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Influence of self-sustained jet oscillation on a confined turbulent flame

near lean blow-out

Zhiyao Yina,∗, Isaac Boxxa, Wolfgang Meiera

aInstitute of Combustion Technology, German Aerospace Center, 70569, Stuttgart, Germany

Abstract

Premixed methane-air turbulent flame is generated in a single-nozzle jet-stabilized combustor de-

signed based on the FLOXr concept1. Confinement-induced, self-sustained jet oscillation is ob-

served. Its influence on combustion stability near lean blow-out (LBO) is investigated using simul-

taneous particle imaging velocimetry (PIV), planar laser-induced fluorescence of OH radicals (OH

PLIF), and OH chemiluminescence imaging at 5-kHz repetition rate. Via proper orthogonal decom-

position (POD) of the velocity field and extended POD of the scalar fields, pronounced variations

in the flame shape are observed during a cycle of jet oscillation. In extreme cases, flame is partially

blown out in the combustor due to jet impingement on the wall during the first half of its oscilla-

tion cycle. In the subsequent half cycle following jet detachment, flame is restabilized after robust

flashback and re-light. Statistical analysis shows that such pattern is by far the most prevalent

mechanism for blow-out and restabilization to take place at the operating condition. Additionally,

these events are found with much higher probability during slow-paced jet oscillations.

Keywords: Confined Turbulent Flames, Jet Oscillation, Highspeed Laser Diagnostics, Proper

Orthogonal Decomposition

1. Introduction

FLOXr combustion, also termed as flameless [1] or mild combustion [2], has recently gathered

great interest for its low susceptibility to thermoacoustics and flashback [3] as well as its high fuel

flexibility and low NOx emission [4]. It is often regarded as a viable alternative to swirl-stabilized

flames for stationary gas turbines. FLOXr combustors generally consist of circularly arranged
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nozzles issuing high momentum jets of reactants into a combustion chamber, generating strong

flow recirculation and hence intense mixing of reactants and products. Characterization of various

FLOXr combustors is an ongoing effort at our institute, with early investigations dedicated to

obtaining quantitative data sets for validating numerical simulations [4, 5, 6]. With a recent focus

on the stabilization mechanisms in this type of combustors, a laboratory-scale single-nozzle FLOXr

combustor has been designed to allow more sophisticated optical diagnostics [5]. Subsequently,

confinement-induced periodic jet oscillation has been identified as the major source of instability in

flames stablized in this combustor [7, 8].

Confinement-induced, self-excited and self-sustained jet oscillation is a well-documented phe-

nomenon in non-reacting flows [9]. It is commonly understood that, the oscillation is triggered

by obstructed shear layers (such as by a recirculation zone), and is sustained by a feedback loop

between initial disturbances and the impinging points. Such feedback is most commonly hydrody-

namic, as seen in jets experiencing sudden expansion [10, 11] and jets issuing into a cavity [12, 13].

Jet flapping and jet precession have been identified as the primary patterns of oscillation in confined

jets [10, 11, 12]. The former case is often found in planar jets, where recirculation zones on each

side of the jet move conversely upstream or downstream as the jet flaps with respect to the plane

of symmetry. Through proper orthogonal decomposition (POD) of the 2-D velocity field [14], the

spatial mode responsible for the jet flapping was found to contain large structures aligned along each

side of the jet. In the case of a round jet expanding into a concentric cylindrical chamber [10, 15],

jet precessing was found to induce a swirling flow in the confinement. Through parametric studies,

oscillations in confined jets have been found to scale linearly with jet velocity and impingement

length (e.g., nozzle diameter and confinement dimensions) [12, 13]. They often possess a Strouhal

number in the range of St∼0.001-0.01, much smaller than the instabilities generated within shear

layers (St ∼1) [10]. As its main influence on the flow field, jet oscillation can drastically increase jet

spreading rate and enhance large scale entrainment of the ambient fluid while suppressing fine scale

mixing [11]. In reacting flows, these features were found responsible for an increased flame volume

and a subsequent reduction in NOx production, compared with flames supported by non-oscillating

jets [16].

Despite enduring interest in jet oscillation in various research fields, its implications on com-
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Figure 1: (a) Schematics of the bottom section of combustor chamber (b-d) average flow field, OH and OH∗ signal
distributions

bustion stability have not been fully explored. With the development of the single-nozzle FLOXr

combustor mentioned above, we recently reported on the complex pattern of jet flapping and its

various influence on flame structure and flame stabilization when operating at stable conditions [8].

Since FLOXr combustors typically operate at fuel-lean conditions, mechanisms controlling the lean

blow-out (LBO) process are of particular interest for extending their operational limits. Operating

at a specific condition where flame blow-out occurs partially and sporadically, the current work

examines the relationship between jet oscillation and the LBO mechanisms in the single-nozzle

FLOXr combustor. To time-resolve the transient combustion dynamics at this condition, fluctua-

tions in the flow field as well as the scalar fields are measured using 5-kHz-rate, simultaneous stereo

particle imaging velocimetry (PIV), planar laser-induced fluorescence of OH radicals (OH PLIF)

and OH chemiluminescence imaging.

2. Experimental

2.1. Combustor and operating conditions

The single-nozzle, single-channel combustor consisted of three identical sections stacked on top

of each other. Each of these sections was 200-mm tall, had a cross section of 50 mm by 40 mm,

and was enclosed by quartz windows to provide four-way, wall-to-wall clear optical access. The

bottom section is illustrated in Fig.1a. The entire combustor chamber was mounted on a three-axis

3



translation stage, to allow repositioning relative to the diagnostic setup. Premixed methane-air

mixture was delivered through a straight stainless steel tube (ID=10 mm, L=400 mm) into the

combustor. The nozzle had a chamfered tip, rose 20 mm from the base plate, and was offset by 10

mm along the x-axis from the geometric center of the combustor chamber. The off-center positioning

of the jet was designed to draw analogy to the situation around a jet nozzle in an actual FLOXr

combustor [5]. The coordinate system used in this work is defined in Fig.1a.

For this study, the combustor was operated with a jet exit velocity of 63 m/s, at initial tem-

perature of 300 K and pressure of 1 bar. Methane and air were well mixed in a static mixer three

meters upstream of the jet exit. During a measurement, flame was first stabilized initially at φ=0.8.

Once the combustor was thermally stable, the methane flow rate was gradually reduced to reach a

stoichiometry of φ=0.77, which was close to the lean blow-out (LBO) limit of about φ=0.75. At

this condition, flame becomes unstable and undergoes sporadic processes of partial blow-out and

re-light.

2.2. 5-kHz-rate diagnostic setup

The stereo PIV system utilized a dual-cavity Nd:YAG laser (Edgewave IS-6IIDE) and a pair of

CMOS cameras (LaVision HSS8) equipped with f=200 mm lenses (f/5.6). The two cameras were

coupled with Scheimpflug adaptors, suspended on opposite sides of x-y plane of the combustor,

focused down onto the same field of view (FOV). For OH PLIF, a frequency-doubled dye laser

(Sirah Credo) was pumped by an Nd:YAG laser (Edgewave IS-8IIE). The laser system was tuned

to the peak of Q1(7) line in the OH A-X (1,0) band. OH fluorescence was collected into an intensified

camera system (Lavision HS-IRO and HSS6 CMOS) through a UV lens (Halle , f=100 mm, f/2.8,

coupled with a 310-nm bandpass filter). The OH PLIF excitation pulse was temporally placed

between the two PIV pulses. Both laser sheets were overlapped and aligned through the center

of the nozzle (x-y plane). A common FOV of about 50×35 mm2 (in the front view) was achieved

for both measurements (which covers the entire chamber width). Based on ±0.1 pixel uncertainty

of the cross correlation peak-finding algorithm and the ∆t=6µs set between the two PIV laser

pulses, an uncertainty of ±0.8 m/s was estimated for the velocity measurement. For OH∗ imaging,

a filtered (310-nm bandpass) UV lens (Cerco, f=45 mm, f/1.8) with a set of HS-IRO and CMOS
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Figure 2: Observed flame fluctuations with long duty cycle

camera (Lavision HSS5) was used to monitor the global flame behavior from the front view (with

a FOV of about 250 mm tall). The camera gate was set to open 0.5 µs after the PLIF laser pulse

to avoid interference from OH fluorescence. Note that the camera systems for OH PLIF and OH∗

were set perpendicular to and on opposite sides of the x-y plane.

3. Jet-oscillation-induced combustion instabilities

3.1. General observations

General flow field and flame shape at the current operating condition were found similar to

results in other premixed methane-air flames generated in the same combustor [5, 7, 8]. Fig.1b-d

shows respectively the average flow field, OH and OH∗ signal distributions, from measurements

conducted at different combustor positions along the y-axis. Combustion instabilities were first

observed in spatially integrated OH LIF and OH∗ signal in the middle section of the combustor

chamber (where OH∗ is the strongest). An example from one set of high-speed measurements is

given in Fig.2. Both 〈OH〉 and 〈OH∗〉 (angle brackets denote spatial integration) exhibit distinctive

and periodic fluctuations with nearly identical duty cycle. Such long duty cycle, at about f=20 Hz

or Std=0.003, is consistent with the characteristic frequencies of jet oscillation at stable operating

conditions reported in Refs.[7, 8]. In addition to such periodic fluctuations, sporadic flame “puffing”

resembling an incomplete flame blow-out was observed during the measurements. From high-speed

recordings of OH∗ images, the nature of these events was identified as a partial blow-out followed

by flame restabilization in the bottom section of the combustor.

To confirm the correlation between jet oscillation and the observed combustion instabilities, a

series of analyses were carried out based on the POD technique utilizing the time-resolved, simulta-

neous measurements of velocity and scalar fields. A step-by-step demonstration is provided in the

following sections.
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3.2. Basics of POD and its extension

POD is a well-established tool for extracting and characterizing coherent structures in unsteady

flow fields [17]. Briefly, POD identifies an orthonormal basis, formed by POD modes φφφj, to optimally

represent the fluctuating portion of the velocity field uuu′, so that the instantaneous flow field can be

reconstructed using (terminology following Ref.[18]):

uuui = uuu+
N∑
j=1

aij · φφφj , (1)

where uuu is the average velocity field, aij = 〈uuu′ · φφφj〉 (angle bracket denotes spatial integration) is

known as the temporal coefficient of mode j. In this work, the snap-shot method [19] was used to

derive aij by solving the Eigenvalue problem of the correlation matrix Kij = 〈uuu′i · uuu′j〉, constructed

from N snap shots (see details in Ref.[18]). Then, the spatial modes were obtained by:

φφφj =
1

λjN

N∑
i=1

aij · uuu′j , (2)

where λj is the Eigenvalue associated with mode j, which also represents the contribution of mode

j to the total kinetic energy.

In a similar manner, the so-called “extended” POD modes [20] can be derived for the simulta-

neously measured scalar fields (OH and OH∗ in this case). The extended modes χj of a given scalar

field cj can be calculated based on aij from POD of the flow field, and by replacing uuu′j with the

fluctuating part of the scalar field c′j in Eq.(2). In essence, scalar field fluctuations dictated by χj

is by definition a direct result of the flow field oscillation described by φj.

3.3. Spatial modes

Figure 3b-d shows respectively the first POD mode and its extended modes of the velocity field,

OH and OH∗ signal distributions, obtained from decomposing sets of 3500-shot measurements taken

at different combustor locations (marked by numbers in parenthesis). From Fig.3b, the first POD

mode (termed the “flapping mode” in this work) comprises islands of velocity peaks (refer to the

magnitude of Vy in Fig.3b) distributed on each side of the jet, typical of a flapping jet [14]. Also, the

flapping mode is by far the most dominant flow structure at the current condition. This is evident
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Figure 3: (a) Energy contributions of the POD modes and the first spatial mode for the (b) velocity field, (c) OH
and (d) OH∗ signal distributions.

from its significantly higher energy contribution compared to the rest of the modes at all three

measurement locations, especially in the middle section of the chamber, as is shown in Fig.3a. This

feature is rather unique to this combustor owing to the asymmetric setting of the jet. In symmetric

confinements, the first two modes normally contribute similarly to the total energy [14, 15]. On the

other hand, the extended modes of OH and OH∗ distribution (Fig.3c-d) are quite similar, despite

the latter being a line-of-sight integration. Both consist of negative intensity regions near the jet

axis sandwiched by positive regions near the walls.

3.4. Low-order modeling of the oscillating fields

The interpretation of the spatial modes in Fig.3 and their relations to jet flapping can be better

comprehended through a phase (ψ)-dependent low-order modeling [18]. This is done by using the

obtained spatial modes as a basis and assuming a sinusoidal jet oscillation. The phase-dependent

fields can therefore be modeled as:

fff(ψ) ≈ fff +
√
λF · sinψ · eeeF , (3)

where fff(ψ) represents either the velocity or the scalar field, fff is the time average, λF is the

Eigenvalue of the flapping mode, and eeeF denotes the flapping mode φφφF or its extended modes
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Figure 4: Phase modeling of the velocity field and OH∗ signal distribution based on the spatial modes given in Fig.3

χχχF . Note that although there is a coupling between the flapping mode and higher order modes

[8], Eq.(3) is a valid approximation by neglecting the higher order modes due to their much lower

energy contributions (2-4 times lower than the flapping mode, see Fig.3a).

Figure 4 shows the modeled fields at four representative phases depicting an oscillating cycle.

The same sets of data shown in Fig.3 were used. From Fig.4a, in the first half cycle (0◦ to 180◦), the

jet flaps left then right, causing the impingement point (red mark) and the LRZ to shift upstream

and downstream. Concurrently to the opposite side of the LRZ, a secondary recirculation zone

(SRZ) forms and disappears. Although it is a transient structure at the current condition, the SRZ

could also be a permanent fixture in the flow field, as found at other operating conditions in Ref.[8].

In the next half cycle (180◦ to 360◦/0◦), the jet flaps right then left, during which the jet almost

straightens up against the right wall, with a notable increase of velocity in the jet stream.

From Fig.4b of phase-dependent OH∗ distributions, flame contracts and retreats downstream as

the jet flaps leftwards. The trend is reversed during the second half of the cycle. Flame stretches

along the y-direction, attaining a much larger volume and higher intensity at phase 270◦ than at

90◦. Consistent with the OH∗ fluctuations, it was also observed that the oscillation of LRZ following

jet flapping causes the region containing OH signal (mostly in the LRZ) to narrow and widen.
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Figure 5: A time segment containing a flame “puffing” event

Alternatively to the low-order modeling method, phase averaging can be performed using the

temporal coefficient a. Ref.[18] compared the two techniques in great detail, finding only minor

differences in their phase-sorted results. Phase averaging was however deemed less suitable for the

current work, mainly because the slow jet flapping motion requires large sets of runs for convergence

at a given phase. It may also smear out important features due to the multi-frequency nature of

the flapping motion [8].

3.5. Flame “puffing”

As mentioned in Section 3.1, flame “puffing” events were recorded occasionally at the current

operating condition. To identify such events in a systematic way, spatial integration was performed

on instantaneous OH∗ signal from the bottom section of the combustor (where blow-out was ob-

served). As an example, a segment of the resulting time-dependent 〈OH∗〉 (normalized by its time

mean 〈OH∗〉) is shown in Fig.5b. At around t=0.15 s, 〈OH∗〉 drops to nearly zero, indicating a flame

blow-out in the bottom section. This is followed by a robust re-light process, which registers a sub-

stantial overshoot in 〈OH∗〉. In comparison, in stable burning flame before and after the “puffing”,

〈OH∗〉 fluctuates relatively mildly around its mean value.

The method to correlate flame “puffing” and jet flapping is described below. Fig.5a plots the

normalized temporal coefficients of the flapping mode (aF ), extracted from simultaneously measured

flow fields. Note that aF exhibited multiple peaks in the frequency domain (also implied from the

varying its cycle duration in Fig.5a), all of which resided around Std ∼0.003, consistent with the

flame fluctuations in Fig.2. To identify flapping cycles, a zero-crossing detection algorithm was
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used to assign 0◦/360◦ or 180◦ to corresponding frames, assuming a sinusoidal behavior of aF (to

be consistent with Fig.4). The phase angles were then extrapolated accordingly for frames in

between of zero crossings. As can be seen, the entire flame “puffing” process is contained within

one complete jet flapping cycle. Relating to the phase-dependent oscillations modeled in Fig.4, the

blow-out occurs during the left-then-right half cycle of jet flapping, whereas re-light is not initiated

until the subsequent half cycle of right-then-left flapping.

The detailed pattern of the flame “puffing” process recognized in Fig.5 is shown in Fig.6 with

a sequence of instantaneous flow fields (top row) and OH∗ distributions (bottom row). In order to

focus on the global jet oscillation, the flow fields were reconstructed according to Eq.(1) with only

the flapping mode to remove fine turbulent structures in each frame. Therefore, the velocity fields

should only be considered as a reference to relative jet position. Instead of using time stamps, the

frames were selected based on their assigned phase angles (labeled on top of each column) to better

showcase a complete flapping cycle. The frames at phases 0◦, 180◦ and 360◦ were also marked out

in Fig.5a to provide a time correlation.

First off, the flow fields exhibit a flapping pattern nearly identical to the low-order modeling

given in Fig.4. During the leftward jet swing from 0◦ to 90◦, the flame retreats downstream along

the left wall until it is completely extinguished in the bottom section, corresponding to the zero

intensity region of 〈OH∗〉 in Fig.5. Additionally with the formation of the SRZ, flame is able to
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extend along this new back flow channel into the bottom section (90◦ to 135◦), leaving a small

footprint in 〈OH∗〉 (see Fig.5b). Then OH∗ intensifies in the middle section as the jet swings right

to 180◦. In the next half-cycle, the rightward jet swing continues and opens up the back flow into

the LRZ. This is accompanied by a pronounced flashback (180◦ to 225◦), followed immediately by

a strong re-light of seemingly the entire jet at 270◦, corresponding to the significant overshoot in

Fig.5b. The subsequent leftward recovering of jet to 360◦ causes the flame to shrink and drift away

from the right wall.

3.6. Discussion

The primary influence of jet oscillation on combustion stability near LBO can be deduced based

on the above analysis.

First, as the jet flaps, it impinges and detaches constantly from the left wall, evident from the

motion of the impingement point (red mark) in both Fig.4a and Fig.6. This causes the back flow

into the LRZ to decrease and increase (see Fig.4a). Since the LRZ is crucial for mixing of burned

and unburned gas, a reduction in entrainment likely makes the LRZ less suitable for flame holding

(e.g., due to a reduction in temperature) and vice versa. This could be the primary reason for flame

to shrink and expand (also become more intense) during the flapping cycle, as observed in Fig.4b.

Second, the results in Fig.6 suggest that flame “puffing” is triggered essentially by the same

mechanism as the general flame fluctuation in Fig.4b. Following the above argument, jet impinge-

ment can result in significant build-up of unburned gas in the LRZ. In the extreme of a “puffing”

event, this change in the LRZ may lead to flame quenching and eventually to blow-out in the re-

gion. As the impingement point shifts downstream, flame flashes back to the bottom section and

encounters large amount of unburned fuel-air mixture, resulting in robust re-light in the bottom

section.

Third, Fig.6 also shows that, although flame could extend back into the bottom section via the

SRZ, this short-lived back flow channel could not result in a full re-light. On the other hand, the

SRZ may play a significant role in sustaining the flame in the middle section during flame “puffing”.

This can be seen from the increasing OH∗ intensity from 45◦ to 90◦.
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4. Probability analysis of combustion instability

One important question that still remains is whether or not other mechanisms can also result

in flame “puffing”. This is addressed in this section by looking for statistical correlations between

jet oscillation and combustion instability. Four sets of measurements containing a total of 14 k

frames (including about 80 complete flapping cycles) were analyzed. The blow-out events were

defined as frames containing 〈OH∗〉 less than 10% of the mean value 〈OH∗〉. Re-light events were

defined as 〈OH∗〉>2〈OH∗〉. Again, only the bottom section of the combustor chamber was spatially

integrated to capture flame “puffing” events. By this definition, about 20% of all the frames used

were associated with flame “puffing”.

Fig.7a shows a 2-D rendition of histograms of normalized 〈OH∗〉 at different phases. Note

that all the frames were sorted by their phase angles (assigned the same way as for Fig.6) into

eight phase groups, each of which spanned 45◦ and centered at the eight representative phases.

As expected, the majority of the frames are found near 〈OH∗〉. However, the blow-out events

(normalized 〈OH∗〉 <0.1) occur predominantly during the first half cycle of jet flapping (0◦ to

180◦). On the contrary, the vast majority of re-light events (normalized 〈OH∗〉 >2) take place

during the second half cycle (180◦ to 360◦). This demonstrates that the pattern depicted in Fig.6

is by far the most dominant mechanism for flame “puffing”.

From Fig.5, the blow-out event seems to coincide with the longest half cycle in the time-segment.

In fact, a correlation was found between the pace of jet flapping and flame susceptibility to partial
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blow-out, as described in the following. The frames included in Fig.7a were further categorized by

the duration of a half-cycle, 1/2T, as labeled in Fig.5a. Note that an identical value was assigned to

all frames belonging to the same half cycle. Analogues to the phase grouping above, the frames were

also sorted into eight 1/2T groups, centered from 5 ms to 40 ms, each with a 5 ms span. Essentially

all frames were arranged into an 8×8 matrix. Then the number of frames with partial blow-out and

re-light from each cell of the matrix was divided by the total number of frames in the same cell, to

derive the probability of their occurrences at a given phase and 1/2T combination. Two probability

maps were generated respectively for the blow-out and re-light events, as shown Fig.7b and c. Aside

from confirming again the preferred half cycle for blow-out and re-light, flame “puffing” events are

found to have much higher probability when jet flapping takes a slow pace (1/2T >30 ms). This

can be explained considering that, during a slow leftward flapping, the jet would linger at the

impingement position that reduces the entrainment of burned gas into the LRZ, making the flame

more susceptible to blow out in the bottom section of the chamber. On the contrary, faster-paced

jet flapping is expected to be more resilient to flame “puffing”. This is supported by the fact that

both blow-out and re-light hardly occur at 1/2T <20 ms.

5. Conclusions

Combustion instabilities in a confined, premixed methane-air turbulent flame near its lean

blow-out limit were examined using simultaneous particle imaging velocimetry (PIV), planar laser-

induced fluorescence of OH radicals (OH PLIF), and OH chemiluminescence imaging at 5-kHz

repetition rate. Self-sustained jet oscillation within the combustor chamber was revealed by proper

orthogonal decomposition (POD) of the measured velocity fields. The influence of jet oscillation

on flame stabilization was analyzed by deriving its extended POD modes for the measured OH and

OH∗ distributions. Low-order modeling based on these spatial modes demonstrated a pronounced

flame fluctuation during a jet oscillation cycle. Flame was seen to contract following the leftward

swing of the jet, whereas the intensity and volume of the flame increase significantly as the jet

reverses course.

An extreme case (flame “puffing”) of such fluctuation was found to result in flame blow-out in the

bottom section of the combustor during the first half cycle of jet oscillation. This was attributed

13



to jet impingement on the left wall, limiting the entrainment of hot burned gas into the lateral

recirculation zone (LRZ). However, flame was always able to restabilize with a strong re-light of

the bottom section, following jet detachment and flame flashback from the middle section in the

subsequent half cycle of jet flapping. This trend of blow-out followed by a re-light was demonstrated

statistically as the most prevalent pattern for flame puffing to occur. In addition, slow-paced jet

flapping (with a half cycle larger than 30 ms) was found as more likely to trigger flame puffing.
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