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Skill Parametrization Approaches and Skill Architecture for
Human-Robot Interaction

Franz Steinmetz! and Roman Weitschat?

Abstract— There is an ongoing shift in industries from mass
production to low-batch-production with highly individualized
goods. This increases the programming effort required for the
producing machines and robots, which is currently carried
out by robot experts. For keeping the production economical,
new programming approaches are required, allowing shop-floor
workers to instruct robots. One approach is to develop robotic
skills, which are pre-programmed software modules that only
need to be parametrized by the shop-floor user. In this paper,
a new software architecture for robot skills is presented, which
aims at robustness and human-robot interaction. In addition,
four basic demands on the skill parametrization are described
that fasten up the process and increase intuitiveness for the
user. We give several examples and implement a screwing skill
and a pick & place skill, which are demonstrated in two case
studies.

I. INTRODUCTION

The shift from mass production to high customization in
industrial manufacturing leads to a decreasing number of
batch sizes. Up to now, customized machines or robots have
been used for the production of a high number of workpieces.
The set-up times for a robot work-cell are in a good ratio
compared to the production period for large production
volume, whereas a certain proportion of set-up time is
caused by programming the robot. For lower batch sizes,
this kind of manufacturing is economically not feasible.
Therefore, shop-floor workers are employed when product
periods and number of manufactured products are low and
an automation is not profitable. Robots are an important
component for increasing the productivity and efficiency of
a manufacturing process. Hence, the programming of a robot
must be simplified such that non-experts are able to program
it. In addition, the reprogramming time of a robotic system
needs to be reduced significantly.

One approach is simplifying the programming expenditure
by using robot skills [1]. A robot skill is a kind of software
module, which is readily implemented by a robot expert and
only needs to be parametrized by a user. One example is
a screwing skill that only requires the parameters ‘“‘screw
type” and “target screw pose”. The main idea is to compose
robot skills with all information, behavioral logic, recover
strategies, controllers, etc., which are needed to execute a
certain task. The non-expert can sequence these single robot
skills to obtain a complex autonomous or interactive robot
task with a bounded set of parameters.
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While [1] focuses on fully autonomous robots, e.g. for
tending machines, our research targets at human-robot inter-
action. Within the next years, robots will not be sophisticated
enough to replace all workers participating in a production
process. We rather foresee a more intense collaboration
between a human, being very flexible, and a robot, being fast
and accurate. Collaboration leads to a significant reduction
of production time, while keeping the human in the loop.

In order to make the robot skill approach applicable in
an industrial scenario, we contribute to this research in two
ways:

1) First, we developed a software architecture for skills to
make human-robot interaction more robust and allows
for process control.

2) Second, we describe strategies and approaches for a
fast and intuitive parameterization process.

In the following Section II, research related to this paper is
introduced. Then, Section III presents the developed software
architecture for skills and Section IV describes our four
demands on skill parametrization. The hardware and software
implementation is given in Section V. We demonstrate the
implemented skills in Section VI and finally draw a conclu-
sion in Section VII.

II. RELATED WORK

A method to skill programming, similar to the one of our
paper, is introduced in [2], where Behavior Trees are used
for modeling and combining capabilities in a framework
called CoSTAR. Another example is the rob@work robot
assistant, applying symbolic reasoning for the execution of
tasks that are instructed using a man-machine-interface [3].
The paradigm behind these approaches is called task-level
programming.

Archibald and Petriu did pioneering work in an ap-
proach closely related to robot skills [4]. Their skills can
be parametrized and have both pre- and postconditions. In
addition, an iconic programming language for sequencing is
implemented. The approach is later picked up by Bggh et al.
in [5], establishing the terminology and model of robot skills
(similar to Fig.1). They further refine this skill model [1]
and show how skills can generically be used on different
hardware [6].

According to [1], a skill contains a combination of skill
primitives. A skill primitive is typically a sensory input
or a single robot motion, described using the Task Frame
Formalism (TFF) [7]. There exist different approaches on
how these primitives are combined. One concept is the usage
of nested generic components as presented in [8]. These



action components also define end conditions, similar to
our action blocks. Yet, there exists no exit handler allowing
to leave the component in a defined manner. Our software
architecture uses stop conditions. This is similar to [9],
where stop conditions are used for skill primitives and are
connected to arcs defining the logical flow. However, no
concurrency is allowed in [9], which restricts the parallel
observation of different events.

The aforementioned approaches use graphical representa-
tions for the combination of components instead of textual
ones. When utilizing textual programming languages, the
number of software patterns is countless. The most pop-
ular ones haven been described by the so called Gang of
Four (GoF) [10], e.g. Observer, Model-View-Controller or
Publisher-Subscriber. Yet, the situation is different when
using visual programming languages, often based on some
kind of state machine concept like Harel statecharts [11].
Most of the common software patterns are not applicable
here, therefore alternative approaches are required.

However, visual programming languages offer many ad-
vantages compared to traditional textual languages. They are
often easy to learn and more intuitive to use. In addition, they
support the creation of mental models of programs [12].

For the implementation and combination of skill primi-
tives, we use our novel visual programming tool for defining
the flow control, named RAFCON. It supports hierarchies
and concurrencies in a state-machine like concept.

When employing a skill for a specific task as a non-expert,
the pre-implemented skill has to be parameterized first. For
this process, different approaches have been explored. In [4],
a graphical user interface (GUI) was used for parameter-
ization, which requires the use of keyboard and mouse.
Programming by demonstration (PbD) is an alternative to this
traditional approach and has been investigated for years [13].
There are a various number of options, such as kinesthetic
teaching (for teaching trajectories [14], also in combination
with force profiles [15]) or by showing and watching [16].
Pedersen et al. started to make use of these intuitive teaching
approaches for the parametrization of skills. In [17], pointing
gestures are used to determine desired objects. In [18], more
gestures are added and a GUI for sequencing skills on a
tablet is introduced.

ITII. SOFTWARE ARCHITECTURE FOR SKILLS

Robotic skills share a common composition as depicted in
Fig. 1. First, precondition checks ensure a (world) state for
which the skill is designed. At the end, postcondition checks
validate the effect of the skill on that state [1]. The state
change is achieved in the execution block, consisting of (de-
vice) primitives. In order to make skills robust, we developed
a software framework for combining these primitives. This
concept is described in the following.

For the display of the software components in this paper,
an abstract graphical representation is used. This slightly
differs from the actual state machine representation in
RAFCON, but tries to carve out the concepts.
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Fig. 1. Simple robot skill model, based on [1]. Preconditions must be
fulfilled before the execution starts. The execution changes the world state.
The success is checked using the postconditions.
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Fig. 2. Developed action block pattern for skill primitives. Parallel running
observers can stop the execution of the activity and call the exit handler.

The central idea of our concept is a programming scheme
named action block, which is illustrated in Fig.2. An action
block changes the system state and consists of an activity
and an exit handler, as well as condition observers. The
activity is executed, when the execution logic enters the
action block. Each condition observer has an outcome and
checks for a single success or failure case in parallel to
the execution of the activity. If one of the conditions is
fulfilled, the exit handler is executed and the action block
is left on the outcome of the triggered condition. In other
words, satisfied conditions cause the activity to preempt and
trigger the preemption routine, namely the exit handler. This
handler is especially intended for gracefully stopping the
activity and therefore ensuring that e. g. resources are freed,
motions stopped and the system state updated.

Outcomes can be connected with a transition to another
action block or other primitives that do not alter the system
state. A transition defines the logical flow of the execution.

It is possible to nest action blocks in a hierarchical
manner, as shown in Fig. 3. The activity of the outer action
block “Screw Operation” consists of two inner action blocks
(“Move to”, “Screw”) and other primitives (“User dialog”). If
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Fig. 3. Action blocks can be nested. The hierarchical structure allows for
example common condition handling.

an outer action block preempts, the primitives are preempted
from the inside out. First, the exit handler of the innermost
running action block is executed, then the hierarchy (outer
activity) is left and the exit handler of the next higher action
block is called.

This architecture has clear advantages compared to a sim-
ple sequential/branching logic, as it allows for a proper pro-
cess monitoring and control. Process monitoring is achieved
by allowing concurrently running observers, each responsi-
ble for different sensors, variables or other inputs. Process
control is gained in two ways. First of all, action blocks
are always exited in a defined state. The system state when
leaving an action block is the same as the system state before
the start of the block, e.g. the screwer is off before/after
the screwing action block. This is also critical for the safe
interaction with the environment. In the case of collisions,
the robot is supposed to stop, no matter what it is currently
doing. When collisions are observed on the highest hierarchy
level, the architecture stops all activities from the inside out.
Process control and robustness is also attained by allowing
the custom handling of different events: Events that trigger
conditions can be caught on every hierarchy level and each
condition observer has its own outcome. This grants to
handle the event where it is most reasonable, e. g. a timeout
is observed on a low level, such as the screwing action block,
as the timeout is related to that block, whereas a collision
might be caught on a higher level, as it is related to all
movements. Concerning the unique outcomes, the timeout
can be handled in a different way than the reach of certain
torque threshold.

As many conditions as possible should of course be
handled automatically using some kind of strategy for a
maximum of autonomy. However, a skill cannot decide
for every event what to do. Especially in cases of failure
conditions (e.g. collisions), the user must be in the loop
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Fig. 4. Simplified part of a screwing skill. The parametrization of the
screw pose is entangled in the skill.

and asked for a choice between predefined solutions such as
continue, repeat or abort (see again Fig. 3).

IV. PARAMETRIZATION APPROACH

Another topic usually neglected in the field of robot skills
is the parametrization process, which is a key part of the skill.
Proper parametrization integration can lead to short teach-in
times and thus fast programming of the robot.

Therefore, we developed approaches for a successful
parametrization strategy: (i) Entangling of parametrization
in the skill, (ii) direct parameter application and verification,
(iii) parameter reduction by automatic parameter derivation
and (iv) use of different parameter sets depending on the
user.

(i) Parameters should be taught at the instance at which
they are needed. Therefore, in the teach-in phase, a skill is
in a semi-autonomous mode. It is executed until it requires a
parameter from the user. At this point, the execution pauses
and the parameter is taught by the user; afterwards the skill
continues. If more parameters are required, the procedure
repeats. Applied to a simple screwing skill (see Fig. 4), the
skill should first automatically change the tool to the screwer.
Then the skill oughts to pause and request the user to teach
the pose of the screw in gravity compensation mode. By this,
the user directly sees the environmental state, in which the
parameter is needed. In the case of the given example, this
is mandatory, as the user requires the correct tool to define
the pose of the screw.

(ii) Entangling the parametrization in the skill is related to
the approach of direct parameter application and verification.
If possible, after teaching a parameter, the robot should
immediately use and apply it. Subsequently, the user is asked,
whether the execution with the parameter was successful. If
this is confirmed, the skill continues, otherwise the teach-in
of the parameter is repeated. This approach can be applied to
the previously mentioned example as demonstrated in Fig. 4:
When the user confirms the screw pose, the robot tries to
insert the bit at the specified location. The user confirms or
declines the success of the trial with a dialog window. Using
this approach, the user receives feedback directly and can
control the correctness of the specified parameter.



(iii) A reduction of the number of parameters further
speeds up parametrization. The premise should be to require
as few parameters as possible. This can be achieved by
automatic derivation of parameters from a given one. For a
sophisticated screwing skill, the type of the screw, the fasten-
ing torque, the rotation speed, the timeout or more parameters
are needed for the execution. However, by introducing some
static knowledge about screws into the skill, those parameters
can be reduced to only the type of the screw. Using the static
knowledge, e. g. with a lookup table in a data base relating
screw types to fastening torques, the desired torque can be
looked up automatically.

(iv) Further reduction of parameters can be achieved by
using different parameter sets, depending on the user. The
shop-floor worker only needs to specify parameters being
mandatory for the execution. Those obligatory parameters
belong to the primary parameter set. The teach-in of these
parameters has to follow the upper mentioned approaches.
Parameters of the secondary parameter set have default
values, which are safe and not critical. Experienced workers
may alter these parameters such as maximum speed or
parameters that were automatically derived (see (iii)) in order
to further tune a skill. Hereby, a GUI for parametrization
is sufficient. The third set of parameters is what [18] calls
internal parameters. These are fixed and specified by the
skill programmer. Examples are impedance values, controller
gains, virtual walls, maximum acceleration and so on.

V. IMPLEMENTATION

This section introduces both the hardware and software
used for the case studies of Section VI.

A. Hardware

We are using a LWR 4+ [19] as robotic platform. The
tool has to be changed manually. Currently, we are using
three different tools: a suction gripper (for chocolate bars),
a simple hook (for Kanban boxes) and a screwer with force-
torque sensor. A foot pedal serves as further input device.

B. Software

For the software implementation, the aforementioned
graphical flow control tool RAFCON is used. This eases the
software development and helps understanding the structure
of a skill, as textual code is abstracted in named blocks, sim-
ilarly to a state-machine approach. In addition, the currently
executed block is highlighted, which is helpful for debugging
purposes.

The implemented skills are intended for a small collabora-
tive assembly task. In our scenario, the robot takes a specific
box with screws from a shelf and puts it on the table. The
shop-floor worker takes some of the screws and starts to
insert them loosely in a workpiece. After returning the box,
the robot tightens the inserted screws.

This requires two common skills, pick & place for handing
over the box and screwing. Pick & place is often split in
separate skills pick and in place. Here it is merged in one
skill, as in our scenarios, there is typically no other skill

required in between the two. Keeping them together reduces
the effort of the user for sequencing and has advantages for
the parametrization process.

1) Screwing skill: The task of the screwing skill is sup-
porting the shop-floor worker in the time consuming action of
tightening a screw, which was previously inserted in existing
screw threads. The focus in the screwing skill is more on
the software architecture, which was implemented according
to Section III. The actual screwing part is an action block
named “Screwing”. In the activity, the screwer is simply
turned on and in the exit handler switched off again. Three
condition observers are used: the applied torque is monitored
to stop when the screw is fully inserted, the time is counted
to stop if the action takes too long (timeout) and the foot
pedal is observed, to stop in case the user wants to pause
the action by pressing a pedal. The torque observer uses
the force-torque sensor to monitor the fastening torque of
the screw. A trigger of this observer is desired, as it means
the screw is fully inserted. If triggered, the execution logic
goes to the next step (move bit out of screw). The other
two observers currently both lead to a user dialog, with the
options to continue (go to next step), repeat (reset timer
and start screwing again) or to abort (stop with an error).
A simplified version of this logic is shown in Fig. 3.

2) Pick & Place skill: The pick & place skill illustrates
a further approach for reducing the number of required pa-
rameters (see Section IV). As a generic skill for picking and
placing different objects in different fixtures with different
tools requires a vast variety of strategies (pick from above,
pull out, ...), we retrieve this information from the user,
parameterizing the skill via kinesthetic teaching. Internally,
the skill requires a pre-pick-pose, a pick-pose, a post-pick-
pose, a pre-place-pose, a place-pose and a post-place-pose,
thus six different parameters.

To reduce this number, instead of storing single poses
specified by the user (as it is done in [20]), three trajectories
are recorded: First, the user guides the tool to the pick-
pose and confirms, which activates the tool (e.g. activate
the vacuum gripper). Then, the user moves the tool to the
place-pose and confirms again, deactivating the tool. Finally,
the user releases the tool from the object and confirms
a last time. From the three trajectories, the six poses are
inferred automatically. The trajectories and interesting poses
are schematically shown in Fig. 5. For example, the pick-
pose is the last pose of the first trajectory and the pre-pick-
pose is the last pose within the first trajectory, having a
minimum distance to the pick-pose of 5Scm. This principle
is demonstrated in Section VI

One may argue that there are far more sophisticated
approaches for this type of trajectory learning. There are
for example Learning from Demonstration (LfD) methods
using Hidden Markov Models (HMM) and Dynamic Move-
ment Primitives (DMP) being able to learn from multiple
demonstrations and even segment demonstrations into sub-
skills [21]. While being versatile and generic, these methods
are way more complex than the approach used in our skill.
As we know beforehand that a pick & place skill is being
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Fig. 5. From three trajectories, recorded from user demonstration, the
required poses are automatically retrieved.

demonstrated, we can apply that knowledge. In this case, it
is the sufficiency of a fixed number of via-points at certain
locations. For the case given, common interpolators are
adequate, reducing the complexity required for path planning
and working robustly. In addition, trajectories generated
from LfD approaches are often smoothed compared to the
demonstration(s), which is not desired in accurate pick and
place movements. Furthermore, we are only interested in
small subparts of the trajectory and do not require the
movement to be copied entirely.

VI. CASE STUDIES

Two skills were implemented in order to test the soft-
ware architecture and to verify the improvements in the
parametrization process.

A. Screwing

The screwing skill is kept relatively simple. The user
is required to teach only a single parameter, the screw
pose. After defining this pose using kinesthetic teaching,
the screwing skill autonomously moves the bit in front of
the screw. The robot is controlled by a Cartesian torque
controller with a PD-behavior, which implies an absolute
error to the desired pose. Therefore, positioning accuracy
is limited and special methods could be implemented to
detect the screw under this uncertainty. However, in our
case we have chosen to insert the screwing bit by hand in
gravity compensation mode, which is faster than sensing the
screw with the torque sensors of the robot and is a straight-
forward approach in a human-robot interaction context. The
efficiency is still given, as the actions requiring most of
the time (reaching the screw and the actual screwing) are
still automated. Subsequent to the confirmation, the skill
starts screwing. The attached video demonstrates the skill
(Experiment 2).

Typically, the skill finishes successfully when the screw
is fully inserted. Hereby, the torque observer stops when
measuring a certain threshold limit. This causes the exit

handler to be executed, stopping the screwer. The screw bit
is moved out of the screw and the skill ends.

Two more scenarios cause a stop of the screwer by the exit
handler. First, in some situations a timeout occurs, €. g. when
the screw slips. Second, the user presses the foot pedal. In
both cases, the user is then asked for the desired next step.
The three options “continue”, “repeat” and “abort” can be
selected with a mouse/keyboard or by pressing the according
foot pedal having three possible inputs. This allows full
control by the user, who can easily pause the execution and
quickly react to failure cases.

This trivial example demonstrates the advantages of action
blocks. It is sufficient to declare one exit handler for all
circumstances. Nevertheless, each case can in consequence
be treated individually. Moreover, the user was required to
teach only a single parameter, the screw pose.

B. Pick & Place

The pick & and place skill was tested in two different
scenarios. In the first, the suction gripper was used to slide
a chocolate bar out of a fixture and put it onto the table. In
the second, the hook was used to lift a Kanban box out of
a hanger and put it also on the table. The user can choose
between three chocolate bar stacks and two Kanban boxes,
respectively. The place-pose can be chosen arbitrarily. Both
scenarios are shown in the attached video (Experiment 1).

This required varying pick and place strategies. The choco-
late bar is picked from above and must then be moved
sideways out of the fixture (see Fig.6a). Placing is again
from top. For picking the box, the hook must be inserted
from below and then lifted upwards (see Fig. 6b). Placing is
from the top and then further down.

As explained in Section V-B.2, the poses required for the
pick and the place strategies are determined from the user
demonstration. This works reliably in both scenarios. In con-
sequence to the object being “grabbed” when confirming the
pick-pose, the user is forced to move the tool appropriately to
get the object out of the fixture. If this was not the case, the
user might move the tool upwards (in case of the chocolate
bar), as he is instructed just to move to the place-pose. Also
the orientation of the tool can be controlled easier with an
attached object. This is important for the box, as it would be
emptied if tilted too much.

The extracted poses are usually sufficient to generate a
proper trajectory. In some cases, a post-post-place-pose is
helpful, to safely move away from the object. One or more
intermediate poses between the pick- and the place-pose can
be used to avoid obstacles. Those additional poses do not
cause any changes for the user, but only in the parameter
extraction routine.

In the user’s point of view, only three parameters (poses)
are required. Hereby, one is relieved from defining a specific
object, pick and place strategies, controller parameters, etc.,
but all this is inferred from the demonstrations or included
in the skill.



Fig. 6. Picking strategies vary depending on the tool, object and environ-
ment. In (a), the fixture requires the chocolate to be moved out sideways.
In contrast in (b), the hook must be inserted accurately from below.

VII. CONCLUSIONS

In this paper, we presented a software architecture for
combining skill primitives, named action blocks. As the ac-
tion block pattern allows for process monitoring and control,
skills can be implemented more robustly. Furthermore, the
user has full control over the execution and all events are
handled in a defined way.

In addition, we described how the parametrization process
should be implemented in a skill. The entangling of this
process with the skill, combined with a reduction of skill
parameters, makes the usage of skills very intuitive and fast.
The pick & place experiment gave an example how the
number of parameters can be reduced while keeping the skill
generic and suitable for different scenarios.

As we are at an early phase of skill development, there is
still room to make our skills more robust, i. e. handling more
(failure) cases autonomously. This also requires a further
integration of sensors and a world model.
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