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ABSTRACT 
 

 
Flexibility requirements in prospective energy systems will increase to balance intermittent electricity generation from 

renewable energies. One option to tackle this problem is electricity storage. Its demand quantification often relies on 
optimization models for thermal and renewable dispatch and capacity expansion. Within these tools, power plant modeling is 
typically based on simplified linear programming merit order dispatch (LP) or mixed integer unit-commitment with economic 
dispatch (MILP). While the latter is able to capture techno-economic characteristics to a large extent (e.g. ramping or start-up 
costs) and allows on/off decision of generator units, LP is a simplified method, but superior in computational effort. 

We present an assessment of how storage expansion is affected by the method of power plant modeling and apply a cost 
minimizing optimization model, comparing LP with MILP. Moreover, we evaluate the influence of wind and photovoltaic 
generation shares and vary the granularity of the power plant mix within MILP. 

The results show that LP underestimates storage demand, as it neglects technical restrictions which affect operating costs, 
leading to an unrealistically flexible thermal power plant dispatch. Contrarily, storage expansion is higher in MILP. The 
deviation between both approaches however becomes less pronounced if the share of renewable generation increases. 
 
Keywords: Renewable energy, storage demand, unit-commitment, economic dispatch, merit order, expansion planning 
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1 Introduction 1 

With growing shares of variable, renewable electricity (VRE) generation in power systems, ensuring sufficient flexibility will 2 
play a crucial role as the temporal and spatial mismatch between demand and supply increases. Definitions of flexibility are 3 
broad (see Ref. [1], [2], [8]), however, the term is commonly understood as the ability to decouple electricity demand and supply 4 
to balance variations in the net load [52] (which, in turn, is defined as the electricity load minus the generation from VRE). It is 5 
likely that the temporal variability of VRE generation will go along with an increase in storage demand to prevent the 6 
aforementioned temporal mismatch [3], [4], [13], [22], [43]. Moreover, higher shares of VRE generation will require a more 7 
flexible operation of thermal power plants to meet steeper net load ramps (see [52]).  8 

1.1 Literature review 9 

Model-based quantifications of future storage demand result in rather diverse ranges (see for example Kondziella and 10 
Bruckner [5] or Droste-Franke et al. [6]), depending on the spatial (I), temporal (II), and technological resolution (III) as well as 11 
the underlying modeling approach (e.g. for thermal power plant modeling in energy system models).  12 

(I) Spatial resolution refers to the number of model-regions within an observation area. It affects the distribution of generation 13 
capacities, power demand as well as the transmission grid topology within the observation area. Required storage capacities 14 
have been derived for different observation areas and spatial resolutions2, e.g. by Brown et al. [7] for a small exemplary region 15 
(1), for Texas in Denholm and Hand [8] (1), for California in Solomon et al. [9] (12), for Germany in Babrowski et al. [10] 16 
(400), for the U.S. Western Electricity Coordinating Council in Mileva et al. [11] (50), for Europe in Rasmussen et al. [12] (1) 17 
and Bussar et al. [13], [22], and for a worldwide analysis in Plessmann el al. [14] (1). 18 

(II) The impact of temporal resolution (hourly vs. sub-hourly or the appropriate choice of representative time periods) in 19 
optimization models has been analyzed with regard to ramp flexibility and system costs [15], day-ahead utility scheduling 20 
through unit-commitment [16], [17], and for operation scheduling in energy scenarios with high shares of VRE generation [18], 21 
[53].  22 

(III) In this study, technological resolution is referred to the way storage is considered in models. The literature ranges from 23 
representations of single generic storage [19–21], to storage categories (e.g. short-, mid-, long-term) [22], [23], or to more 24 
detailed modeling of actual technologies [24], [25], [43]. 25 

As shown, storage demand quantifications underlie various aspects and the understanding of such dependencies and 26 
quantifying the amount of storage demand is therefore essential for dimensioning future energy systems. Yet, the influence of 27 
assumptions in thermal power plant modeling on storage demand has not been considered so far. 28 

Two main approaches of thermal power plant modeling in optimization models can be found in the literature: Detailed mixed 29 
integer linear programming (MILP) approaches that optimize the unit commitment and economic dispatch of the thermal power 30 
plant fleet and simplified linear programming (LP)where the dispatch of thermal power plants follows solely the merit order. 31 
Both approaches determine the optimal generation schedule, minimizing the operating costs of power plant dispatch, subject to 32 
device and operating constraints [26], [28], sometimes denoted as operating, dynamic or unit-commitment constraints. MILP 33 
however, includes integer (or binary) decision variables, allowing on/off consideration of single power plant units or groups, 34 
which again enables greater technological detail (e.g. part load efficiencies, ramping behavior, or minimum offline times). 35 

The influence of increasing shares of VRE generation and their effect in different modeling approaches for thermal power 36 
plants has been analyzed for example by Brouwer et al. [27] or Abujarad et al. [28]. The former provide a comprehensive 37 
overview of how much VRE generation impacts reserve requirements, curtailments of VRE generation, displacement of thermal 38 
generator, and resource adequacy. [28] review different approaches for generation scheduling, such as heuristics (e.g. priority 39 
lists), mathematical methods (e.g. MILP or LP), or meta-heuristics (e.g. genetic algorithms), providing a qualitative assessment 40 
of their advantages and short-comings when considering increasing penetration levels of VRE and storage systems. [28] 41 
underscore the importance of storage as an additional flexibility option, that can enable improved power system reliability or 42 
smoothing of load patterns. As both [27] and [28] review the current state of research, they cannot, by definition, provide a 43 
quantitative assessment how electricity storage demand is affected by the modeling approach for thermal power plants. 44 

Other studies specifically compare linear programming with unit-commitment. Abrell et al. [29] for example, compares 45 
various LP and MILP formulations for power plant start-ups and ramping, assessing its influence with regard to power plant 46 
dispatch and marginal prices of electricity generation. The latter is also research focus of Langrene et al. [30], who investigate 47 
the role of technological detail (dynamic constraints) in a MILP approach on marginal prices. Raichur et al. [31] analyze the 48 
influence of technological detail (operating constraints) in power plant modeling with regard to electricity generation associated 49 
emissions for two real power systems (New York, Texas). The study mainly relies on scenario data from the year 2010; it is 50 
therefore difficult to transfer their conclusions to power systems with higher shares of VRE generation. Through the 51 
implementation of an integrated utility dispatch and capacity expansion optimization tool, Palmintier [58] shows that the 52 
importance of technological detail (operating constraints) in power plant modeling increases with greater requirements for 53 
flexibility owing to higher shares of VRE generation. Neglecting such technical constraints within capacity expansion 54 
optimization can lead to sub-optimal generation portfolios. Poncelt et al. [53] compare the utility dispatch through LP (merit-55 

                                                           
2 The number of model-regions within the observation area is shown in brackets. 
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order model) with a MILP model, evaluating whether the influence of the temporal resolution or the influence of the technical 56 
detail in power plant modeling is more striking. The analysis is performed for different observation years which, in turn, are 57 
characterized by different shares of VRE generation up to 50%. Most recently, Stoll et al. [51] provide a broad comparison of a 58 
MILP power plant approach with LP for temporal resolutions of 1h or 5min and for differently sized energy systems (Colorado-59 
based test system versus Western Interconnection model). Using PLEXOS [32], their analysis assesses the impact on production 60 
cost, VRE curtailment, CO2 emissions, and generator starts and ramps. Though comprehensive in terms of evaluated modeling 61 
assumptions on various metrics, the study only analyzes the dispatch of an exogenous capacity mix with a relatively low share 62 
of VRE penetration (up to 30%). Moreover, the two compared energy systems also show several differences in the relative 63 
installed capacity of some technologies (e.g. coal fired power plants, gas turbines). By reason of the latter we argue that some 64 
effects therefore cannot be solely attributed to the power plant modeling approach. 65 

1.2 Novelty and contribution 66 

As energy system models become more diverse, their complexity grows, imposing new challenges with regard to 67 
computational effort and solution accuracy. As a result, the following questions arise: To which extent do simplifications affect 68 
the model’s outcome? Under consideration of the model calculation times, which degree of detail is sufficient, without 69 
generating large errors? To the best knowledge of the authors, the influence of the modeling approach for thermal power plants 70 
on storage demand (i.e. storage expansion) and utilization, especially in highly renewable energy scenarios, has not yet been 71 
analyzed. We assume that dynamic behaviors and associated costs of thermal power plants—such as start-ups, ramping and 72 
minimum down times—might have an effect on storage demand. Furthermore, we think that a certain amount of resolution with 73 
regard to technical parameters of power plants and the number of represented units is needed since neglecting technical 74 
restrictions and aggregating too heavily might lead to a significant deviation from the optimal solution. We therefore quantify 75 
the future storage expansion in exemplary energy systems, emphasizing the influence of the modeling approach for thermal 76 
power plants, the degree of aggregation in a MILP unit-commitment clustering approach and the influence of different VRE and 77 
photovoltaic (PV) generation shares.  78 

2 Methodology and data 79 

2.1 The REMix model 80 

We use the linear bottom-up optimization model REMix (Renewable Energy Mix) which minimizes the total system costs of 81 
an energy system under perfect foresight. The system costs are comprised of the annuities of the overnight investment costs of 82 
capacity expansion as well the operating costs of the utility dispatch. The latter includes fuel, emission certificates as well as 83 
operation and maintenance costs (O&M). The model’s decision variables are capacity dispatch and expansion, which are 84 
optimized for each model interval. A cross-sectoral approach enables the consideration of the transport, heat and power sector. 85 
In this particular application however, we only examine the latter. REMix is developed in the mathematical programming 86 
language GAMS [33] and solved with CPLEX [34]. An overview of the model functions is provided by Fig. 1, whereas a 87 
detailed model description including the mathematical framework can be found in [35], [45], [49], [56]. 88 

 89 

 90 
Fig. 1: Principal structure of the REMix optimization model based on [36]. 91 

2.2 Power plant modeling in REMix 92 

REMix provides two different methods for thermal power plant modeling: A MILP unit-commitment approach with 93 
economic dispatch and a LP merit order method, described subsequently. 94 
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The MILP method is based on a piecewise unit-commitment approach as described by Carróin and Arroyo [37]. At the 95 
highest level of detail it allows a generation unit specific consideration of the following techno-economic parameters: part load 96 
and temperature dependent efficiencies (via a piecewise linear production cost approach), minimum load rates, ramping 97 
processes and associated costs, minimum offline and online times, increased fuel usage and respectively increased costs owing 98 
to power plant start-ups, different cooling methods influencing the internal consumption (parasitics) of a power plant. Moreover, 99 
each power plant (or power block) is characterized by its construction year which allows the consideration of power plant 100 
decommissioning based on their technical life-time and construction year based efficiencies. For all MILP model runs a relative 101 
MILP gap of 0.01% was used. A more detailed description of this modeling approach can be found in the work of 102 
Fichter et al. [38].  103 

The LP approach relies on the merit order and economic scheduling. As for MILP, the dispatch optimization is based on the 104 
operating costs (fuel and variable O&M costs, CO2 allowance certificate costs), including the efficiencies of each technology. 105 
Ramping costs are incorporated via costs of power change in terms of wear and tear (€/MWel), whereas the power plant’s 106 
parasitics are implemented via the ratio of net to gross efficiency. Similar to the MILP approach, power plant technologies are 107 
described by their life-time and construction year to include decommissioning and learning curves in terms of efficiencies. 108 

MILP modeling is a suitable method to consider each power plant or power block of an energy system in detail. For complex 109 
power systems however, the approach struggles with long calculation times. A self-evident solution to this problem is to reduce 110 
the number of binary variables by aggregating single power plants into groups with similar techno-economic parameters. 111 
Though computationally efficient, the approach fails to consider minimum load rates and start-up costs properly [58]. All power 112 
plants within one group are either on or off, due to the binary variable which describes the unit-commitment for each time step 113 
(see [b] in Fig. 2). In consequence, the method systematically underestimates the flexibility of the power plant fleet. 114 

We therefore apply a clustering approach (grouped integer modeling) as described by Palmintier [58], which replaces the 115 
binary decision variables with integer commitment variables. The value of the latter describes the number of power plants (or 116 
power blocks) within each cluster. Opposed to the classical MILP method (binary variable), the grouped integer modeling 117 
allows each power plant to start or ramp down individually (see [a] in Fig. 2). 118 

 119 

 120 
Fig. 2: Comparison of the classical unit-commitment (UC) approach which uses a binary start/stop decision variable [a] and the group integer modeling 121 
approach [b]. Figure is adapted from [58]. 122 

In this analysis, we use the power plant portfolio of Germany based on the Platts World Electric Power Plants Database 123 
(WEPP) of the year 2010 [39] and aggregate each power plant into different groups (cluster) based on their technology type and 124 
plant size. We subsequently obtain 15 clusters (see Tab. 1) with an overall installed capacity of 96.18 GW. The clusters 125 
encompass fossil fired (lignite, coal, natural gas) and nuclear power plants. Furthermore, we distinguish by technology-specific, 126 
typical power plant sizes, i.e. capacity ranges: large, midsize, and small. Within natural gas fired power plants we additionally 127 
distinguish between gas turbines and combined cycle power plants (CCGT). All other techno-economic data for fossil and 128 
nuclear fired power plants as well as the assumptions regarding fuel prices and CO2 emission costs can be found in Sec. 2.3. 129 

 130 

Power plant/ Power plant/Power plant cluster
Power plant cluster

Block 1 Block2 Block 3 Block n

Block n ON ON ON ON
OFF OFF OFF OFF

Block 3
Block 2
Block 1

[a] Grouped integer UC [b] Binary UC
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Tab. 1: Cluster with regard to thermal power plant technology type and plant size. 131 

Technology 
group 

Capacity 
group 

Capacity range 
[MW] 

Number of 
blocks [-] 

Installed 
capacity [MW] 

Nuclear Large > 800 17 20,400 

Nuclear Midsize  - - - 

Nuclear Small - - - 

Lignite Large > 800 4 3,800 

Lignite Midsize 400 ≤ 800 18 9,900 

Lignite Small < 400 74 7,40 

Coal Large > 550 12 9,000 

Coal Midsize 350 ≤ 550 20 8,000 

Coal Small < 350 116 11,600 

CCGT Large > 350 15 6,750 

CCGT Midsize 150 ≤ 350 26 6,500 

CCGT Small < 150 237 4,740 

Gas turbine Large > 150 2 400 

Gas turbine Midsize 50 ≤ 150 57 3,990 

Gas turbine Small < 50 370 3,700 

Total   968 96,180 

2.3 Scenario assumptions 132 

As the main research focus lies in the analysis of the influence of different conceptual approaches in thermal power plant 133 
modeling on storage demand, we do not model a real world energy scenario, but a simplified, hypothetical case study. All 134 
dispatch optimizations of the VRE and thermal power plants rely on exogenous capacity mixes, while the storage capacity is 135 
endogenously determined by capacity expansion. LP modeling is used for VRE and storage dispatch as well as storage capacity 136 
expansion. The thermal power plant modeling on the other hand distinguishes between unit-commitment with economic 137 
dispatch (MILP) and simplified merit order dispatch (LP). We assume a single node power system with no transmission to other 138 
regions or transmission constraints within the region (“copper plate”). The optimization period is divided into 8,760 hourly 139 
chronological time-steps of one observation year. We predefine shares of VRE generation and the ratio of PV-to-VRE electricity 140 
generation, subsequently denoted α and β, as described for example in [40–44], [52]. The VRE share α describes the ratio of 141 
theoretical annual electricity generation from VRE in relation to the annual electricity demand (see Eq. 2.1). The actual VRE 142 
share resulting from the optimization can be lower than the theoretical share owing to curtailments of VRE or storage losses. In 143 
this analysis, VRE curtailments are not restricted or associated with any costs. The theoretical PV-to-VRE ratio β is defined in 144 
Eq. 2.2. 145 

 146 

∝=	
∑ ����	
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��	

������
��� 	������

���

�
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���
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��� 	������

���
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where  

�����
�� Theoretical electricity generation from wind power in each time step t [GWh/h]  

���
�� Theoretical electricity generation from PV power in each time step t [GWh/h]  
∆� Length of one time step [h] 
� Annual electrical demand [GWh] 

 147 
We analyze three main and two sub-scenarios for each main scenario. The main scenarios distinguish between each other by 148 

the VRE share α (0.33, 0.66, 1.00), whereas the sub-scenarios are characterized by different PV-to-VRE ratios β (0.4, 0.6). 149 
Exogenously pre-defined generation capacities include all thermal power plants (clustered as described in Sec. 2.2) as well as 150 

all PV and wind power capacities, subject to α and β. For the sake of comparing the influence of the power plant modeling 151 
approaches, the installed thermal power plant capacity per cluster is identical in all scenarios, although higher VRE shares most 152 
likely would imply a change in the power plant portfolio. To derive the cost optimal dispatch of VRE, REMix requires the 153 
potential, technology-specific, hourly renewable electricity generation as input. These potential renewable generation time-series 154 
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are a result of the REMix sub-model EnDAT (Energy Data Analysis Tool) and rely on solar irradiation and wind speeds of the 155 
weather year 2006, including technical constraints as well as the characteristic curves of wind power plants and PV systems (see 156 
[45]). These profiles are scaled with VRE capacities to reach the theoretical VRE share α and the PV-to-VRE ratio β (see Tab. 157 
2). The optimized VRE input is derived from the potential generation less the curtailments. 158 

 159 
Tab. 2: Exogenous installed PV and wind capacities for all considered scenarios.  160 

Scenario PV [GW] Wind [GW] 

 = 0.33	$ = 0.4 51 63 

 = 0.33	$ = 0.6 76 42 

 = 0.66	$ = 0.4 101 126 

 = 0.66	$ = 0.6 152 83 

 = 1.00	$ = 0.4 153 191 

 = 1.00	$ = 0.6 230 127 

 161 
For modeling thermal power plants, the analysis includes three fuel price and emission certificate cost variations (see Tab. 3). 162 

In the cited sources of Tab. 3, for fuel prices and CO2 costs, the low cost scenarios are used in the scenarios with α = 0.33, 163 
medium cost scenarios for α = 0.66 and high cost scenarios for α = 1.00. 164 

 165 
Tab. 3: Fuel price scenarios for each fuel type. 166 

Fuel type Cost scenariob Fuel costs 
[€/MWhth] 

CO2 costs 
[€/t CO2] 

Source 

Coal Low 77 27 [46]a 

Lignite Low 60 27 [46]a 

Natural gas Low 76 27 [46]a 

Uranium Low 3.3 27 [47] 

Coal Medium 117 60 [46]a 

Lignite Medium 86 60 [46]a 

Natural gas Medium 113 60 [46]a 

Uranium Medium 3.3 60 [47] 

Coal High 136 75 [46]a 

Lignite High 100 75 [46]a 

Natural gas High 131 75 [46]a 

Uranium High 3.3 75 [47] 
a Price path A. 
b Low cost scenario uses the values of the year 2020, medium of the 
year 2040 and high of the year 2050 of the cited sources. 

 167 
High fuel prices might trigger a reduction in the number of CO2 emissions certificates since they can lead to a decrease in the 168 

utilization of thermal power plants. As a result, decreased utilization of thermal power plants will increase the number of 169 
available emission certificates which lowers their costs. However, in this analysis, we do not consider such inter-dependencies 170 
for the cost assumptions. The techno-economic parameters of thermal power plants for the LP and MILP modeling approach can 171 
be extracted from Tab. A 1 and Tab. A 2 in the Appendix. Note that the MILP modeling approach requires more parameters, as 172 
its degree of detail is much higher than the LP approach. 173 

The model uses an hourly load profile of Germany for the electricity demand, based on the load profiles from 2006 of the 174 
European Network of Transmission System Operators for Electricity (ENTSO-E) [48] and are scaled with an annual electricity 175 
demand of 500 TWh. 176 

For storage expansion the model is only allowed to invest in one representative technology, whose techno-economical 177 
parameters are loosely orientated on the characteristics of stationary lithium-ion-batteries (Li-ion), assuming a significant 178 
decrease of power (converter) and energy (storage unit) related investment costs. The expansion of storage is based on a LP 179 
approach in all model runs. REMix optimizes the storage dispatch and furthermore allows for an individual and independent 180 
dimensioning of the storage converter size (kWel) and the storage unit capacity (kWhel), implying no pre-defined storage-unit-to-181 
converter ratio (E2P). The E2P value describes the time in hours the storage needs for a complete cycle with its nominal power 182 
and allows an identification whether a storage technology is mainly used for short, mid or long-term applications. A detailed 183 
description of the methodology for storage modeling is provided in Scholz et al. [49], whereas the main techno-economic 184 
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parameters are shown in Tab. 2. No constraints regarding the technical potential (both maximum installable converter power and 185 
storage capacity) for Li-Ion were assumed. 186 

 187 
Tab. 4: Techno-economic parameters for stationary Li-ion batteries as the representative storage technology [50], [57]. 188 

 Parameter Unit Li-ion 

Investconverter [€/kWel] 50 

Investstorage [€/kWhel] 101 

Amor. time converter  [a] 25 

Amor. time storage  [a] 25 

Interest-rate  [-] 0.07 

O&M fix [% Inv./a] 0.009 

O&M var [€/kWhel] 0.00001 

ηcharge [-] 0.93 

ηdischarge [-] 0.93 

Self-discharge rate [1/h] 0.00007 

Availability [-] 0.98 

3 Results and discussion 189 

3.1 Storage expansion and utilization 190 

Fig. 3 illustrates the amount of storage capacity expansion (in terms of converter power) and storage utilization (in terms of 191 
annually discharged electricity) that results when comparing the MILP and LP power plant modeling approach over the 192 
scenarios with different VRE shares  , while the PV share is fixed (β = 0.40). 193 

 194 

 195 
Fig. 3: Storage converter capacity expansion (GW) and storage utilization in terms of annually discharged energy (TWh/a) compared over the scenarios (( =196 
). *) with increasing VRE share (α) and over the different modeling approaches (MILP, LP) for power plants. 197 

The following observations can be made: 198 
i. Storage expansion and utilization increase with increasing VRE share α, as the growing temporal mismatch between 199 

generation and demand has to be balanced in some way. While one option is storage, VRE over-generation also can 200 
be balanced through curtailments. 201 

ii. Storage expansion and utilization is always higher when using MILP modeling compared to LP. This observation 202 
also holds for the scenarios with a PV share $ of 0.6 (see Fig. A 1 in the Appendix). 203 

iii.  With increasing VRE share   the differences between LP and MILP in terms of storage expansion and utilization 204 
decrease. 205 
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While observation i is trivial and fostered by the high shares of VRE, observations ii and iii seem to be influenced by the 206 
modeling approach for thermal power plants as all others parameters are almost identical. We subsequently analyze the 207 
differences in system dispatch and annual utilization. 208 

3.2 Simulation of system dispatch 209 

Fig. 4 compares the system dispatch between the LP and MILP approach in the scenarios with a VRE share of 0.33 and a PV 210 
share $ of 0.4. Note that in the following analysis all capacity groups of a thermal power plant technology (cluster, see Tab. 1) 211 
are aggregated by technology type. 212 

 213 
Simplified merit order dispatch (LP) Unit-commitment with economic dispatch (MILP)  

  

 

 

Fig. 4: Comparison of the hourly electricity generation of the simplified merit order dispatch (LP) and unit-commitment with economic dispatch (MILP) power 214 
plant modeling approach for the hours 4320 – 4560 for the scenario with a VRE share of 0.33 and a PV share + of 0.4. The latter’s in brackets refer to the 215 
observations described in the text below. 216 

We see that the LP modeling approach overestimates the flexibility of thermal power plants in comparison to the MILP 217 
methodology, mainly owing to neglecting technical restrictions, such as minimum load rates or ramping constraints. As shown 218 
in Fig. 4, especially the flexibility of lignite fired power plants is overestimated in the LP approach, as they are able to ramp very 219 
rapidly (a), are not restricted by any minimum up or down times (b) and are not characterized with minimal load rates of the 220 
power plants (c). The specific operating expenditure costs (OPEX) result in the following merit order of power plant dispatch 221 
(sorted OPEX of power plant clusters): Nuclear, Lignite, CCGT, Coal, Gas turbines. Slight changes in the merit order can occur 222 
depending on the scenario and its assumed CO2 prices, fuel costs and improvements of efficiency (see Tab. A 3 in the 223 
Appendix). Moreover, since we categorize power plants into different capacity groups (see Tab. 1), the merit becomes more 224 
diverse (see Fig. A 2 in the Appendix).  225 

In contrast, the MILP approach shows a more realistic dispatch of the thermal power plants, where base-load power plants, 226 
such as nuclear systems, mainly provide electricity at a constant level with little to no power changes (d), while lignite fired 227 
power plants and CCGT are more flexible in their dispatch (e), operating as mid and peak-load power plants. Additionally, Fig. 228 
4 indicates a significant higher utilization of storage capacities (f). In Fig. 4 and all following dispatch plots, storage charging is 229 
illustrated by negative y-values, while storage discharging is shown by positive y-values. 230 

 231 
Fig. 5 illustrates the generation share , similar as defined in [53] (see Eq. 3.1) for thermal power plants, renewable energy 232 

systems and storage, comparing LP and MILP over the different renewable shares in the scenarios. Moreover, the figure 233 
illustrates the differences between MILP and LP with regard to the generation share (see Eq. 3.2), which is denoted by ∆	, and 234 
defined as the deviation of the technology-specific generation share , between the MILP and LP approach in percent. 235 

 236 

,- �	
∑ �-

.������
��� 
��

∑ ∑ �-
.
��	������

���-

, ∀1 ∈ 3 3.1 

  
where  

1 Technology index 

�-
.
�� Actual electricity generation from technology 1 in each time step t [GWh/h] 

∆� Length of one time step [h] 
� Annual electrical demand [GWh] 

 237 

(a) (b) (c) 

 (d)  
(e) 

+ 
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 238 
∆	,- =	 |,-

5� − ,-
785� 	| ∗ 100, ∀1 ∈ 3 3.2 

  
where  

1 Technology index 
,-
5� Generation share in LP approach of technology 1 

,-
785� Generation share in MILP approach of technology 1 

 239 
  Scenario  = 0.33	$ = 0.4   Scenario  = 0.66	$ = 0.4    Scenario  = 1.00	$ = 0.4 

   
  

 Technology ∆	, [%] 

Li-Ion 3.1 

VRE 0.2 

Mid/peak-load 6.0 

Base-load 2.7 

  
 

  

 Technology ∆	, [%] 

Li-Ion 2.5 

VRE 0.9 

Mid/peak-load 2.2 

Base-load 1.1 

  
 

  

 Technology ∆	, [%] 

Li-Ion 2.0 

VRE 0.8 

Mid/peak-load 0.7 

Base-load 0.5 

  
 

Fig. 5: Comparison of technology-specific generation shares 9 in the scenarios with different VRE share α, comparing the simplified merit order dispatch (LP) to 
the unit-commitment with economic dispatch (MILP) modeling approach. Li-ion refers to the share of discharged electricity within the observation year. 
Moreover, the deviation of the generation share between LP and MILP is expressed as percentage and denoted ∆	9. 

Within each scenario, the ratio of thermal to renewable generation does not differ significantly due to α. Furthermore, the 240 
ratio of PV share is similar in each scenario due to β. Distinct variations however can be observed in the composition of the 241 
generation share of thermal power plants and, as a result, the utilization of Li-ion storage: 242 

 243 
(1) , LP < , MILP for base-load power plants (nuclear, lignite) in all scenarios. 244 
 245 
(2) ∆	, for all thermal power plants and storage decreases with increasing VRE share  . 246 
 247 

(1) In LP the stronger simplifications of operating constraints allows relatively inflexible base-load power plants to ramp up 248 
or down more frequently, and, for the scenario with low VRE share ( 	= 0.33), typically observed continuous operation of base-249 
load power plants occurs only for the technology with the lowest operating costs (in this case electricity generation from nuclear 250 
power plants (see Fig. 4)). Slightly higher operating costs, as for lignite fired power plants, will results in a more discontinuous 251 
dispatch, following the characteristics of the hourly electrical demand. In scenarios with the highest VRE share ( 	= 1.00) even 252 
nuclear power plants are operating in a flexible way as a consequence of high VRE generation and a low or even negative net 253 
load as depicted in Fig. 6 (a). 254 

 255 
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Simplified merit order dispatch (LP) Unit-commitment with economic dispatch (MILP)  

  

 

 

Fig. 6: Comparison of the hourly electricity generation of the simplified merit order dispatch (LP) and unit-commitment with economic dispatch (MILP) power 256 
plant modeling approach for the hours 4320 – 4560 for the scenario with a VRE share of 1.00 and a PV share of 0.4. The latter in brackets refers to the 257 
observations described in the text above. 258 

In contrast, the dispatch consideration in the MILP approach is characterized by a higher utilization of storage, enabled by 259 
higher storage converter capacity expansion (see Sec. 3.1, enumeration ii). This enables more continuous operation of base-load 260 
power plants with less ramping events and results in higher generation shares of base-load power plants in MILP. The effect is 261 
illustrated in Fig. 7, which shows the dispatch of all utilities for the scenario α = 0.66, β = 0.4 and the hours 0 – 240. In the LP 262 
approach for example, lignite and coal fired power plants are able to follow the load in the hours 110 – 115 (a), whereas in 263 
MILP, we observe that charging of storage ensures a continuous operation of lignite and coal fired power plants as well as 264 
CCGT (b). In some hours (c), the generation from power plants (in this case CCGT) even exceeds the electrical load. In these 265 
situations the model favors the continuous dispatch through storage utilization over a flexible operation of the power plant, 266 
which again leads to the higher storage utilization (and expansion, see Fig. 3) for the UC approach. 267 

 268 
Simplified merit order dispatch (LP) Unit-commitment with economic dispatch (MILP)  

  

 

 

Fig. 7: Comparison of the hourly electricity generation of the simplified merit order dispatch (LP) and unit-commitment with economic dispatch (MILP) power 269 
plant modeling approach for the hours 0 – 240 for the scenario with a VRE share of 0.33 and a PV share + of 0.4. The latter’s in brackets refer to the 270 
observations described in the text above. 271 

(2) We already noticed that, when comparing LP and MILP, the differences in storage capacity expansion and utilization 272 
decrease with increasing VRE share   (see Sec. 3.1, enumeration iii). This observation is in line with the results shown in Fig. 5, 273 
where ∆	, decreases with increasing VRE share  . In other words, the amount of discharged electricity of Li-Ion storage 274 
converges between MILP and LP if the amount of renewable electricity generation increases. Similar observations can be made 275 
for base, mid and peak-load power plants. On one hand, thermal power plants become less important (i.e. their generation shares 276 
decrease) with higher VRE shares (i.e. increasing  ). On the other hand, the dispatch patterns of thermal base and peak-load 277 
power plants also change with higher  . While scenarios with low shares of VRE are characterized by continuous dispatch of 278 
power plants with low operating costs (i.e. base-load), enabled through storage utilization, in scenarios with higher VRE shares, 279 
mid and peak-load power plants almost completely disappear, as the renewable generation is sufficient to cover the electric load. 280 

(a) (b) 

(a) 

(c) 
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More specifically, generation from coal disappears in scenario with   = 0.66, whereas the generation from almost all lignite 281 
capacities disappears in the scenario with   = 1.00. In these high-share VRE scenario, flexibility is mainly provided by storage 282 
utilization, whereas nuclear power plants remain the only base-load technology, characterized by a more flexible dispatch (see 283 
Fig. 6, (a)). 284 

3.3 Influence of power plant portfolio granularity 285 

Next, we test whether the influence of the MILP approach on storage expansion and utilization is dependent on the flexibility 286 
of the power plant portfolio within the system (i.e. the number of power block). In our analysis we showed that—when 287 
incorporating endogenous storage expansion and dispatch into the optimization problem—the importance of a detailed MILP 288 
unit-commitment modeling approach decreases with increasing VRE shares. However, this might change if the assumed power 289 
plant portfolio only consists of a limited number of power blocks/units (as for example in small regions or countries). 290 
Consequently, the relative influence of technical constraints might increase as the system is less flexible. Likewise, the 291 
decreased flexibility might foster greater storage expansion and utilization.  292 

Since in LP the number of blocks (Nb) can be considered unlimited, as the size of one block is infinitely small, LP is the most 293 
flexible system (see e.g. Fig. 4). Nevertheless, the reference power plant portfolio in the MILP approach (see Tab. 1) is already 294 
quite flexible, as it contains a rather high number of blocks (968) which enables numerous possible combinations of on and 295 
offline power blocks. To assess the influence of the power plant portfolio granularity, we lower the number of power blocks 296 
from 968 of the reference case to 485, 20 and 5 blocks as shown in Fig. 8. The overall installed capacity remains identical in all 297 
scenarios (see Tab. A 4 in the Appendix). 298 

 299 
96.18 GW Nb5 Nb20 Nb485 Nb968 (Reference 

MILP) 
 

    

Fig. 8: Power plant granularity in terms of number of blocks. The exact number of blocks for each power plant cluster can be extracted from Tab. A 4. 300 

To illustrate the effects of different granularities of the power plant portfolio, Fig. 9 shows the dispatch for two extreme cases: 301 
a capacity mix with 968 blocks (Nb968) and 5 blocks (Nb5). As expected, the inflexibility of Nb5 causes increased storage 302 
utilization at some hours (a), whereas in the system with 968 blocks, lignite power plants and CCGT provide flexibility during 303 
the same hours, preventing most of the storage charging (b). Again, we see that CCGT operates as mid-load generation owing to 304 
the OPEX cost assumptions.  305 

 306 
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Nb968: unit-commitment with economic dispatch 
(MILP), 968 blocks 

Nb5: unit-commitment with economic dispatch 
(MILP), 5 blocks 

 

  

 

 

Fig. 9: Comparison of the hourly electricity generation of the unit-commitment with economic dispatch (MILP) power plant modeling approach consisting of 307 
968 and 5 blocks. The figure shows the time period of hour 4320 – 4560 for the scenario with a VRE share of 0.33 and a PV share + of 0.4. The latter’s in 308 
brackets refer to the observations described in the text above. 309 

Fig. 10 depicts the annual, technology-specific generation shares σ dependent on the power plant portfolio granularity 310 
(Nb968-Nb5) over the scenarios of different VRE shares α and for the PV share β=0.4. We define the most granular capacity 311 
mix (Nb968) as benchmark and subsequently derive the deviation of generation shares of less granular capacity mixes 312 
(∆	,:;<�=, ∆	,:;>�, ∆	,:;=).  313 

 314 

(a) (b) 
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  Scenario  � 0.33	$ � 0.4   Scenario  � 0.66	$ � 0.4    Scenario  � 1.00	$ � 0.4 

   
    

 Technology ∆	,:;<�= ∆	,:;>� ∆	,:;= 

Li-Ion 0.8 0.7 1.0 

VRE 1.3 1.1 1.6 

GT - - - 

CCGT 0.2 3.5 7.4 

Coal 0.2 2.6 2.6 

Lignite 1.2 0.1 4.6 

Nuclear 0.5 1.2 4.6 

    
 

   

 ∆	,:;<�= ∆	,:;>� ∆	,:;= 

0.4 0.1 0.4 

0.0 0.2 0.1 

- - - 

0.1 0.3 1.8 

- - - 

0.3 0.9 2.5 

0.1 0.3 0.4 

   
 

   

 ∆	,:;<�= ∆	,:;>� ∆	,:;= 

0.3 0.1 0.3 

0.0 0.5 0.1 

- - - 

0.1 0.2 0.1 

- - - 

0.0 0.2 0.5 

0.3 0.6 0.3 

   
 

Fig. 10: Comparison of technology-specific generation shares 9 in the scenarios with different VRE share α, comparing the unit-commitment with economic 
dispatch (MILP) modeling approach, containing different numbers of blocks. Li-ion refers to the share of discharged electricity within the observation year. 
Moreover, the deviation of the generation share between LP and MILP is expressed as percentage and denoted ∆	9.  

As shown on an hourly basis in the dispatch plots (Fig. 9), the effect of increasing storage utilization with decreasing number 315 
of blocks is also consistent on an annual basis to compensate the inflexibility of the power plant capacity mix. Additionally, 316 
instead of providing flexibility through the  combinations of on and offline power blocks (as in NB968), Nb5 provides 317 
flexibility by the technical ability of mid and peak-load power plants to follow the net load. This is reflected by higher 318 
generation shares , of CCGT in the less flexible scenarios (Nb5, Nb20). In contrast, the generation shares of lignite fired power 319 
plants decreases over higher Nb, as their technical ability to provide flexibility is insufficient to follow the temporal variability 320 
of VRE generation. The described effects are visible for all scenarios, but becomes less pronounced (decreasing ∆	,) with 321 
increasing VRE share  . In other words, under the premises of model endogenous storage expansion, MILP approaches are 322 
particularly important if the analysis focusses on smaller regions (i.e. a limited number of thermal blocks) in combination with 323 
low shares of VRE. This also applies for larger energy systems, where the model user heavily aggregates the number of blocks. 324 
In turn, the aggregation of power blocks and the importance of MILP is less important in high share VRE scenarios.  325 

3.4 Comparison to the state of research 326 

Our results corroborate some findings of the existing research. In terms of the deviation of the thermal power plant generation 327 
shares between the two modeling approaches (LP versus MILP), our results are in line with the work of Poncelt et al. [53], as 328 
∆	, (Generation mix error merit order dispatch in [53]) is relatively low (max. 6.0%, see Fig. 5). Our model results also indicate 329 
an increased utilization of storage in the MILP approach as shown by Stoll et al. [51]. This is especially the case in scenarios 330 
with low shares of VRE generation. 331 

Differences exist, however, with regard to the importance of MILP depending on the VRE share  , and, more specifically, the 332 
trend of ∆	, over the different VRE shares  . Palmintier [58] finds that, in contrast to the results presented in this paper, the 333 
importance of operating detail in thermal power plant modeling increases with higher shares of VRE generation (and stricter 334 
CO2 emission limits). The latter can be explained since [58] performs an integrated optimization of dispatch and capacity 335 
expansion which leads to different initial power plant portfolios, whereas the analysis at hand uses identical generation 336 
portfolios, only optimizing their dispatch and storage expansion. Similar to [58], the results of Poncelt et al. [53] show an 337 
increase of ∆	, with increasing  , i.e. detailed power plant modeling which considers operating constraints becomes more 338 
important with higher VRE shares. However, two important assumptions distinguish our work from [53]. First, the present 339 
analysis conducts optimization calculations up to a theoretical VRE share of 100%, whereas VRE shares in [53] reach 50% in 340 
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the year 2050. Yet, the importance of power plant modeling might decrease as the share of thermal generation in highly 341 
renewable scenarios also decreases. Second, [53] do not include storage expansion as a flexibility option in their calculations. 342 
Consequently, all balancing of the intermittent VRE generation has to be provided by dispatchable power plants. As flexibility 343 
requirements increase with higher VRE shares (e.g. in terms of hourly or multi-hour ramp requirements, see e.g. [52]), technical 344 
constraints with regard to the dispatchability of power plants (as considered in the MILP approach) have a great influence and 345 
explain ∆	, between the LP and MILP approach in Poncelet et al. [53]. 346 

4 Conclusions 347 

We examined the influence of thermal power plant modeling (simplified merit order dispatch (LP) versus unit-commitment 348 
with economic dispatch (MILP)) on storage demand, using the cost minimizing capacity expansion and dispatch model REMix. 349 
The analysis was conducted for scenarios with different shares of PV and wind power generation, ranging from 33% up to 100% 350 
of theoretical generation share with regard to the annual power demand.  351 

We found that LP systematically overestimates the flexibility of thermal power plants, thus leading to lower storage 352 
expansion and utilization compared to MILP in all scenarios. If endogenous storage expansion is considered in the capacity 353 
planning and dispatch optimization (and flexibility provision does not solely rely on the existing power plant portfolio), MILP 354 
modeling is superior in terms of realistic storage consideration. Power plants are restricted by minimum load rates or ramping 355 
constraints, consequently fostering an increase in storage utilization to ensure continuous operation of the thermal units. 356 
However, we also found that, owing to the decreasing share of thermal power plants that are modeled either by LP or MILP, the 357 
differences of LP and MILP in storage expansion and utilization as well as the generation shares of thermal power plants merely 358 
decrease with increasing variable renewable energy (VRE) shares. This leads to the conclusion that a high degree of detail in 359 
power plant modeling becomes less important in scenarios with high shares of VRE if network constraints are neglected.  360 

Similar relations were observed for smaller energy systems with a lower number of available generation units. For low share 361 
VRE scenarios and in the case of very few units, significant deviations with the highly granular energy system become visible, 362 
especially for nuclear and lignite power plants as well as for combined cycle power plants. The differences in storage utilization 363 
are rather small. Again, the differences become less distinct with increasing share of VRE. 364 

There are limitations of our analysis and future work should carefully consider these. First, we used storage expansion and 365 
dispatch of a single technology as a proxy for flexibility demand. However, other options are possible and, for example, enable 366 
balancing of intermittent renewable generation through spatial balancing (i.e. shifting of electricity from one point in time to 367 
another by the electricity grid) or through changes of the electric load curve (i.e. demand response). As the fundamental 368 
functionalities of these alternative flexibility options vary quite heavily from the ones of storage, power plant modeling might 369 
have different effects as our results show. Moreover, the hourly resolution of the REMix model does not capture sub-hourly 370 
flexibility requirements, such as frequency control. 371 

Second, both in LP as well as in MILP, storage capacity expansion relies on linear programming. Similar to LP and as 372 
described in Sec. 3.2 the approach is not able to consider on/off behavior of single storage units or to capture some techno-373 
economic characteristics as it would be possible with mixed-integer methods. For storage these constraints are heavily 374 
technology dependent, e.g. batteries include limitations in terms of depth of discharge or cycle stability, whereas pumped hydro 375 
storage are restricted by minimum storage levels or turbine power [54], [55]. Similar to the argumentation of power plant 376 
granularity in Sec. 3.3, the necessity of mixed-integer storage modeling depends on the granularity of the overall installed 377 
storage capacity and hence the typical capacity size of one storage unit. In this sense, mixed-integer approaches might be 378 
desirable for large scale storage technologies and in smaller energy system, whereas linear programming is likely to be sufficient 379 
in large energy systems in combination with smaller storage units. 380 

Third, we solely considered electricity and do not model interactions to other energy related sectors, such as the transportation 381 
or heat sector. Especially the latter might be affected by assumptions of power plant modeling, as some units operate as 382 
Combined Heat and Power Plants (CHP). In combination with heat storage, CHP units have the potential to operate in a more 383 
flexible way as shown in [56]. 384 

Acknowledgments 385 

The authors would like to thank Thomas Pregger, Tobias Naegler, Karl-Kiên Cao, and Josh Eichman for their valuable input for 386 
this work. The authors also thank the anonymous reviewers for their constructive feedback. Felix Cebulla gratefully acknowledges 387 
the funding from the Helmholtz Research School on Energy Scenarios (ESS). 388 

Nomenclature 389 

Indices  
1 ∈ 3 Technologies 
� ∈ ? Time 
  
Parameter  
α	 Annual theoretical power generation share of photovoltaic and wind power systems with regard to the annual 
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power demand [-] 
β Annual theoretical power generation share of photovoltaic systems with regard to the overall theoretical 

power generation from variable, renewable systems [-] 
∆t Length of one time step [h] 
PWind(t) Theoretical electricity generation from wind power in each time step t [GWh/h] 
PPV(t) Theoretical electricity generation from photovoltaic systems in each time step t [GWh/h] 
D Annual electrical demand [GWh] 
�-

.(�) Actual electricity generation from technology 1 in each time step t [GWh/h] 
σx Actual generation share of technology x [-] 
,-

5�  Generation share in simplified merit order dispatch (LP) approach of technology 1 [-] 
,-

785� Generation share in unit-commitment and economic dispatch (MILP) approach of technology 1 [-] 
∆ ,- Generation share difference between economic dispatch and unit-commit [%] 
  
Abbreviations  

LP Linear programming 
MILP Mixed-integer programming 
UC Unit-commitment 
VRE Variable, renewable electricity  
REMix Renewable Energy Mix 
O&M cost Operating and maintenance costs 
WEPP World Electric Power Plants Database 
PV Photovoltaic 
OPEX Operating expenditures 
CCGT Combined cycle gas turbines 
Nb Number of power blocks within a power plant or power plant cluster 
CHP Combined heat and power plant 
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Appendix 
 

 
Fig. A 1: Storage converter capacity expansion (GW) and storage utilization in terms of annually discharged energy (TWh/a) compared over the scenarios (PV 
share + of 0.6) with increasing VRE share (α) and over the different modeling approaches (MILP, LP) for power plants. 

 
Tab. A 1: Techno-economic parameters of thermal power plant clusters for the LP modeling approach. 

Power plant cluster ηgross [-]a ηnet [-]b O&M var 

[€/kWh] 
Wear & tear 
costs [€/kW]c 

Nuclear large 0.324 0.309 0.00171 0.0015 

Nuclear midsize 0.324 0.309 0.00171 0.0015 

Nuclear small 0.324 0.309 0.00171 0.0015 

Lignite large 0.433 0.406 0.00358 0.0015 

Lignite midsize 0.395 0.370 0.00358 0.0015 

Lignite small 0.373 0.350 0.00358 0.0015 

Coal large 0.414 0.379 0.00358 0.0015 

Coal midsize 0.415 0.380 0.00358 0.0015 

Coal small 0.405 0.371 0.00358 0.0015 

CCGT large 0.461 0.453 0.00288 0.0005 

CCGT midsize 0.517 0.508 0.00288 0.0005 

CCGT small 0.493 0.484 0.00288 0.0005 

Gas turbine large 0.400 0.395 0.01236 0.0005 

Gas turbine midsize 0.289 0.285 0.01236 0.0005 

Gas turbine small 0.358 0.354 0.01236 0.0005 

a ηgross is based on [58]. 
b As [58] does not provide data for ηnet, we use the ratio of ηgross to ηnet 
provided by [57]. Note however that [57] do not differentiate between 
capacity groups and includes only technology-specific efficiencies. In 
consequence, the ratio of ηgross to ηnet in this table is identical within 
each technology group. 
c Based on [67]. For nuclear power plants we use the values of 
Advanced Nuclear of [67], for lignite and coal power plants the values 
of Advanced Pulverized Coal Facility, for gas turbines Conventional 
Combustion Turbine and for CCGT Conventional Natural Gas 
Combined Cycle. To conclude to €, we assume an exchange rate of 
1.3US $/€ and an inflation rate of 2% p.a. . 
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Tab. A 2: Techno-economic parameters of thermal power plant clusters for the MILP modeling approach. η@Pmax describes the efficiency at maximal power; η@Pmin the efficiency at minimum load of the unit. Load 
ratemin is defined as the minimal load rate of the unit relative to the gross capacity. 

Power plant cluster η@Pmax
a η@Pmin

b Load 
ratemin [-]c 

Fuel cons. start 
[MWh th/MWel]d 

Auxiliary power 
coolingmin

e [MW] 
Auxiliary power 
othersmin

e [MW]  
Minimum on- 
line time [h] 

Minimum off- 
line time [h] 

O&M var 
[k€/GWhel] f 

Startup costs 
[k€/GW]g 

Ramping costs 
[k€/GW]g 

Nuclear large 0.3240 0.2786 0.50 2.27 6.10 32.00 48 48 1.71 6.6 2.53 

Nuclear midsize 0.3240 0.2786 0.50 2.27 104.10 32.00 48 48 1.71 6.6 2.53 

Nuclear small 0.3240 0.2786 0.50 2.27 104.10 32.00 48 48 1.71 6.6 2.53 

Lignite large 0.4325 0.3720 0.40 3.08 3.20 57.00 12 12 3.58 6.52 2.53 

Lignite midsize 0.3950 0.3397 0.40 2.05 2.00 60.76 12 12 3.58 5.01 2.83 

Lignite small 0.3725 0.3204 0.40 2.05 0.50 91.20 12 12 3.58 5.01 3.13 

Coal large 0.4137 0.3558 0.40 3.08 2.50 57.00 12 8 3.58 6.52 2.53 

Coal midsize 0.4150 0.3569 0.40 2.05 1.40 60.76 12 8 3.58 5.01 2.83 

Coal small 0.4052 0.3484 0.40 2.05 0.50 91.20 12 8 3.58 5.01 3.13 

CCGT large 0.4612 0.2652 0.30 0.14 0.30 16.50 8 4 2.88 1.56 0.60 

CCGT midsize 0.5171 0.2973 0.30 0.14 0.20 21.95 8 4 2.88 1.56 0.60 

CCGT small 0.4928 0.2834 0.30 0.14 0.00 27.51 8 4 2.88 1.56 0.60 

Gas turbine large 0.4000 0.1520 0.20 0.062 0.00 16.50 0 1 12.36 0.78 2.80 

Gas turbine midsize 0.2895 0.1100 0.20 0.062 0.00 21.95 0 1 12.36 0.78 2.10 

Gas turbine small 0.3585 0.1362 0.20 0.062 0.00 27.51 0 1 12.36 0.78 1.40 
a Based on [58]. 
b Based on [59–61], [63]. 
c Based on [61–63]. 
d Based on [68]. Assumed to be warm start. 
e All other parasitics, excluding cooling. Based on [63–66]. 
f Based on [67]. For nuclear power plants we use the values of Advanced Nuclear of [67], for lignite and coal power plants the values of Advanced Pulverized Coal Facility, for gas turbines 
Conventional Combustion Turbine and for CCGT Conventional Natural Gas Combined Cycle. To conclude to €, we assume an exchange rate of 1.3US $/€ and an inflation rate of 2% p.a. 
g
 Based on [68]. For nuclear power plants internal assumptions were used. 
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Tab. A 3: Total specific operating expenditures (OPEX) disaggregated into the cost components CO2 and fuel costs as well variable operation and maintenance 
costs (O&Mvar) over the scenarios with different VRE shares for the LP approach. Note that the total OPEX in this table do not include wear & tear costs as they 
are a result of the optimization.  

VRE share   [-] Technology 
CO2 costs 
[€/t CO2] 

Fuel costs 
[€/MWhth] 

K�L� [-] 
CO2 costs  
[€/MWhel]a 

Fuel costs 
[€/MWhel] 

O&M var 

[€/MWhel] 
Total OPEX 
[€/MWhel] 

0.33 Nuclear large 27 3.3 0.309 0.00 10.68 1.71 12.39 

0.33 Nuclear midsize 27 3.3 0.309 0.00 10.68 1.71 12.39 

0.33 Nuclear small 27 3.3 0.309 0.00 10.68 1.71 12.39 

0.33 Lignite large 27 60.0 0.406 26.57 147.78 3.58 177.94 

0.33 Lignite midsize 27 60.0 0.370 29.16 162.16 3.58 194.90 

0.33 Lignite small 27 60.0 0.350 30.83 171.43 3.58 205.83 

0.33 Coal large 27 77.0 0.379 23.85 203.17 3.58 230.60 

0.33 Coal midsize 27 77.0 0.380 23.79 202.63 3.58 230.00 

0.33 Coal small 27 77.0 0.371 24.37 207.55 3.58 235.49 

0.33 CCGT large 27 76.0 0.453 12.02 167.77 2.88 182.67 

0.33 CCGT midsize 27 76.0 0.508 10.71 149.61 2.88 163.20 

0.33 CCGT small 27 76.0 0.484 11.25 157.02 2.88 171.15 

0.33 GT large 27 76.0 0.395 13.78 192.41 12.36 218.55 

0.33 GT midsize 27 76.0 0.285 19.10 266.67 12.36 298.13 

0.33 GT small 27 76.0 0.354 15.38 214.69 12.36 242.43 

0.66 Nuclear large 60 3.3 0.309 0.00 10.68 1.71 12.39 

0.66 Nuclear midsize 60 3.3 0.309 0.00 10.68 1.71 12.39 

0.66 Nuclear small 60 3.3 0.309 0.00 10.68 1.71 12.39 

0.66 Lignite large 60 86.0 0.406 59.05 211.82 3.58 274.46 

0.66 Lignite midsize 60 86.0 0.370 64.80 232.43 3.58 300.81 

0.66 Lignite small 60 86.0 0.350 68.50 245.71 3.58 317.80 

0.66 Coal large 60 117.0 0.379 53.00 308.71 3.58 365.29 

0.66 Coal midsize 60 117.0 0.380 52.86 307.89 3.58 364.34 

0.66 Coal small 60 117.0 0.371 54.15 315.36 3.58 373.09 

0.66 CCGT large 60 113.0 0.453 26.70 249.45 2.88 279.03 

0.66 CCGT midsize 60 113.0 0.508 23.81 222.44 2.88 249.13 

0.66 CCGT small 60 113.0 0.484 24.99 233.47 2.88 261.34 

0.66 GT large 60 113.0 0.395 30.62 286.08 12.36 329.06 

0.66 GT midsize 60 113.0 0.285 42.44 396.49 12.36 451.29 

0.66 GT small 60 113.0 0.354 34.17 319.21 12.36 365.74 

1.00 Nuclear large 75 3.3 0.309 0.00 10.68 1.71 12.39 

1.00 Nuclear midsize 75 3.3 0.309 0.00 10.68 1.71 12.39 

1.00 Nuclear small 75 3.3 0.309 0.00 10.68 1.71 12.39 

1.00 Lignite large 75 100.0 0.406 73.82 246.31 3.58 323.70 

1.00 Lignite midsize 75 100.0 0.370 81.00 270.27 3.58 354.85 

1.00 Lignite small 75 100.0 0.350 85.63 285.71 3.58 374.92 

1.00 Coal large 75 136.0 0.379 66.25 358.84 3.58 428.67 

1.00 Coal midsize 75 136.0 0.380 66.08 357.89 3.58 427.55 

1.00 Coal small 75 136.0 0.371 67.68 366.58 3.58 437.84 

1.00 CCGT large 75 131.0 0.453 33.38 289.18 2.88 325.44 

1.00 CCGT midsize 75 131.0 0.508 29.76 257.87 2.88 290.52 

1.00 CCGT small 75 131.0 0.484 31.24 270.66 2.88 304.78 

1.00 GT large 75 131.0 0.395 38.28 331.65 12.36 382.28 

1.00 GT midsize 75 131.0 0.285 53.05 459.65 12.36 525.06 
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1.00 GT small 75 131.0 0.354 42.71 370.06 12.36 425.13 

a The following specific emission factors were assumed [t CO2/MWhth]: uranium = 0.00, lignite = 0.40, coal = 0.33, natural gas = 0.20. 

 

 

 

 
 

Fig. A 2: Merit order for the scenarios differing in their VRE share M for all power plant groups in the LP approach. 
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Tab. A 4: Cluster with regard to power plant technology type and plant size for the scenario with reduced number of blocks (485, 20, 5).  

Technology 
group 

Capacity 
group 

Capacity range 
[MW] 

Number of blocks [-] 
Installed 
capacity [MW] 

   485 20 5  

Nuclear Large > 800 8 1 1 20,400 

Nuclear Midsize  - - - - - 

Nuclear Small - - - - - 

Lignite Large > 800 2 1 - 3,800 

Lignite Midsize  400 ≤ 800 9 1 1 9,900 

Lignite Small < 400 37 1 - 7,40 

Coal Large > 550 6 1 - 9,000 

Coal Midsize  350 ≤ 550 10 1 1 8,000 

Coal Small < 350 58 2 - 11,600 

CCGT Large > 350 8 1  6,750 

CCGT Midsize  150 ≤ 350 13 1 1 6,500 

CCGT Small < 150 119 3 - 4,740 

Gas turbine Large > 150 1 1 - 400 

Gas turbine Midsize  50 ≤ 150 29 1 1 3,990 

Gas turbine Small < 50 185 5 - 3,700 

Total   485 20 5 96,180 
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Highlights 

• Mixed integer unit-commitment with economic dispatch (MILP) and simplified linear 
programming merit order dispatch (LP) for thermal power plants are compared with 
regard to electricity storage demand and utilization in a least cost optimization model. 

• The analysis relies on different hypothetical energy scenarios with different shares of 
variable renewable electricity (VRE) generation and photovoltaics to wind power 
ratios as well as different granularities of the thermal power plant capacity mix. 

• Users of optimization models for future energy scenarios should carefully deliberate 
their choice of thermal power plant modeling in order to consider storage expansion 
and utilization appropriately. 

• MILP approaches were found to be superior in lower share VRE scenarios and/or in 
thermal capacity mixes with a limited number of thermal generation units. 

• LP in contrast is sufficient in highly renewable and granular capacity mixes. 

 


