The Dawn spacecraft has been orbiting around dwarf planet Ceres since Spring 2015 [1, 2]. The spectrometer VIR (0.25-5.0 \(\mu m\)) acquired data at different altitudes providing information on the composition of the surface of Ceres at resolutions ranging from few kilometers to few tens of meters [3,4].

The average thermally corrected reflectance spectrum of Ceres as measured by VIR shows that the spectrum in the 2.6–4.2 \(\mu m\) region is compatible with the presence on the surface of a mixture of dark carbon-rich minerals, Mg-phyllosilicates, ammoniated clays, and carbonates [4]. This result confirms previous studies based on ground based spectra [5, 6].

The pervasive presence of Mg- and NH4-bearing phyllosilicates indicates endogenous formation by a globally widespread and extensive alteration processes while the variations in the amount of phyllosilicate suggest the existence of a vertically stratified upper crust [7].

The heterogeneity of the crust is also suggested by the presence of the ‘bright spots’. The typically dark surface of the dwarf planet Ceres is punctuated by areas of much higher albedo [8,9]. These areas are mostly consistent with a large amount of carbonate, implying recent hydrothermal activity [10].

References
Abstract: SURFICIAL COMPOSITION OF DWARF PLANET CERE...