Radical changes in the aircraft design process through software technology

Martin Siggel, German Aerospace Center (DLR)
Outline

• Traditional aircraft design

• Software enabled aircraft design

• Projects at the German Aerospace Center (DLR)

• Software-Tools

• Built with Qt
Traditional aircraft design
Conceptual design

Sketchpad

SAC Bomber ~ At the onset
Conventional construction, materials, technology

Canard ±25° travel

Vertical inlets

April 1955: Estimated weight 650,000 lb
July 1956: Estimated weight 700,000 lb

Floating panels
(Ejected at subsonic speeds)

4 Engines
JP-4 fuel and HEP

Elevons
Flaps
Conceptual design
Handbook formulae

- Collection of simple Equations
- Particularly useful for traditional designs
- Based on simplified physics or empirics
- Rough estimates for e.g.:
 - Amount of lift
 - Structural loads
 - Total mass
 - Tank size

Forces in a Climb

- $F = \text{Thrust}$
- $L = \text{Lift}$
- $D = \text{Drag}$
- $W = \text{Weight}$
- $m = \text{aircraft mass}$
- $a = \text{acceleration}$

Equations:

- **Vertical**
 - $F \sin(c) - D \sin(c) + L \cos(c) - W = m a_v$
- **Horizontal**
 - $F \cos(c) - D \cos(c) - L \sin(c) = m a_h$

Definition of Excess Thrust:

- $F - D = F_{ex}$

Vertical
- $F_{ex} \sin(c) + L \cos(c) - W = m a_v$

Horizontal
- $F_{ex} \cos(c) - L \sin(c) = m a_h$
Preliminary design
Models + Wind tunnel experiments

Wright Brothers (1901)
Detailed design
Prototypes + Test flights

X-1 (1946)

Rockwell XVF-12 (1981)

X-15 (Neil Armstrong, 1960)

X-29 (1984)
Software-enabled aircraft design
Software-aided design: unconventional designs

• Building aircraft prototypes is time consuming and expensive

• Software allows to:

 • Find strengths and weaknesses of new designs

 • Simulate, if all requirements can be met

 • Explore many different concepts

 • Simulate even unconventional aircraft designs accurately where no human experience is available
Software-aided design: conventional designs

- Improve fuel efficiency
- Squeeze the margins
- Improve reliability and safety
- No low hanging fruits anymore → Optimization software explores the whole design space for a few percent improvement
Design projects at the DLR
The German Aerospace Center (DLR)
Project FrEACs

• The aircraft of tomorrow

• Unconventional designs:
 • Blended Wing Body
 • Strut-braced wing

• Track uncertainties throughout whole simulation chain
Project Digital-X

- Complete Simulation of aircraft and helicopters
- Very high accuracy / small errors
- Development of a new CFD simulation code
- Optimize aircraft to improve fuel efficiency
- Flying the virtual aircraft prior to the first flight
- Use HPC systems used for simulations
Project Mephisto

• Simulation of unmanned combat aircraft (drones)

• Novel flap and aileron concepts

• Explore new stealth materials

• Compute and minimize probability of detection
Software Tools
Aerodynamics simulation (CFD)

- High precision flow simulation
- HPC architectures
- Computation time: hours – days!
Simulation of the aircraft structure

- Simulation of mechanical loads
- Estimation of the aircraft structure’s mass
- Simulation of wing deformation / deflection by loads
- Changes solution of the CFD simulations
Engine simulation

• High precision simulation of aircraft engine

• Estimation of engine behavior (efficiency, thrust, speed)

• Airflow simulation

• Combustion

• Aeroacoustics

• Engine design optimization
Aircraft dynamics and control

- Simulation of aircraft movements
- Estimates forces during a maneuver
- Allows to estimate, whether aircraft behaves as planned
- Active control simulation
RCE – Workflow-driven Integration Environment

• **Software framework** to integrate and solve multidisciplinary design analysis and optimization (MDAO) problems

• Provides a **workflow management** for coupling simulation codes in a **graphical user interface**

• **Create** and **execute** workflows easily

• Provides secure and uniform access of data in a **distributed environment** (also at different sites)

• Connection to **HPC facilities** possible
RCE – Workflow-driven Integration Environment RCE
Distributed Multidisciplinary, Multi-Level Aircraft Design

Distributed Multidisciplinary, Multi-Level Optimization Chain

CFD mesh generation for loads Centaur
20 min
5 min

objective function assembly (fuel burn) CFAsm
<1 min
96 CPUs
6 hr

aerodynamic RANS CFD for mission TAU + ANSYS
45 min
192 CPUs

parameter application to aerodynamic shape Aeropartan
<1 min

parameter application to structure shape Aeropartan
<1 min

CFD mesh generation for performance Centaur
20 min
5 min

structural FEM model shape update DELIS
5 min
45 days
60 it.

design parameter update (subplex) Pyranha

start

end

converged?

no

yes

<1 min
RCE – Workflow-driven Integration Environment RCE
Built with Qt
GTlab – Gas Turbine Laboratory

Interactive, cross platform simulation and design environment for aircraft engines and gas turbines.
Built with Qt
Built with Qt
PreDesign

Chart 28
Radical changes in the aircraft design process through software technology
Martin Siggel
October 19, 2016
DLR.de
Built with Qt

TiGL – Geometry generation

- Central *geometry* library used by many simulation tools in DLR for *aircraft design*
- **Multipurpose**
- **Multilanguage** – Python, C/C++, MATLAB, Java, FORTRAN
- **Multiplatform** – Win, Linux, OS X, Android (experimental)
- **Open Source** , Apache 2.0
- Based on CAD kernel OpenCASCADE
Built with Qt
TiGL – Platform independent Geometry Viewer
Built with Qt

DataFinder – Data store for simulation results

- Data management software
- Storage of all simulation data
- Tag based data search
- WebDAV backend
- Implemented in Python + Qt
- Open Source
Built with Qt

DataFinder – Data store for simulation results
Wrap up
The Digital Aircraft Vision

Full flight envelope coverage:
- CFD mostly done near cruise point
- Attached flow
- Separated flow, unsteady

Configurations:
- Clean
- Airbrakes deployed
- High lift

- 50 flight points
- 100 mass cases
- 10 a/c configurations
- 5 maneuvers
- 20 gusts (gradient lengths)
- 4 control laws

~ 20,000,000 simulations

Engineering experience for current configurations and technologies

~ 100,000 simulations
Wrap-up

• Software technology, HPC hardware and algorithms have large impact on aircraft design

• Software is used in all phases of aircraft design

• Still major challenge: Simulation of the virtual aircraft