Modeling Secondary Zinc-Air Batteries with Advanced Aqueous Electrolytes

Simon Clark1,2, Birger Horstmann1,2, Arnulf Latz1,2,3

1 German Aerospace Center, Institute of Engineering Thermodynamics, Pfaffenwaldring 38-40, 70569 Stuttgart, Germany.
2 Helmholtz Institute Ulm for Electrochemical Energy Storage (HIU), Helmholtzstraße 12, 89081 Ulm, Germany.
3 University of Ulm, Institute of Electrochemistry, Albert-Einstein-Allee 47, 89081 Ulm, Germany.

Motivation
- Primary zinc-air battery commercially available
- High specific energy, low cost, high operational safety
- Hearing aid battery, e.g., VARTA PowerOne PR44
- Development of rechargeable zinc-air battery
- Zinc dendrites, electrolyte carbonation, oxygen redox chemistry, anode passivation
- Stationary energy storage
- Electrolytes: aqueous alkaline, aqueous near-neutral

Model: Alkaline Electrolyte
- 1D continuum model of alkaline zinc-air battery
- Chemical reactions:
 - \(\text{Zn} + 4\text{OH}^- = \text{Zn(OH)}_4^{2-} + 2\text{e}^- \)
 - \(2\text{Zn(OH)}_2^{2-} = \text{Zn(OH)}_4^{2-} + \text{H}_2\text{O} \)
 - \(\frac{1}{2} \text{O}_2 + \text{H}_2\text{O} + 2\text{e}^- = 2\text{OH}^- \)
- Consistent transport: diffusion, migration, and convection

Simulations: Alkaline Electrolyte
- Galvanostatic operation of prismatic zinc-air cell
- Thick anode (10 mm), large energy capacity
- Long reactant transport path and pore blockage with ZnO
- Cell performance limited by mass transport
- ZnO precipitates first at the separator
- Non-reactive zone creates barrier for KOH transport
- Zinc electrode shape change during cycling

Model: Neutral Electrolyte
- \(\text{NH}_4\text{Cl} + \text{ZnCl}_2 \) electrolyte
- No carbonation effects, improved cycling stability
- Zinc forms complexes with chlorine, ammonia, and hydroxide
- Dominant aqueous species shifts with pH and composition
- System modelled with quasi-particles of conserved quantities:

Simulations: Neutral Electrolyte
- Galvanostatic discharge at 5 mA \cdot cm-2
- Initial potential drop due to reduction of \(\text{MnO}_2 \) catalyst
- Thick separator (30 mm)
- Long transport path causes gradient in pH
- Dominant aqueous species shifts across the cell

Conclusions
- Zinc-air: promising technology with long history
- Challenges:
 - Carbonation of alkaline electrolyte
 - Efficient and reversible oxygen reaction
 - Stable and reversible zinc deposition
 - Efficient electrolyte transport
- Development:
 - Neutral chloride aqueous electrolyte
 - Cell architecture optimization

1 KIT - Joint research institute of KIT and Ulm University with associated partners DLR and ZSW
2 - Helmholtz Institute Ulm for Electrochemical Energy Storage (HIU)
3 - University of Ulm, Institute of Electrochemistry, Albert-Einstein-Allee 47, 89081 Ulm, Germany.