CMC Materials for Aircraft Brakes

Bernhard Heidenreich, Linda Klopsch, Dietmar Koch

DLR– German Aerospace Center,
Institute of Structures and Design, Stuttgart, Germany

11th International Carbon Festival
2nd Global Carbon Cluster Forum

October 5-7, 2016
Jeonju, Korea
C/C-SiC Materials - From Space to Brakes

- High temperature stability (thermal shock, hot spots)
- High abrasion resistance
C/C-SiC Materials - From Space to Brakes

Know how in processing and design of hard and high temperature stable materials and parts
Why Ceramic Brake Systems are Attractive

- Reduced weight
 20 – 25 kg per car
 Density: 2 g/cm³ (cast iron: 7 g/cm³)
- High hardness, low wear rates
- Improved performance and comfort
 (short braking distance, no judder, no fading)
- Corrosion resistance, low dust production
- Advanced braking systems for heavy and fast cars, escalators, trains, planes
Manufacturing Process: Liquid Silicon Infiltration

- **Precursor**: Silicon Granules
- **Additives**: CFRP
- **Fibers**: Pyrolysis
 - $T < 250 \, ^\circ C$
- **Silicon Granules**: Siliconization
 - $T > 900 \, ^\circ C$
 - $T > 1500 \, ^\circ C$

CFRP (Shaping)

Pyrolysis

Siliconization

CFRP

C/C

C/C-SiC
Effect of Fiber Reinforcement in Ceramics

brittle vs. non catastrophic
Tailorable Material Properties

Variation parameter

Raw Materials
- Fibre type
- Fibre preform
- Fibre orientation
- Precursor
- Additives
- Si type

Processes
- Fibre pretreatment
- Process times
- Graphitizing
- Coatings

Tailored C/C-SiC Materials
- Strength
- Stiffness
- Thermal expansion
- Thermal conductivity
- Wear
- Oxidation
- Cost

www.DLR.de • Chart 7
Tribological Properties of C/C-SiC Materials

Friction samples
Ø 70 mm

Variation of:
• SiC, C, Si content
• Fibre type
• Fibre architecture
• ...

Low Energy Braking
(0.1 MPa; 6 m/s → 0.3 W/mm²; 20 kJ)

High Energy Braking
(0.35 MPa; 16 m/s, → 3 W/mm²; 80 kJ)
Graded C/C-SiC With SiC Rich Friction Surface

2 layers, 1100 °C
3 layers, 900 °C
3 layers, 750 °C
10 layers, 600 °C
3 layers, 750 °C
3 layers, 900 °C
2 layers, 1100 °C

Friction surface
~ 60%
Increasing SiC content
~ 40%
Plane of symmetry
~ 40%
Increasing SiC content
~ 60%
Relaxation crack

RTM

Autoclave

SiCralee Coating

- thick and stable SiCralee coating on segmented brake disc (≈ 290 x 100 x 12 mm³)
- after high performance testing no spallation visible
- deposition of sintermetallic brake pad material
Brake Development at DLR

- Basic research (from 1990)
- Commercial car brakes (2001)
- Other friction application (2004)
- Propeller brake (2012)

ICE brake (Matech-project)
Porsche / SGL
Schindler / FCT
Umbra / SKT
Propeller Brake for A400M

- Compact multidisc brake system (Umbra).
- One rotor disc linked with propeller, two stator discs fixed in brake casing.
- Four C/C-SiC brake pads (Ø 120 mm x 6 mm) rivetted to steel discs.
Application

- Propeller stopping after landing / blocking during parking (storm)

- Braking conditions
 - \(\bar{D}_{\text{Propeller}} = 5.3 \text{ m} \)
 - \(v_{\text{max.}} \leq 650 \text{ rpm} = 6.3 \text{ m/s} \)
 - \(p_{\text{max.}} \leq 3.2 \text{ MPa} \)

- Requirements
 - \(t_{\text{braking}} \leq 8 \text{ s} \rightarrow \text{COF}_{\text{dynamic}} \geq 0.45 \)
 - \(\text{Wear}_{\text{max.}} \leq 0.27 \text{ mm}^3/\text{kJ}^{-1} \)
 - \(\text{COF}_{\text{static}} > 0.25 \)
 - \(E_{\text{max.}} > 100 \text{ kJ} \)

- \(T_{\text{max.}} > 450 \degree \text{C} \)
- CMC brake pads
Development of C/C-SiC prake pads

2010
- First contact
- Material selection C/C-SiC XS
- Screening Test (3 C/C-SiC variants)

2011
- Material specification
- Qualification (Umbra) 10 sets

2012
- Pre-series manufacture 30 sets (DLR)
- Licence agreement
- Technology transfer DLR → Umbra, Schunk
- Qualification (Umbra)

2013
- C/C-SiC qualified
- Serial production Schunk

www.DLR.de • Chart 14
What is next?

- Improved materials based on new fibre preforms
 - Adjustment of temperature distribution (thermal conductivity and thermal capacity)
 - Higher mechanical properties
 - Reproducibility

- Sandwich design for lightweight structures and brake discs

- Improvement and prediction of corrosion resistance
- Failure analysis
- Lifetime prediction
Different Fiber Preforms for Ceramic brake disc application
Brake Discs Based on Circular Knitted Fabrics

- Warm Pressing
- Pyrolysis
- Siliconization
Tufted Fibre Placement (TFP)

Aims:

- Higher mechanical properties
- Improved thermal management
- Reproducible Manufacturing
Mechanical Properties

Bending Strength [Mpa]

Young's Modulus [Gpa]
Thermal Properties

- Thermal Conductivity [W/(mK)]
 - Short fibers
 - Fabric XS
 - knitted fabric
 - TFP tufted

- Thermal Expansion [10^-6/k]

Temperature [°C]

www.DLR.de • Chart 20
Foldcore Technology

Isometric folding \rightarrow no internal stresses, deformation or cracks

Y. Klett, University of Stuttgart, Institute of Aircraft Design, 2013
Ventilated Brake Discs Based on Foldcores

C/C Skin
C/C Core
C/C Skin

Joining paste

Joined C/C structure

C/C-SiC sandwich structure

B. Heidenreich, D. Koch (DLR), N. Gottschalk, Y. Klett (IFB), 2016
Ventilated Brake Discs Based on Foldcores

C/C Skin
C/C Core
C/C Skin

Joining paste

Joined C/C structure

C/C-SiC sandwich structure

B. Heidenreich, D. Koch (DLR), N. Gottschalk, Y. Klett (IFB), 2016