡𝑝𝑐𝑐𝑎𝑡; 

𝑝𝑑𝑖𝑠𝑡,𝑖,𝑡𝑝𝑐𝑐𝑎𝑡  : probability of choosing travel mode 𝑖 and a distance band 

𝑑𝑖𝑠𝑡 dependent on 𝑡𝑝𝑐𝑐𝑎𝑡. 
 

The total trip lengths 𝐿𝑖 for travel mode 𝑖 over all trips is thus 
 

𝐿𝑖 = ∑ (𝑛𝑡𝑝𝑐𝑐𝑎𝑡 ∗ ∑(𝑝𝑑𝑖𝑠𝑡,𝑖,𝑡𝑝𝑐𝑐𝑎𝑡 ∗ 𝑑𝑖𝑠𝑡)

𝑑𝑖𝑠𝑡

)

𝑡𝑝𝑐𝑐𝑎𝑡

. (6) 

 
The resulting table from the combined mode-and-distance-choice model 
characterise different travel behaviour of persons in different car availability-
categories. An expected value of kilometres per person per mode can be 
calculated in that way the total trip length is calculated. 
 
3. APPLICATION AV 
 
The models previously described are used to estimate the impact of 
introducing AVs into the private car fleet on travel demand. Therefore both 
models complement each other. The output of the vehicle technology diffusion 
model is used for reweighting the data sets and setting up different scenarios 
in the travel demand model. The travel demand model is adapted to model the 
impact of autonomous driving. Figure 1 gives an overview of the combined 
model scheme. 
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In the following, at first the scenarios are described, then the adjustments of 
the aspatial travel demand model to model the impact of introducing AVs into 
the private car fleet on travel demand are named. 
 

 
Figure 1: Model scheme of the combined model approach for AV application 
 
3.1 Scenario description 
 
Estimating and describing the impact of introducing AVs into the private car 
fleet and comparing the results for the US and Germany is realised in two 
scenarios: a “trend scenario” and an “extreme scenario“. 
The main difference between the two scenarios is the variance of diffusion 
rates of AVs by adjusting the parameters in the vehicle technology diffusion 
model. The differences result from earlier years of introduction (level four 
vehicles are rolled out from 2022 on instead of 2025, level five vehicles are 
rolled out from 2025 on instead of 2030). Additionally, the initial diffusion rates 
are varied, and the legal age of using an AV available in the household is 
lowered from 14 years in the trend scenario to 10 years in the extreme 
scenario. 
Beyond that, assumptions are equal for both scenarios. The reduction of the 
value-of-travel-time-savings for driving an AV is set to 25% compared to the 
value-of-travel-time-savings of driving a conventional car. However, this 
applies only to travel time longer than ten minutes due to an assumed make-
ready time. 
A reduction of access/egress times to AVs is assumed. This reduction has to 
be understood as a self-ride-preparation on private ground. It has to be 
mentioned that the assumptions do not strictly adopt the differentiation of 
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automation level. On the one hand it is said that a person has still to be 
present in the AVs while driving, on the other hand among others blind people 
and people without driver license can sit in the vehicle on their own. The 
attendance in a vehicle does not require the ability to intervene in driving. 
Mobility impaired people are considered in both scenarios prioritised in such a 
way that a levels of car availability comparable to non-mobility impaired 
persons in the same age-gender-groups are reached. The high share of 
mobility impaired elder people enforce the additional mobilization of elder 
people which is stronger than that of other groups by implication. For elder 
people, no additional extra mobilization is considered in the scenarios. The 
cohort effects of additional mobilization due to a higher driver license holding 
rate especially for women is true for all three scenarios. 
The scenario assumptions for both AV scenarios are listed in Table 3. 
 
Table 3: Overview of scenario assumptions 

 trend scenario 2035 extreme scenario 2035 

Market introduction of AVs 

(differentiated by car segments) 

  

 level four 2025-2030 2022-2025 

 level five 2030-2034 2025-2028 

reduction of 
value-of-travel-time-savings 

reduction of 25% from eleventh minute of driving on 

reduction of access and egress times 
to and from AVs 

reduction of access and egress time from five minutes (GER) resp. 
four minutes (U.S.) to three minutes 

car availability of teenagers minors from 14 years on can use 
a household-owned AV 

minors from 10 years on can use 
a household-owned AV 

 
Several considerations lead to the assumption of a reduction of value-of-
travel-time-savings of about 25%. The reduction applies to all trips of persons 
with AV availability, although not all individuals are willing to use the time 
otherwise (cf. Cyganski et al. 2015). 
Gucwa (2014) varies the reduction of value-of-travel-time-savings in one 
scenario in comparison to that one using high-quality-trains. A comparison of 
car and public transport values-of-travel-time-savings used in this study leads 
to a reduction of about 25% (not constant for all distance bands). 
A comparison of amortization costs of hardware and software leads to annual 
costs of about 600 € (total costs 3,000 €1, depreciation over five years). 
Considering an average annual driving time of about 300 hours, the benefit 
per driving hour should be in the range of 2 €. The value-of-travel-time-
savings depends on distance but the proportion is in that range. 
Childress et al. (2015) use a perceived travel time reduction of 35% driving in 
an AV which has in consequence the same generalised costs as less negative 
valued travel time. Litman (2013: 10) states a relative difference of value-of-

                                                           
1
 3,000 € is about the value most respondents (who did not named a value of 0 €) of a study 

answered when asked about their willingness to pay for fully-autonomous-vehicle-
technologies (cf. Kyriakidis et al. 2015: 134). It has to be mentioned that this questionnaire 
has been taken in 40 countries with different GDPs. But an analysis of prices of today’s 
driving assistance systems on the German market leads to a comparable value. 
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travel-time-savings of 30% when comparing a car driver and a car passenger 
on the one hand and a standing and sitting public transport user on the other 
hand. Both cases are considered to be transferable to the comparison of 
driving a conventional car and being driven in a fully-autonomous car. 
The reduction applied in this study is 25%. 
 
3.2 Model adjustments of the aspatial travel demand model 
 
The vehicle technology diffusion model and the aspatial travel demand model 
are linked by allocating AVs in the travel demand model according to the 
extent calculated in the vehicle technology diffusion model. 
AVs are assigned to households being ranked by annual mileage. The 
vehicles are ranked in twelve groups of vehicle segment and vehicle age 
differentiation. Vehicle age groups are 0-4 years, 5-8 years and >8 years. The 
shares result from the vehicle technology diffusion model. The car segment 
groups are those from the diffusion model and differ between Germany and 
the US. A similar vehicle age distribution of vehicles compared to present age 
values in the vehicle data set is assumed. Therefore the vehicle age in the 
vehicle data set in the base year is the determining age for classification. 
Reweighting factors result from person and household reweighting.  
 
In the aspatial travel demand model, different assumptions of modelling 
autonomous driving are made. The resulting changes in travel demand are 
resulting from that combination of assumptions. 
One of these assumptions is the activation of new user groups, in particular 
the mobility impaired people and teenagers. The rate of car availability of 
mobility impaired people is raised to the level of non-impaired people by 
reweighting person and trip data weights. The higher mobility impairment 
rates of older people enforce the stronger mobilization due to the introduction 
of AVs of older people compared to younger people by implication. For older 
people, no additional mobilization is assumed. The cohort effects of additional 
mobilization due to a higher driver license holding rate especially for women is 
true for the base case and both AV scenarios. 
While the respective main user of an autonomous car within a household can 
use it for all of his/her trips, for any other household member usage is limited 
to non-mandatory trips only. The macroscopic model presented here does not 
facilitate the use of car diaries, this would be necessary to consider real trip-
based car availability. To avoid an overuse of the AVs and due to the lack of 
intra-household-empty rides this constraint is set. 
 
The value-of-travel-time-savings is reduced in both scenarios by 25% from the 
eleventh minute of driving on. The relative reduction applies to all car trips 
made by persons with availability of an AV for that trip. As car diaries are not 
available for the macroscopic simulation, actual, real-time car availability is 
unknown. The estimated parameters are based on this assumption. There is a 
differentiation between the main user of a vehicle and other household 
members: Main users can access the AVs at any time, any other household 
member can use them for non-work and non-education trips only. By this, all 
identified main users have the AV availability for all trips. 
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With respect to of access/egress times to AVs, a reduction is assumed. In 
Germany the access/egress time is reduced from five to three minutes, in the 
US from four to three minutes. In Germany the initial value is higher due to 
infrastructure conditions, e.g. reduced parking areas. 
Adjustments of both access/egress times and valuation-of-travel-time-savings 
are considered by adapting the mode choice data. 
 
The diffusion model differentiates between level four and level five automation 
levels. To model the impacts on travel demand only level five vehicles with 
fully-autonomous driving technology are considered, by passing only the level 
five diffusion rates. 
 
4. RESULTS 
 
In the following, modelling results are presented. First the results of the 
vehicle technology diffusion model are described, which are inputs for the 
travel demand model. Second the impact on travel behaviour is named. 
 

 
Figure 2: Shares of AVs in the fleet in Germany and the US according to 
trend and extreme scenario (share as sum of level four and level five vehicles 
of all vehicles of all segments) (own scenario calculation) 
 
An s-shaped curve of the share of AVs in the car fleet can be observed (see 
Figure 2). The point of inflection of the car fleet curve will not be reached until 
2035, not even in the extreme scenario. New registrations, however reach a 
rate of almost 80% in Germany and 75% in the US in the scenario year 2035. 
The fleet curve results from the function of new registrations and the lifetime 
of vehicles and the resulting rate of abolition of vehicles. The curve of new 
registration has discontinuities because of the different years of introduction of 
the vehicle technology of different car segments with a given initial diffusion 
rate. The influence on the fleet curve from this is extremely small. 
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Diffusion rates in Germany are higher than in the US because of the higher 
share of luxury vehicles in the new car market as well as the longer vehicle 
lifetime resulting in a slower fleet renewal (see Chapter 2.1). The years of 
introduction do not differ between the two countries. The differences between 
the scenarios show an earlier growth of the curves in the extreme scenario 
and hence a higher growth rate in the scenario year 2035. 
 
Table 4 gives an overview of the share of AVs in the fleet, differentiated for 
level four and level five and the sum over all vehicles. Resulting from the 
function, higher values can be observed for Germany and for the extreme 
scenario. The share of level four vehicles is smaller in the extreme scenario 
due to the earlier year of introduction of level five vehicles. The total share of 
AVs in the vehicle fleet reaches a value of 11.4% (US) and 17.4% (Germany) 
in the trend scenario and 31.8% resp. 42.4% in the extreme scenario. The 
shares of level five vehicles on all AVs with 92% (US) and 89% (Germany) in 
the extreme scenario is much higher than in the trend scenario with 66% and 
58% respectively. 
 
Table 4: Overview of share of AVs in 2035 in the different scenarios (Table 
based on own assumptions and calculations)  

 
The values shown in Table 4 are further used for calculating the impact on 
travel demand. 
The introduction of private AVs leads to a moderate increase of vehicle 
kilometres, resulting from changes in mode and destination choice and 
because of new mobility options for a part of the population. Table 5 
summarises the impacts on total vehicle mileage and on modal shares. The 
scenarios described above are compared to a base case scenario (“no 
automation 2035”) without AVs but with the same socio-demographic effects 
for 2035 depicted by reweighting. 
Vehicle mileage increases in the trend scenario by 2.4% in Germany and by 
3.4% in the US and in the extreme scenario by 8.6% in Germany and 8.6% in 
the US. Vehicle mileage is the sum of trip length of trips as car driver using 
conventional cars or AVs. The relative increase of the number of trips as car 
driver is almost equal with these values in Germany with 2.1% resp. 8.2% but 
a bit lower in the US with 2.0% resp. 5.7%. A higher relative increase of the 
vehicle mileage than of the trip number would be expected due to the 
additional effect of the distance effect. This is more pronounced in the US. An 
explanation for the small extent of this effect notably in Germany can be the 

  trend scenario 2035 extreme scenario 2035 

  US Germany US Germany 

year of introduction 
level four (by segments) 

2025-2030 2022-2025 

year of introduction 
level five (by segments) 

2030-2034 2025-2028 

share of AVs in vehicle 
fleet over all segments 

  

level four 3.9% 7.3% 2.5% 4.8% 

level five 7.5% 10.1% 29.3% 37.6% 

sum 11.4% 17.4% 31.8% 42.4% 
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shift of trip purpose shares. Commute trips are longer in average, but in the 
present model the use of AVs by other household members than the main 
user is allowed only for non-work and non-education trips. The stronger 
distance effect in the US can be a result from longer trip distances in average 
and the higher value-of-travel-time- savings compared to Germany used in the 
model. The lower number of shifted trips in the US is resulting from the lower 
diffusion rate of AVs than in Germany. Public transport demand is reduced in 
both countries.  
  
Table 5: Overview of the impacts of private AVs on vehicle mileage and 
modal share in the trend and extreme scenario for the US and Germany 
(Table based on own calculations) 

 
The considered assumptions of advantages of driving an AV compared to a 
conventional car evoke two effects with respect to distance differentiation. On 
the one hand benefits for medium- and long-distance-trips due to the 
reduction of costs of travel time savings and on the other hand profits for very 
short distances due to the reduction of access and egress times result. 
On long-distance trips the competition among transport modes concerns 
mainly car and public transport. On short distance trips, the non-motorised 
modes have to be regarded, too. 
A comparison of modal shifts shows impacts on all transport modes. The 
relative increase of number of trips for car driver mode and relative decrease 
for public transport mode differentiated for distance bands is shown in Figure 
3. The most negative developments for public transport can be seen for very 
long and very short distances with a relative decrease of up to 32% resp. 28% 
for distances of more than 64 kilometres and 13% resp. 21% for distances 
under two kilometres for Germany and the US in the extreme scenario. The 

 US Germany 

scenario 

reference 
scenario (no 
automation) 

2035 

trend 
scenario 

2035 

extreme 
scenario 

2035 

reference 
scenario (no 
automation) 

2035 

trend 
scenario 

2035 

extreme 
scenario 

2035 

total vehicle mileage 
[1,000 Mio km per 
year] 

4,481 4,635 4,865 594 608 645 

relative increase 
compared to 
reference scenario 

 +3.4% +8.6%  +2.4% +8.6% 

modal share (based 
on number of trips) 

car driver 

65.6% 66.9% 69.4% 45.1% 46.1% 48.8% 

increase compared to 
reference scenario 

      

 absolute  +1.3% +3.8%  +0.9% +3.7% 

 relative  +2.0% +5.7%  +2.1% +8.2% 

modal share (based 
on number of trips) 

public transport 

2.6% 2.4% 2.2% 8.6% 8.3% 7.7% 

increase compared to 
reference scenario       

 absolute  -0.2% -0.4%  -0.2% -0.9% 

 relative  -6.3% -17.6%  -2.8% -10.6% 
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same but inverse trend can be observed for trips as car driver. The distance 
effect for trips as car driver is stronger in the US with a higher gap of increase 
rates between very-short- and very-long trips on the one-hand and trips of 
medium distances (four to sixteen kilometres) on the other hand. The highest 
relative increase rates of car driver trips reach up to 9-11%. 
 

 
Figure 3: Increase of number of car driver and public transport trips 
differentiated for distance bands (Figure based on own calculations) 
 
Our results show a not negligible decrease of the mode shares of non-
motorised transport modes. Due to the small absolute mode shares of non-
motorised transport modes in longer distance bands the comparison of all 
mode shares is shown in Table 6 only for trips with a trip length below 4 
kilometres. The relative car shares increase by 1-2% resp. 2-6% in the trend 
and in the extreme scenario faces a relative public transport share decrease 
of 3-7% resp.8-19%, a relative walk share decrease of 1-2% resp. 3-7% and a 
relative bike share decrease of 2-6% resp. 5-18%. In spite of the small US 
values of the non-car transport modes in the initial state the relative reduction 
is bigger than in Germany. On the other side, the relative car-mode-share 
increase on short distances is higher in Germany. 
Sensitivity analyses are calculated for the value-of-travel-time-savings and a 
possible increase of system velocity, the results are shown in Table7. 
There is an uncertainty of the extent of the reduction of the value-of-travel-
time-savings. The modelled reduction of 25% is compared to a 0%- and a 
50%-reduction case for both scenarios, the assumptions of access/egress 
times and the make-ready-time remain the same. If the reduction would be 
0%, the relative increase would be reduced but not to zero. Doubling 
reduction to 50% would result in a growth of the impact of 50-100%. Maximum 
impacts of 12.7% (Germany) respectively 15.7% (US) are observed in the 
extreme scenario. The actual reduction will be valued individually and may be 
influenced by external factors like being allowed to work or relax while driving 
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an AV. Such alternative activities are likely to be perceived as additional 
driving comfort. 
 
Table 6: Modal share and changes for trips of less than 4 kilometres (Table 
based on own calculations) 

 
The influence of autonomous driving on road capacities and in connection 
with this the change of velocities is an often discussed topic (cf. Friedrich 
2015). The current modelling approach does not allow for any capacity 
restraint effects. A sensitivity analysis reveals impacts of possible relative 
increases of speed of 2%, 5% and 10% for all trips. It should be mentioned 
that an overall increase of travel speeds (the system velocity) provide benefits 
for all infrastructure users, in particular the non-autonomous drivers and those 
driving only short distances. The maximum values at an increase of the 
system velocity of 10% in the extreme scenario are 12.5% (Germany) 
respectively 10.8% (US), thus the speed effect is stronger in Germany. 
The increase of system velocity depends on the diffusion rate of AVs, and on 
the interactions of autonomous and non-autonomous vehicles (cf. Parkin et al. 
2016) and is influenced by driving behaviour in accordance to road traffic 
regulations. The actual future development depends on transportation system 
designs and hardware and software developments. 
 
Comparing both analyses it can be said that the effects of a reduction of the 
value-of-travel-time-savings are stronger in the extreme scenario and the 
effects of system velocity could be already strong in the trend scenario, but 
real speed effects are expected only for higher diffusion rates. It can be 

  US Germany 

scenario 

reference 
scenario (no 
automation) 

2035 

trend 
scenario 

2035 

extreme 
scenario 

2035 

reference 
scenario (no 
automation) 

2035 

trend 
scenario 

2035 

extreme 
scenario 

2035 

modal share car 
(driver & passenger) 

72.2% 73.0% 74.5% 41.2% 42.0% 44.5% 

increase compared  to 
reference scenario 

      

 absolute  +0.8% +2.3%  +0.8% +2.5% 

 relative  +1.1% +3.2%  +1.9% +6.0% 

modal share public 
transport 

2.3% 2.2% 1.9% 7.7% 7.5% 6.9% 

increase compared  to 
reference scenario 

      

 absolute  -0.2% -0.4%  -0.2% -0.6% 

 relative  -7.0% -19.1%  -2.8% -8.1% 

modal share walk 24.1% 23.6% 22.4% 39.0% 38.6% 37.4% 

increase compared to 
reference scenario 

      

 absolute  -0.5% -1.6%  -0.4% -1.2% 

 relative  -2.2% -6.8%  -1.0% -3.1% 

modal share bike 1.4% 1.3% 1.2% 12.1% 11.9% 11.2% 

increase compared to 
reference scenario 

      

 absolute  -0.1% -0.3%  -0.2% -0.6% 

 relative  -5.9% -17.9%  -1.7% -5.3% 
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mentioned that speed effects may be realised already for high diffusion rates 
of partially autonomous vehicles with good driving-assistance-systems 
although effects of the value-of-travel-time-savings can be questioned. 
 
Table 7: Sensitivity analysis for the value-of-travel-time-savings (VoTTS) and 
for the differentiation of system velocity (Table based on own calculations) 

 
5. DISCUSSION AND OUTLOOK 
 
The aim of the present paper includes two aspects: (a) the development of a 
model consisting of an aspatial travel demand model and a preceding 
technology diffusion model of AVs into the private car fleet (b) the application 
of the developed tools to describe the impact of introducing AVs into the 
private car fleet for different scenarios. 
The model system is used to compare scenarios of different diffusion rates of 
AVs for Germany and the US, to draw conclusions and to find similarities and 
differences between the countries. 
 
Policy implications 
Some policy implications can be drawn from the results presented here. A 
moderate increase of vehicle mileage can be expected for a private-
autonomous-vehicle scenario without allowance of empty rides. The extent 
depends among other things on the setting of a legal age of using private 
AVs. The increase may be higher if empty-vehicle-trips will be allowed. 
Mode share losses of public transport are likely for long-distance trips 
because of the changing time-use opportunities driving an AV. Mode-share 
losses are likely on very-short-distance trips for public transport and non-
motorised modes, too. The attractiveness of car usage for short distance 
increases because of the easier access and egress. Parking policies should 
consider this. This point is most important in urban areas. 
Increasing traffic capacities and system velocities in consequence of the 
introduction of AVs may be realised, but the actual interactions cannot be 

 US Germany 

scenario 
trend scenario 

2035 
extreme 

scenario 2035 
trend scenario 

2035 
extreme 

scenario 2035 

relative increase compared to 

reference scenario 

(differentiation of the value- 

of-travel-time-savings) 

  

 VoTTS -0% +2.0% +2.6% +1.4% +4.9% 

 VoTTS -25% (original 
scenario value) 

+3.4% +8.6% +2.4% +8.6% 

 VoTTS -50% +5.1% +15.7% +3.5% +12.7% 

relative increase compared to 

reference scenario 

(differentiation of the system 
velocity) 

  

 velocity +0% (original 
scenario value) 

+3.4% +8.6% +2.4% +8.6% 

 velocity +2% +4.2% +9.3% +3.3% +9.5% 

 velocity +5% +5.4% +10.4% +4.6% +10.7% 

 velocity +10% +7.2% +10.8% +6.6% +12.5% 
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foreseen with certainty. If so, an additional increase of vehicle mileage and 
car-modal-share is probable. This is more important for urban and suburban 
areas. 
Other policy implications as influences on traffic safety and reverse influences 
from traffic safety on travel demand could not be modelled and no 
suggestions can be drawn. 
 
Comparing the results with values from literature 
A multitude of studies has been published estimating effects of autonomous 
driving on travel demand. The assumptions differ a lot. As empty-vehicle-trips 
and shared systems are excluded in this study, only some of the studies are 
more or less comparable. 
Gucwa (2014) calculates vehicle mileage increase for different scenarios for 
the San Francisco Bay Area, differentiated by a reduction of value-of-travel-
time-saving and an increase of road capacity in different extents. For 
scenarios of reductions of value-of-travel-time-saving of up to 50% the vehicle 
mileage increase is in the range of 4-8%. 
Childress et al. (2015) calculate different scenarios for the Seattle region. A 
scenario with a fully-automation of all vehicles, a road capacity increase of 
30%, a reduction of the value-of-travel-time-saving of 35% and halved parking 
costs leads to a vehicle mileage increase of almost 20%, a scenario with a 
lower diffusion rate and reduced assumptions leads to a vehicle mileage 
increase of about 5%. 
Harper et al. (2015) calculate for the US a potential increase of vehicle miles 
travelled of about 12% for a use of AVs of all non-drivers, elderly populations 
and people with travel-restrictive medical conditions. No diffusion model and 
diffusion rates are considered, shared AV systems are not mentioned. Car 
trips of comparable groups of driving persons are projected to the considered 
groups of persons using new mobility options. No mode choice is modelled 
and aspects of valuation-of-travel-time-savings are not considered. The result 
is described as an upper bound of the potential for these user groups. 
Fagnant/Kockelman (2015: 172) state an increase of vehicle miles travelled 
per AV of 20% at a 10% market penetration and of 10% at a 90% market 
penetration. 
Our values of vehicle mileage increase are comparable but rather below 
average compared to the studies above. Restrictively the assumption of road 
capacity increase is ignored so far. 
 
The AV application 
Calculations of the impacts of autonomous driving have been done 
considering only level five vehicles due to an uncertainty of the individual kind 
of automation technology (e.g. use in cities or on highways), due to an 
uncertainty of the highway share of the trip lengths in that kind of travel survey 
data and other spatial allocations and due to an uncertainty of the extent of 
gains of value-of-travel-time-savings of driving partially-autonomous-vehicles. 
The share of level four vehicles in the extreme scenario is quite small (less 
than 12% in both countries) but higher in the trend scenario (at a range of 
40% in both countries). Thus the uncertainty of the values of the trend 
scenario is higher and the possible underestimations of the impacts are more 
evident. 
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AVs are assumed to improve road safety as in most cases of traffic accidents 
human error can be observed (cf. Haghi et al. 2014). Impacts on travel 
demand resulting from this are not modelled. For consideration the mode-
specific constant should be raised. But the estimating of the extent is difficult 
and depends on the diffusion rate. At higher diffusion rates an adaption of the 
other modes (including conventional cars and non-motorised modes) would 
be necessary to be correct. 
Induced travel demand is named in the context of AVs due to reduced 
generalised travel costs and less congestion because of a more efficient traffic 
situation (cf. Fagnant/Kockelman 2015: 172). Safety impacts and other factors 
could increase the demand, too. The cost component could be implied, but 
induced travel demand is largely ignored here, with the exception of the group 
of the mobility impaired people which is reweighted because of the distribution 
of AVs to mobility impaired people. This leads to an increase of the total trip 
number of 1.1% in the US and 0.2% in Germany. 
Data inconsistencies between the German and the US data are most 
obviously considering the characteristics of mobility impairment and routinely 
driving. Causes can be missing data e.g. because of different shares of 
questionnaires answered on someone’s behalf and the different definitions of 
being a driver and having a driver license. Some inaccuracies result inevitably 
from this. Comparing the results in Table 5, it can be seen that the proportion 
of the modal shifts in both scenarios differ between the countries in some 
sense. The mobilization of mobility impaired people seems to be slightly 
overestimated by the US values which results in a stronger shift from public 
transport to car. The additional increase in the extreme scenario is not 
touched by this due to the prioritised mobilization equal in both scenarios.  
 
Future Research: 
Future research should be directed to shared AV systems due to the 
potentials of those systems on vehicle mileage decrease and increase. 
Shared AVs combine the advantages of car rental systems and AVs (cf. 
Fagnant et al. 2015). The main advantages are the short access and egress 
times, long average use times of the vehicles per day because of autonomous 
repositioning, few costs for staff, and possibilities of ride-sharing without a 
defined “main driver”. Modelling these systems should be focused on mode 
choice with an expanded spatial differentiation to depict the more 
heterogeneous market. 
Relevant improvements of autonomous car and ride-sharing systems can be 
realised when driverless cars enable very short access times compared to 
today’s car free-floating car-sharing systems. (cf. Litman 2015: 14). Vehicle 
mileage increase to an additional mobilization of new user groups and empty 
rides are possible and decreases due to a higher party size in ride-sharing 
systems are possible. 
 
The model approach 
Considering the aspatial travel demand model, some points have to be 
mentioned. The aim of developing an aspatial travel demand model, simplified 
compared to macroscopic demand models of whole states based on traffic-
analysis-zones and a physical network, is the comparison of general 
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developments/influences in transportation in different states/regions and/or for 
different time snapshots. 
Collecting or identifying individual travel time values for the mode alternatives 
and different travel distances necessitate either detailed knowledge of the 
respondents about the alternatives or geocoded data of all activity locations. 
In the latter case, moreover a calculation of the travel times in the chosen 
level of detail is required. The procedure used in this model is a simplification 
and could be enhanced by using more explanatory variables. 
Dependent on the extent of impacts due to the modelled influences, changes 
of traffic volume for different spatial areas (mainly the concentrated urban 
areas) should be considered and if necessary the model has to be extended 
to take into account generalised fundamental diagrams, which have been 
described at an aggregated city-wide level so far (cf. Daganzo/Geroliminis 
2008, Geroliminis/Daganzo 2008, Mahmassani et al. 2013). This point may 
often concern an avoidance of overestimating the potential of new mobility 
options but can also concern the less congested status-quo. Estimating a 
capacity restraint function from travel speeds reported in travel surveys 
evokes the difficulty of handling with trip distance influences. The average trip 
distance is not constant over a day, but the travel speed is correlated to trip 
distance (cf. Mahmassani et al. 2013). 
By now we do not have implemented any travel behaviour changes based on 
mobility trends as increasingly online shopping due to uncertainties about the 
extent. In general it is possible to consider similar developments by identifying 
persons with changing mobility behaviour resulting from this. 
A problem, which is more important concerning US than German data is the 
heterogeneity between different public transport modes for very long 
distances. This is complicated by the general sparsity of long-distance travel 
data (cf. Monzón/Rodrıǵuez-Dapena 2006). A differentiation of public 
transport modes for long-distance data could be helpful. Another possibility is 
to separate a long-distance and a short-distance travel demand model as 
applied for many national and regional transport models. 
 
6. CONCLUSIONS 
 
This paper introduces a vehicle technology diffusion model, an aspatial travel 
demand model and the application to estimate the impacts of autonomous 
driving and presents results of a trend and extreme scenario comparing the 
US and Germany. 
 
The travel demand model approach is a possibility to get an idea of the impact 
of general transport issues as introducing AVs on travel demand. Because of 
the aggregated model approach a fast comparison of different countries, 
spatial areas, groups of persons or future time snapshots is possible with 
limited but comparable data. Different model steps can be combined as 
shown with the preceded diffusion model of private AVs into the private car 
fleet. 
 
The model results show a moderate impact of introducing a private AV fleet 
on travel demand. The total vehicle miles travelled increase depending on the 
diffusion rate. This additional traffic is a combination of distance choice (resp. 

http://www.sciencedirect.com/science/article/pii/S0965856405001606
http://www.sciencedirect.com/science/article/pii/S0965856405001606
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destination choice) and mode choice effects and moreover the occurrence of 
new user groups using cars as drivers. The relative mode change effects are 
more significant for very short and very long distances. The results in the 
present paper are based on the assumption of no allowance of empty rides. 
Next, the model presented here will be adapted to consider the influence of 
sharing systems as autonomous car- and ride-sharing. 
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