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1 ABSTRACT 
Extensive ground water extraction has been identified as the principle cause of land subsidence in Bangkok and its 
vicinity. To mitigate major damages from large subsidence magnitudes the phenomenon must be well understood in this 
area. Up-to-date and reliable subsidence information is indispensable to develop this understanding. Conventionally, 
surface leveling has served as the primary method for measuring subsidence in Bangkok. But this is costly and time 
consuming. Differential SAR interferometry (DInSAR) can be an alternative means to obtain measurements of the 
surface displacement providing better resolution and comparable accuracy while being less time consuming. However, 
spatial and temporal decorrelation and atmospheric signal contributions in repeat-pass SAR interferometry often hamper 
the accurate measurement of surface displacements in SAR interferograms. The recently developed Permanent Scatterer 
(PS) technique invented by POLIMI researchers [1],[2],[3], overcomes these difficulties by interpreting time-series of 
interferometric phases at coherent point scatterers. In this study, we apply both DInSAR and PS techniques using two 
time-series of 17 and 11 ERS-SAR acquisitions for two partly overlapping image frames. This study is the first attempt 
to apply the PS technique to derive urban displacement information in Bangkok. We investigate the feasibility and 
reliability of using this technique with relatively few acquisitions and in a tropical location for deformation estimation. 
Using a linear deformation model and network algorithm, we estimate spatially varying displacement rates for the 
metropolitan area. Our first PS estimation results agree well with available ground leveling measurements.  

2 INTRODUCTION 
Subsidence due to groundwater extraction has known to be a major problem in many mega cities around the world, for 
example in Shanghai, Tokyo, Mexico City, San Joaquin Valley (USA) and Bangkok, with varieties in spatial extent and 
severity [4]. Subsidence in Bangkok has been evidenced since 1968, however surface subsidence had not been 
determined quantitatively until early 1978 [5]. This study is a part of on-going doctoral research aiming to study the 
feasibility of combining the two techniques namely the Differential Interferometry (DInSAR) and Permanent Scatterer 
Interferometry (PSInSAR) techniques, to obtain reliable deformation estimates of the area of interest, Bangkok and its 
vicinity using relatively few acquisitions.  

3 INTERFEROMETRIC STACKS 
Fig.1 shows the ERS-1/2 satellite coverage over Bangkok and its surrounding provinces.  In this study we present the 
first result obtained from the overlapping area between two ERS adjacent tracks (both in descending mode). This aims 
to increase number of usable interferograms that cover the same area to apply PSInSAR technique. The test area is 
indicated in red rectangle (Fig.1b) and covers an area of approximately 8x12 km2. Total of 17 and 11 Single Look 
Complex (SLC) images of the left stack (track 247) and the right stack (track 018) were processed with the scientific 
permanent scatterer system developed by DLR [6]. The area located southeast of Bangkok was selected as the initial 
test area due to two reasons, firstly, this area is located in the overlapping area of the two radar scenes and secondly, the 
relatively large subsidence rate occurs in this area (maximum mean subsidence rate about 3 cm/year). 
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Fig.1 (a) Two scenes of ERS coverage (black squares) angko  its surroundings obtained for PSInSAR (b) 
Shows the Area of Interest (AOI) located southeast of ok as t itial test site used for this study. (c) Shows 
temporal-spatial baseline distribution of the two interfer c stack genta triangle: left stack, green square: right 
stack). 

4 GENERATION OF DIFFERENTIAL INTERFEROGRAMS

 

4.1 Differential Interferograms Generation 
The phase of an interferogram at particular point P can be expressed a
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4.2 Generation of Permanent Scatterer Map 
Permanent scatterer (PS) defines as the scatterer that exhibit coherently over long time intervals [1],[3]. It has been 
demonstrated by group of researchers from POLIMI that at these PS pixels, one can achieve millimetric ground 
deformation detection, if the atmospheric phase screen is estimated and removed [1]. However, in our study, we used 
the implementation developed at DLR [9] where the atmospheric signal is treated stochastically and is not estimated. 
 
At this step, we would like to identify the pixels in series of radar images that possess PS characteristic and then later to 
estimate deformation rate from their phase difference time-series. To obtain the PS map, first the amplitude of all SLC 
images are formed and calibrated. Then applying the amplitude dispersion index ( ) [3] in Eq.3, we identify PS 
candidates for two stacks of radar images.  
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According to Eq.2, because the phase contribution due to orbit error was preliminarily corrected and the atmospheric 
delay is assumed to be correlated for PS located closely to each other, thus the phase difference between nearby PS is 
expected to be composed of little noise and caused by differences in subsidence and DEM error.  

5 NETWORK  ALGORITHM 
 

 
ca b

 
Fig.2 Concept of network algorithm 

 
In this step, we would like to obtain a set of PS pixels whose phase was induced mainly by elevation and (linear) 
deformation, and are evenly distributed in the area of interest. Fig.2a shows the possible PS pixels on the 
interferograms. A few hundreds meter grid size is placed on the interferogram and the pixel with smallest ratio between 
amplitude standard deviation and mean amplitude in each grid cell is selected (pixels surrounded by blue square in 
Fig.2b). Between the selected points, the DEM error, deformation rate (subsidence), and a bias are estimated. The least 
square adjustment is then carried out to obtain the value of these parameters at the points. Test statistics are also applied 
to remove points and arcs that are not consistent until the stable solution is obtained. Once the reference network is 
estimated, the pixels that are not in the reference network are estimated with respect to the established reference 
network (Fig.2c). The more detailed explanation of network algorithm can be found in [9]. To derive spatial 
deformation pattern of the test area, we calculate semi-variogram from deformation estimates at PS points, fit a model 
to it and then apply Kriging interpolation.  
 
 
 
 
 
 
 
 
 
 
 



6 RESULTS AND DISCUSSIONS 

6.1 Differential Interferograms (southeast of Bangkok) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.4. Sample of differential interferograms obtained from the right stack ordered by temporal baseline. 
 
Fig.4 shows that the interferogram of Bangkok is noisy. Coherent condition can be preserved only when the temporal 
baseline does not exceed 70 days. Most of the case, the short temporal baseline condition, when coherence can be 
preserved, is not suitable for deformation signal detection unless there exist high deformation rates in the area. Due to 
the large amount of temporal decorrelation, the classical DInSAR is considered not so applicable for subsidence 
detection in Bangkok. 

6.2 Spatial Subsidence Pattern  
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6.3 Comparison with Ground Leveling 
To validate the result of deformation estimates from PSInSAR technique, first the LOS deformation is converted to 
vertical deformation rate and compared point-wise at the leveling benchmarks distributed in the test area. There are 10 
benchmarks (indicated by red circle in Fig.5a) and only the leveling information from the benchmark at depth not more 
than 1 meter is used. The temporal baseline is also scaled to be the same for both leveling data and PS estimates, and 
not all the benchmarks possess the same quality of measurements (standard deviation of leveling measurements vary 
from benchmark to benchmark, depending on the number of leveling measurements).  
 

ig.6. Subsidence measurement comparison between ground leveling (blue line) and PS estimation (magenta: left stack, 

omparison result from West to East direction demonstrates reasonable agreement between leveling data and PS 

e as our image stacks reveals 

 difference in deformation estimates resulted from the two interferometric stacks, this might be due 

7 CONCLUSIONS AND FUTURE WORK 
pl imation in Bangkok and its surroundings with the limited number of 
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C
deformation estimates. The differences found between these two measurements can be also explained as we tried to 
apply the PS technique using few interferograms over a high atmospheric contribution location where high subsidence 
rate occur like Bangkok. Hence, it is not likely that the PS whose phase is mainly induced by elevation and linear 
deformation are always to be found.  Despite the fact that the number of interferograms used in the estimation is 
limited, the PS estimation result provides acceptable and sufficient accuracy with minimum discrepancy at benchmark 
DMR13 0.02 mm/year and maximum discrepancy at benchmark KR1303 of 13 mm/year.  
Detail analysis at reliable benchmark by comparing leveling history at the same time fram
that the difference could rise from non-linear deformation of that area, which is not taken into account at the moment 
for PS estimation.  
There still have also
to the quality of all selected PS for network construction is not guaranteed. Some PS might still contain high level of 
phase noise.  

Ap ying PSInSAR technique for deformation est
interferograms (16 and 10 inteferograms) can provide sufficient accuracy (S.D. about 6-8 mm/year) for subsidence 
planning purpose. However, the accuracy might be able to be improved by doing quality measure of each PS selected 
for reference network construction. The combination of estimates from two stacks would be possible provided that 
criteria of combination are well defined and understood e.g. to combine the interpolated result where there is no PS 



presented in that particular area in one stack with the other. From the application point of view, at the most critical point 
found in the test area (with maximum linear deformation rate of 24.4 mm/year), one can predict that continuing with 
this linear deformation rate, this area will be at 0 meter MSL in the year 2075.  
Improving the estimation results by means of PSInSAR is foreseen to be the next step of work. The signal-to-clutter 
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