Durable Membrane Electrode Assemblies for Proton Exchange Membrane Electrolyzer Systems Operating at High Current Densities

P. Lettenmeiera, R. Wangb, R. Abouatallahb, A. S. Gagoa, K. A. Friedricha

aInstitute of Engineering Thermodynamics, German Aerospace Center (DLR), Stuttgart 70569, Germany
bHydrogenics Corporation, 220 Admiral Boulevard, Mississauga, ON L5T 2N6 Canada
Outline

• Cost reduction of the PEM electrolyzer stack

• MEA tests in a 20 kW_{el} PEM electrolyzer system

• Protocol of measurements

• Benchmark MEA with Ir-black catalyst

• Electromechanical analysis of degradation mechanisms

• *Post mortem* analysis of the MEAs and water resin

• Summary
How to reduce the stack cost?

- Substitute titanium based components (bipolar plates, current collectors, PTLs, GDLs) by coated stainless steel, steel, copper or aluminium.
- Use thin hydrocarbon based membranes and highly conductive non precious metal coatings. Reduce ohmic losses.
- Develop more efficient anode and cathode catalysts with low loading and improved stability. Use ceramic supports or increase activity surface area ratio.
- **Operate at high current densities.** Extend operation range from 2 (nominal) to 4 A cm$^{-2}$.

Study on development of water electrolysis in the EU. Final Report. E4tech Fuel Cells and Hydrogen Joint Undertaking; 2014
Project on degradation phenomena in PEM electrolyzer systems operating at high current densities

<table>
<thead>
<tr>
<th>Partner</th>
<th>Tasks in the project</th>
</tr>
</thead>
</table>
| DLR Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft | - Testing of MEAs with different catalysts in a 12 kW_{el} PEM electrolyzer system
- Assessment of results and post-mortem analysis |
| HYDROGENICS | - Construction a 12 kW_{el} PEM electrolyzer system
- Stack assembly and evaluation of the degradation tests |

Rainbow stack with different MEA configuration

8 Cell - 120 cm² – 20 kW_{el} PEM electrolyzer stack

12 kW_{el} PEM electrolyzer

Goal of the project: Gain knowledge about degradation mechanism of PEM electrolyzer MEAs
Protocol of measurements

Stack 1: Different catalyst loadings

Stack 2: MEAs from different providers

- There is an urgent need for accelerated stress test (AST) protocols for PEM electrolyzers
- Degradation caused by operation time, current densities, voltage, temperature, water quality, etc. is not well understood
Benchmark PEM electrolyzer anode

- Half cell measurements: OER activity of Ir-black (Umicore) is 3x higher than thermally treated IrO₂ (at 1.48V, 25 °C)
- MEAs with IrO₂ (thermally treated) show lower performance compared to those with Ir-black
- Half cell and single cell measurements correlates well with the PEM electrolyzer results
- Ir-black can be considered as benchmark anode in PEM electrolyzers

<table>
<thead>
<tr>
<th>Company</th>
<th>Anode (mg cm⁻²)</th>
<th>Membrane</th>
<th>Cathode (mg cm⁻²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wuhan WUT</td>
<td>2</td>
<td>N115</td>
<td>0.8</td>
</tr>
<tr>
<td>IRD</td>
<td>2.3</td>
<td>N115</td>
<td>0.5</td>
</tr>
<tr>
<td>FuelCellsEtc</td>
<td>3</td>
<td>N115</td>
<td>3</td>
</tr>
<tr>
<td>E500 (Ir-black)</td>
<td>1</td>
<td>N115</td>
<td>0.9</td>
</tr>
</tbody>
</table>
Electrochemical impedance spectroscopy (EIS)

- EIS was performed before and after 500 h (T1) at 2 A cm², and before and after 250 h (T2) at 4 A cm²
- MEA with Ir-black (1 mg cm⁻²) showed the lowest activation and ohmic resistances
- EIS results correlate well with $E_{\text{cell}} - j$ characteristics
- At high current densities the ohmic resistance has the largest impact
- No mass transport was observed

Electrochimica Acta, 2016, in press
Evolution of E_{cell} through the time and current density

- Difficult analysis of degradation rate because of temperature fluctuation.
 At $j = 2 \text{ A cm}^{-2}$, $\Delta T = \pm 1.5 \degree \text{C}$ caused by the addition of fresh water into the stack.
 At $j = 4 \text{ A cm}^{-2}$ $\Delta T = \pm 4 \degree \text{C}$ caused by the periodic turn on-off of the fan that cools down the entire system enclosure.
- No increase in E_{cell} after 4 A cm^{-2} test for all cells
- No increase of E_{cell} over time for all cells

Dr. [Authors Name], Electrochimica Acta, 2016, in press
Determination of ohmic losses from EIS

- Temperature of the stack was strictly controlled at $29 \pm 0.5 \, ^\circ C$ by shutting off completely the H$_2$-generator. An external pump with low flow rates was used.
- The EIS were simulated using an equivalent circuit.
- The EIS spectra at a given current density changed over time and when the current was increased.
- The cell resistance (η_{Ohm}) and kinetics (R_{act}) were analysed.

Electrochimica Acta, 2016, in press
Degradation mechanism from EIS analysis

- The degradation was analyzed through changes in ohmic loses and potential over time.
- The kinetic resistance (R_{act}) increased over time.
- The ohmic resistance (η_{Ohm}) decreased at high current densities.

<table>
<thead>
<tr>
<th>Potential</th>
<th>Change at 0.33 A cm$^{-2}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>E_{cell}</td>
<td>↑ +10μV/h</td>
</tr>
<tr>
<td>η_{Ohm}</td>
<td>↓ -2μV/h</td>
</tr>
<tr>
<td>η_{Ox}</td>
<td>→</td>
</tr>
<tr>
<td>η_{Act}</td>
<td>↑ +13μV/h</td>
</tr>
</tbody>
</table>

Electrochimica Acta, 2016, in press
Degradation analysis and XPS on DI water resin

- Nafion degradation:
 - Presence of F in the DI water resin

- Degradation of intrinsic properties:
 - Significant decrease of exchange current density during time of measurement.
 - Deactivation of the anode
 - Presence of Ir in the DI water resin

### Table: \(T / ^\circ C \)	\(\beta / mV \text{dec}^{-1} \)	\(j_o / 10^{-9} A \text{mg}_{\text{Ir}}^{-1} \)
Ir-Black (Umicore)	25	43.1
(Half Cell, kinetic analysis)	30	43.1
40	43.2	5.8
50	43.6	12.0
60	43.9	22.8
70	44.6	46.2
Before 2A/cm\(^2\) | 30 | 44.3 | 18.1
After 2A/cm\(^2\) | 30 | 41.1 | 3.5
After 4A/cm\(^2\) | 30 | 41.1 | 2.8

Table: Elemental Analysis

<table>
<thead>
<tr>
<th>Elem.</th>
<th>Fresh [wt%]</th>
<th>Used [wt%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fe</td>
<td>0.0</td>
<td>2.6</td>
</tr>
<tr>
<td>F</td>
<td>0.0</td>
<td>2.9</td>
</tr>
<tr>
<td>O</td>
<td>10.9</td>
<td>21.4</td>
</tr>
<tr>
<td>Ti</td>
<td>0.0</td>
<td>2.7</td>
</tr>
<tr>
<td>N</td>
<td>2.4</td>
<td>3</td>
</tr>
<tr>
<td>C</td>
<td>79.6</td>
<td>52.9</td>
</tr>
<tr>
<td>S</td>
<td>7.2</td>
<td>9.9</td>
</tr>
<tr>
<td>Si</td>
<td>0.0</td>
<td>3.3</td>
</tr>
<tr>
<td>Ir</td>
<td>0.0</td>
<td>1.3</td>
</tr>
</tbody>
</table>
Post mortem analysis of the MEAs

- No decrease of membrane thickness was observed from cross-section SEM images.
- Release and diffusion of Ir catalyst into the membrane.
- After operation, the conductive area of the anode increased by approximately 50% while the conductive area of the cathode remained the same.
- Surface conductivity of the catalyst layer changed due to ionomer loss.

SEM

AFM

<table>
<thead>
<tr>
<th>Conductive area (%)</th>
<th>Average Thickness / μm</th>
</tr>
</thead>
<tbody>
<tr>
<td>unused</td>
<td>Cell 8 (used)</td>
</tr>
<tr>
<td>unused</td>
<td>Cell 8 (used)</td>
</tr>
<tr>
<td>Anode</td>
<td>30 ± 4</td>
</tr>
<tr>
<td>Cathode</td>
<td>37 ± 2</td>
</tr>
<tr>
<td>Membrane</td>
<td>121.5 ± 1.5</td>
</tr>
</tbody>
</table>
Summary

• Investment cost can be reduced by operating the PEM electrolyzer at high current densities

• The lowest Ir catalyst loading (1 mg cm$^{-2}$) showed the lowest E_{cell} at any current density.

• Aging of the PEM electrolyzer MEAs depends on current density and operation time, but the associated degradation mechanisms are different in each case.

• EIS shows a progressive decrease in the specific exchange current, while the ohmic resistance decreases when doubling the nominal current density.

• *Post mortem* analysis of the MEAs (SEM and AFM) and water resin (XPS) revealed a current dependent loss of ionomer and catalyst material in the anode, which resulted in an unexpected enhancement of cell performance at high current densities.

• A first step towards developing an accelerated stress test protocol (AST) for PEM electrolyzers has been given
Acknowledgements

Josef Kallo
Fabian Burggraf
Pawel Gazdzicki
Stefan Helmly
Svenja Kolb

Tobias Morawietz
Michael Handl
Renate Hiesgen

Hochschule Esslingen
University of Applied Sciences

Project No. 0325440A.

Bundesministerium für Wirtschaft und Energie

Bundesministerium für Bildung und Forschung

Forschungsinitiative der Bundesregierung

DLR
Grand Challenges in Energy Conversion and Storage 2
Tuesday, 31 May 2016: 11:30 a.m.
Aqua Salon F (Hilton San Diego Bayfront)

Novel Components for PEM Electrolysis: Status and Challenges
A. S. Gago, P. Lettenmeier, L. Wang, S. Kolb, F. Burggraf, and K. A. Friedrich

Thank you for your attention
Contact: aldo.gago@dlr.de