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Abstract—Local manifold learning has been successfully 
applied to hyperspectral dimensionality reduction in order to 
embed nonlinear and non-convex manifolds in the data. Local 
manifold learning is mainly characterized by affinity matrix 
construction, which is composed of two steps: neighbor selection 
and computation of affinity weights. There is a challenge in each 
step: (1) neighbor selection is sensitive to complex spectral 
variability due to non-uniform data distribution, illumination 
variations, and sensor noise; (2) the computation of affinity 
weights is challenging due to highly correlated spectral signatures 
in the neighborhood. To address the two issues, in this work a 
novel manifold learning methodology based on locally linear 
embedding (LLE) is proposed through learning a robust local 
manifold representation (RLMR). More specifically, a 
hierarchical neighbor selection (HNS) is designed to 
progressively eliminate the effects of complex spectral variability 
using joint normalization (JN) and to robustly compute affinity 
(or reconstruction) weights reducing collinearity via refined 
neighbor selection (RNS). Additionally, an idea that combines 
spatial-spectral information is introduced into the proposed 
manifold learning methodology to further improve the 
robustness of affinity calculations. Classification is explored as a 
potential application for validating the proposed algorithm. 
Classification accuracy in the use of different dimensionality 
reduction methods is evaluated and compared, while two kinds of 
strategies are applied in selecting the training and test samples: 
random sampling and region-based sampling. Experimental 
results show the classification accuracy obtained by the proposed 
method is superior to those state-of-the-art dimensionality 
reduction methods. 
 

Index Terms—Hyperspectral image, dimensionality reduction, 
local manifold learning, non-uniform data distribution, 
collinearity 

 
This work is supported by the Helmholtz Association under the framework 

of the Young Investigators Group “SiPEO” (VH-NG-1018).  
Danfeng Hong, Naoto Yokoya and Xiao Xiang Zhu are with the Remote 

Sensing Technology Institute (IMF), German Aerospace Center, 82234 
Weßling, Germany, and Signal Processing in Earth Observation (SiPEO), 
Technical University of Munich, 80333 Munich, Germany. (e-mail: 
danfeng.hong@dlr.de; naoto.yokoya@dlr.de; xiao.zhu@dlr.de) 

Naoto Yokoya is also with the Research Center for Advanced Science and 
Technology, The University of Tokyo, 153-8904 Tokyo, Japan 

 

I. INTRODUCTION 
YPERSPECTRAL data is characterized by very rich 
spectral information, which enables us to detect targets of 

interest and analyze data attributes more easily, but also 
introduces drawbacks caused by its high dimensionality. As a 
result, dimensionality reduction (DR) is a necessary and 
essential ingredient to address the aforementioned issue. A 
large number of dimensionality reduction techniques have 
been developed for a wide range of applications, including 
image segmentation [1] biometric [2], large-scale data 
classification [3], image/video analysis [4], visualization [5]. 
Generally, these dimensionality reduction approaches can be 
categorized into linear and nonlinear methods.  

Classical linear methods, such as principal component 
analysis (PCA) [6], easily fail to excavate the underlying data 
structure that lies in the complex real world. Comparatively, 
many nonlinear techniques, such as Isomap [7], locally linear 
embedding (LLE) [8], Laplacian eigenmaps (LE) [9], and 
local tangent space alignment (LTSA) [10], exhibit unique 
advantages in dimensionality reduction and obtain state-of-
the-art results in many fields. These examples of successful 
use of manifold learning mentioned above have widely 
attracted the attention of researchers working in the field of 
hyperspectral data analysis. Owing to merits of manifold 
learning, which can effectively map nonlinear and non-convex 
manifolds in low-dimensional space, massive related 
approaches are introduced into hyperspectral image processing 
and successfully applied to various tasks, e.g. feature 
extraction [11][12], classification [13][14][15][16], detection 
[17][18], and multi-temporal analysis[19]. In addition, it has 
been proven in [3] that the algorithm performance with global 
manifold methods is inferior to that with local manifold 
methods. As a typical and benchmark local manifold learning 
(LML) method, LLE explores locally linear and globally 
nonlinear assumptions to effectively capture the underlying 
intrinsic structure of data. LLE has been successfully applied 
to hyperspectral classification. Ma et al. [13] integrated LML 
with improved k-nearest neighbor for hyperspectral 
classification tasks. In [14], Ma et al. extended their work and 
proposed a kind of semi-supervised hyperspectral image 
classification method based on LML. Tang et al. [16] 
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proposed manifold-based on sparse representation for 
hyperspectral classification, and they embedded the local 
geometric property using local manifold representation into 
classification framework based on sparse representation in 
order to enforcedly keep consistent from sparse code to local 
manifold representation.  

Current research on manifold learning methods in 
hyperspectral data processing mostly focuses on their potential 
for improving classification and frequently neglects the 
shortcomings of manifold learning itself. In other words, 
considerable attention has been paid to feature fusion and 
classifier design; however, studies on feature representation 
(manifold learning) are still lacking in the context of 
dimensionality reduction of hyperspectral data. Consequently, 
the classification accuracy can be limited by bottlenecks in 
manifold learning, where a breakthrough in the level of the 
classifier is hardly made. To this end, a good feature 
representation can break the stalemate. 

In general, LML can be regarded as local graph embedding 
[20], while the most important part of the graph-embedding 
framework is the calculation of affinities (or similarities) of 
vertex pairs in a graph, i.e., the affinity matrix. The 
construction of the affinity matrix comprises two steps: 
neighbor selection and computation of affinity weights. There 
is a challenge in each step: (1) neighbor selection is sensitive 
to complex spectral variability due to environmental 
conditions (e.g., illumination and atmospheric conditions) and 
instrumental configurations (e.g., sensor noise) as well as data 
inherent structure (e.g., data distribution); (2) the computation 
of affinity weights is challenging due to highly correlated 
spectral signatures in the neighborhood. The latter issue is 
called multi-collinearity when multiple regression analysis is 
used to obtain affinity weights. More specifically, multi-
collinearity refers to the singularity due to highly correlated 
spectral signatures in the neighborhood, easily resulting in 
inaccurate estimation of affinity matrix. 

To tackle these challenges, it is important to develop a 
robust and effective local manifold representation approach. In 
this paper, we mainly focus on improving LLE, which is one 
of the benchmark LML methods in many fields. A novel LML 
methodology on the basis of LLE is proposed, which aims at 
learning a robust local manifold representation (RLMR). Two 
main contributions of this paper are as follows: Firstly, 
hierarchical neighbor selection (HNS), which comprises joint 
normalization (JN) and refined neighbor selection (RNS), has 

been embedded into the original LLE framework to robustly 
select neighbors and mitigate multi-collinearity in calculating 
affinity weights at the same time; Secondly, inspired by 
successful applications of spatial information in hyperspectral 
classification, we model the spatial information into the 
proposed dimensionality reduction methodology in order to 
further improve the robustness of affinity calculations. 

The remainder of this paper is described as follows: in 
Section 2, we begin with a brief review of LML with three 
representative LML methods and provide comparative 
analysis. Section 3 introduces our methodology. Experimental 
results on classification are presented in Section 4. Finally, we 
provide conclusions and future outlook in Section 5. 

II. LOCAL MANIFOLD LEARNING 
In this section, three representative LML methods, i.e., LE, 

LLE, and LTSA, are introduced in the graph-embedding 
framework, focusing on their advantages and disadvantages. 

Generally, LML methods attempt to capture the underlying 
local manifold structure of the original data and preserve it in 
a low-dimensional space, which enables nonlinear 
dimensionality reduction. Let X = [x1, x2, … , xN] ∈ ℝD×N 
denotes N data samples that have D-dimensional features and 
Y = [y1, y2, … , yN] ∈ ℝd×N denotes their low-dimensional 
representations, where d ≪ D. LML comprised mainly three 
steps: 1) neighbor selection; 2) computation of affinity 
weights; 3) calculation of embedding, as illustrated in Figure 
1. Pairwise similarity measurements are performed to selected 
k neighbors for each data sample. Euclidean distance is 
commonly used for similarity measurement. Let W ∈ ℝN×N be 
a sparse affinity matrix with the (i, j)-th entry of the matrix 
representing the affinity weight from the i-th sample and j-th 
sample, where j ∈ φi and φi is a set of neighbors of the i-th 
sample. The calculation embedding coordinates is generally 
formulated as [20] 
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where L ∈ ℝN×N is the Laplacian matrix defined as L = D −
W and ∀i Dii = ∑ Wijj≠i  and B is a constant matrix defined by 

 
Figure 1. A unified framework of the LML algorithm 
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the formulation of each manifold learning method. LML 
methods can be mainly characterized by the construction of 
the affinity matrix W, as described below.  

In the following, three popular LML methods – namely LE, 
LLE and LTSA – are introduced in details according to the 
aforementioned unified framework of the LML algorithm: 

LE: The basic principle is to compute the affinity matrix for 
each data point in the original high dimensional space using 
the Gaussian function as [9] 

 





 ∈





 −−=

,0

2exp 22

2

otherwise

jif ijiLE
ij

jsxxW       (2) 

 
The constant matrix B is defined as B=D. The low 
dimensional representations can be obtained by solving the 
optimization Eq. (1).  

LE is a very typical graph-based embedding method, which 
has been proven in Ref. [9] to be simple to implement and 
robust against outliers and noise. However, its limitation is 
also obvious [21], namely, local manifold structure is 
artificially designed by exploiting approximately pairwise 
distances with heat kernel, which brings relatively weak 
representation of local manifold without considering the 
property of local neighbors. 

LLE: It represents the underlying local manifold structure 
by exploiting the local symmetries of linear reconstructions 
[5] between each data point and its neighbors in the high-
dimensional space and then computes the low-dimensional 
embedding coordinates that preserve the reconstruction 
coefficients. The reconstruction coefficients, denoted as 
A ∈ ℝN×N, are obtained by the minimization 
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where ijA  denotes the reconstruction weight between ix  and

jx , if the j-th data point is one of the k neighbors of the i-th 

data point ( ij j∈ ); otherwise 0=ijA  . Particularly, the 

constraint of the sum-to-one shown in Eq. (3) is used on the 
rows of the reconstruction coefficients A to obey the important 
local symmetries to be invariant to rotations, rescalings and 
translations of any target data point and its neighbors [5]. The 
low dimensional coordinates are obtained by minimizing the 
embedding cost function as 
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From the viewpoint of the graph-embedding framework, LLE 
can also be induced as the graph-embedding problem; 
therefore Eq. (4) can be rewritten in the form of Eq. (1) as 
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where the affinity matrix ( LLEW ) can be computed by the 
following equation [20] 
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and Laplacian matrix of LLE can be given by

( ) ( )AIAIWDL −−=−= TLLELLE  [5] and D is a diagonal 
matrix defined by ∀𝑖𝑖 𝐷𝐷𝑖𝑖𝑖𝑖 = ∑ 𝐖𝐖𝑖𝑖𝑖𝑖𝑗𝑗≠𝑖𝑖 . B is defined as IB = . 

With local regression technique [22], the property of local 
data is fully taken into consideration in LLE, which means that 
local manifold structure can be effectively learned from local 
data. It is natural that it is able to improve the representation 
ability of local manifold. That is not to say, however, that 
robust local manifold representation can be obtained using 
LLE, since LLE is very sensitive to data distribution [23], 
variability [24], as well as collinearity.  

LTSA: Similar to LLE, LTSA attempts to mine the 
underlying local manifold structure assuming local linearity. 
The core idea of LTSA is to utilize a local tangent space to 
represent a local manifold structure via a linear mapping such 
as PCA. Therefore, it can be solved naturally as a graph-
embedding problem, and the affinity matrix can be defined as 

LTSALTSA LDW −= , more specifically formulated as follows 
[14] 
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where iθ and jθ are the local tangent coordinates of 𝐱𝐱𝑖𝑖 and 

𝐱𝐱𝑗𝑗, and Λ stands for the leading d eigenvalues of the 
covariance matrix of iϕ  and k is the number of neighbors for 
𝐱𝐱𝑖𝑖. The low dimensional embedding is calculated by the 
following minimization 
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where k/TeeIH −=  is the centering matrix, and e is a 
uniform vector with the size of 1×k . iT  is a local 
transformation matrix with linearity and B is defined as 

IB = . 
Typically, a concept of local tangent space is proposed in 

LTSA to linearly and approximately estimate the local 
manifold structure, which is able to better capture the intrinsic 
structure of the underlying manifold [10]. However, such 
approximated estimation of local manifold structure is 
possibly inaccurate, particularly in non-uniform distributed 
data [25], due to those data in local manifold space without 
lying in, or closing to, a linear subspace. Also, although the 
performance of LTSA can improve the local manifold 
representation compared to LLE to some extent, it still fails 
when taking the data variability (e.g., noise) into consideration 
[26]. Furthermore, unlike LLE which is able to fully consider 
geometric structure information of target point and its 
neighbors by linear regression with constraint, while LTSA 
explores a linear mapping (e.g. PCA) to find the principle 
information to depict local manifold structure, accordingly 

resulting in inevitable loss of useful information (e.g. 
geometric structure, local minutiae). 

In summary, among the three LML methods, one advantage 
of LLE and LTSA over LE is that by using LLE or LTSA we 
can obtain a potentially better performance in dimensionality 
reduction due to their reasonably linear representation in local 
manifold space. But the drawback of LLE and LTSA is that 
neither is highly robust against complex data variability, e.g. 
caused by noise, illumination, or non-uniform data 
distribution. Therefore, how to robustly learn local manifold 
representation is an unsolved problem in LML. As a 
promising LML framework, LLE has been successfully 
applied in many fields and has obtained some amazing 
experimental results due to effectively and reasonably local 
linear assumption, for example in hyperspectral data 
processing [3][13][14][16][17][22]. However, sensitivity to 
variability and collinearity when calculating the local linear 
representation are hindering the advancement of LLE towards 
robustness and high performance. Therefore, in the next 
section we emphatically introduce the proposed novel 
methodology based on LLE in an attempt to address the two 
issues mentioned above. 

III. ROBUST LOCAL MANIFOLD REPRESENTATION 
In this section, a novel LML methodology is introduced in 
detail in order to learn a robust local manifold representation 
(RLMR), mainly including the design of HNS and the 
integration of spatial contextual information. Figure 2 shows 
the holistic diagram of the proposed methodology that mainly 
comprises the six steps given below, where the first four 

 

 
Figure 2. The holistic diagram of the proposed method. 
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correspond to HNS and the fifth is the integration of spatial 
information. 

Step 1. Global data normalization (GDN) is performed 
to deal with spectral variability modeled by scaling and 
shifting. 

Step 2. Neighbor selection (NS) coarsely selects local 
neighbors of the target pixel. 

Step 3. Local data normalization (LDN) is applied to 
make local data distribution more uniform and isotropic 
and further eliminate locally spectral variability. 

Step 4. Refined Neighbor selection (RNS) aims at 
mitigating collinearity in local manifold space, making it 
possible to obtain a relatively accurate and intrinsic 
structure of underlying manifold. 

Step 5. Computation of reconstruction weights with 
contextual information jointly embeds spectral and 
spatial information for a robust calculation of the 
reconstruction weights.  

Step 6. Calculation of embedding obtains the low-
dimensional feature representation by embedding robust 
local manifold properties into the low-dimensional space. 

A. Hierarchical Neighbors Selection (HNS) 
Figure 3 shows the detailed diagram of HNS, which is 

composed of joint normalization (JN) and RNS.  
1) JN: Data normalization is widely used in data 

preprocessing procedure, including hyperspectral data analysis 
[27][28]. It aims at reducing the effect of numerous variations 
and improving the performance of subsequent algorithms. 
Generally, data normalization includes GDN and LDN [29]. 

The purpose of GDN is to mitigate illumination variations and 
modify the global data distribution so that it is more uniform 
and isotropic [30][31], enabling them to be measured in the 
same, or similar, level or unit. Unlike GDN, LDN tends to 
uniformize the mean and variance of the local neighborhood, 
which is particularly useful for non-uniform distributed data 
[32][33]. Owing to the merits of GDN and LDN, JN is an 
appropriate approach to effectively address the issues of 
spectral variability and non-uniform data distribution, which 
can be implemented step-by-step via the following 
formulations: 
(1) GDN: it performs the following computations: 
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where “./” means the element-wise division, o

ix ∈ ℝ𝐷𝐷×1 is the 

i-th original spectral signature, o
ic  and o

is are the mean value 

and variance corresponding to o
ix , respectively. ns

ix ∈ ℝ𝐷𝐷×1 

stands for the normalized spectral signature. nsX ∈ ℝ𝐷𝐷×𝑁𝑁 
represents all normalized spectral signatures made up of ns

ix , 
nsc ∈ ℝ𝐷𝐷×1 and nss ∈ ℝ𝐷𝐷×1 correspond to the mean value and 

variance of nsX , respectively. g
ix ∈ ℝ𝐷𝐷×1 stands for the 

normalized spectral signature of global data normalization. 

 

 
Figure 3.  The detailed diagram of HNS. 
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The normalization obtained by performing Eq. (9) can 
mitigate the effects of spectral variability that can be explained 
by scaling and shifting, while Eq. (10) makes the global data 
distribution more uniform and isotropic and puts the same 
weight on all the spectral bands as shown in the top-left of 
Figure 3. 
(2) LDN: After selecting coarse neighbors for each data point 
using the Euclidean distance, LDN is exploited to make data 
distribution more uniform and isotropic in the local manifold 
space, which can be formulated as  
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where “./” means the element-wise division, g
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nearest coarse neighbors of i-th spectral feature, and g
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i xxxX = ∈ ℝ𝐷𝐷×𝐾𝐾represents the final normalized 

spectral features for i-th data point and its neighbors by JN. 
An example of local data distribution is shown in the bottom-
left of Figure 3. We can see that the data distribution becomes 
more uniform and isotropic by means of LDN reducing the 
effects of non-uniform data distribution. 
2) RNS: After running JN, we obtain the rough results of 
neighbor selection where the influence of spectral variability 
has been removed to a large extent, but multicollinearity still 
exists among neighbors. As we mentioned above, 
multicollinearity would lead to inaccurate estimation of 

affinity matrix, thereby degrade the quality of local manifold 
structure. As a result, the strategy of refined neighbor selection 
(RNS) followed by JN is performed against multicollinearity 
as the second layer of HNS.  RNS, which is inspired by local 
manifold alignment, is proposed to reduce information 
redundancy [34] in the coarse neighborhood as illustrated in 
the right of Figure 3. RNS can mitigate the effects of 
collinearity in the next step, i.e., the calculation of 
reconstruction weights, while preserving local manifold 
properties. In detail, LFS is divided into two parts. 
  First, inspired by Ref. [35][36], we construct the local 
structure feature local

pF for the data point p in the feature space 

using its neighbor’s information [ ]l
pK

l
pj

l
p

l
p xxxX ,...,,...,1=

∈ ℝ𝐷𝐷×𝐾𝐾. local
pF can be formed by the distance property 

between the feature of p with those of its neighbors using a 
Gaussian function: 
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The second part is to screen out new local neighbors that have 
similar data distribution using Kullback–Leibler divergence 
(KLD). KLD has been justified to effectively measure the 
similarity of hyperspectral data distribution [37]. The 
difference of local features [ ]f

K
f

q
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between the point p and its neighbor q can be measured as: 

 
 

 

Figure 4. An example to explain and analyze the collinearity in local neighbors (top) without RNS and (bottom) with RNS. 
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where local

pF ∈ ℝ1×𝐾𝐾 and local
qF ∈ ℝ1×𝐾𝐾  stand for the local 

structure features of p and q in the spectral domain, 
respectively, and α is a penalty parameter balancing the two 
terms described in Eq. (15) and Eq. (16). Neighbors with the k 
smallest fd  value are chosen from the coarse neighbors as the 
new neighbors of the data point p, namely 
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p xxxX ,...,,...,1= ∈ ℝ𝐷𝐷×𝑘𝑘. k is the final number of 

neighbors for each point, and we make the value of K equal to 
twofold k. 

An example showing the effect of RNS is given in Figure 4, 
where correlations between the target pixel and its neighbors 
are shown with and without using RNS.  To be specific, given 
any target pixel, k neighbors need to be selected without RNS, 
while for RNS, 2k neighbors should be selected at first and 
then k neighbors are refined from 2k neighbors. Therefore, the 
same number of neighbors k can be obtained with RNS and 
without RNS, respectively. The left of Figure 4 shows spectral 
signatures of neighbors from two different strategies (with 
RNS and without RNS) respectively. Although it is not so 
obvious, it stills emerges the slight difference that spectral 
signatures without RNS are more intensive than that with 
RNS, which means that those without RNS are easier to 
generate singularity when computing the affine matrix (weight 
matrix). The right of Figure 4 gives relatively obvious results 
regarding the reduction of collinearity. We can see that the 
values of correlation matrix with RNS are lower than those 
without RNS, which demonstrates that the linear correlations 
observed in the correlation matrix (when value is equal to 1, 
that means the correlation is up to maximum, and vice versa.) 
are effectively reduced after using RNS.  

B. Local Manifold Representation with Spatial Contextual 
Information 
To further improve the robustness of the calculation of 
reconstruction weights, the spatial information is incorporated 
into linear reconstructions. We assume that spatially 
neighboring spectral pixels can be explained by the same or 
similar reconstruction weights [38], if spatially neighboring 
pixels include similar spectral components. The calculation of 
reconstruction weights with spatial contextual information can 
be formulated based on Eq. (1) by adding the constraint that 
the reconstruction weights of the target pixel are 
approximately equal to the average of those of its neighboring 
pixels, as shown in Eq. (17) 
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where [ ]nl
ik

nl
ij

nl
i

nl
i xxxX ,...,,...,1= ∈ ℝ𝐷𝐷×𝑘𝑘 is the k-nearest 

neighbors selected by HNS. 4,...,1,0, =snl
isx  are the target 

spectral pixel and its four spatial neighbors, respectively, as an 
example shown in Figure 5. Correspondingly, s

ia ∈ ℝ𝑘𝑘×1 ,
4,...,1,0=s are their reconstruction weights. η is a tiny real 

number that represents the limit of error. 
We can regard Eq. (17) as a joint optimization problem. In 

this case, the objective function of Eq. (17) can be rewritten as 
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where the sizes of  L , 

∧
nl
iX , ∧

iA , C  are 6𝐷𝐷 × 5𝑘𝑘, 6𝐷𝐷 × 1, 5𝑘𝑘 ×
1 and  5 × 5𝑘𝑘, respectively. And e ∈ ℝ1×𝑘𝑘 is the unit vector 
with a size of 1×k , and β is a penalty parameter to balance the 
importance between error item and constraint item in Eq. (18). 

In order to solve Eq. (18), it can be further relaxed by 
means of Lagrange multipliers as represented by  

 

 

Figure 5. The diagram for Spatial-Spectral combination in hyperspectral DR. 
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where λ  is also a penalty parameter, and here let it be 1 for 

simplicity as well as T]11111[=
∧
e ∈ ℝ5×1. The 

solution in Eq. (19) can be analytically derived [39] by matrix 
derivation operation as 
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
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eCXLCCLLa TT1TT0 λλ nλ
ii ,               (20) 

Therefore, 0
ia is the weight vector for i-th pixel by using 

RLMR. Following the framework shown in the Figure 2, the 
result of dimensionality reduction can be obtained by 
calculating the embedding using Eq. (1).  

IV. EXPERIMENT 
In this section, we explore classification as a potential 
application and quantitatively evaluate the performance of DR 
algorithms using overall classification accuracy. The main 
focus of this paper is to learn a more robust and discriminative 
feature representation, rather than how to develop a more 
advanced classifier. Therefore, we use two common 
classifiers, namely the nearest neighbor (NN) algorithm based 
on the Euclidean distance and linear SVM.  

A. Hyperspectral datasets 
The experiments are carried out using two benchmark 
hyperspectral datasets.  
1) Indian Pine AVIRIS image: The first image-set was 
acquired by NASA’s AVIRIS sensor over the Indian Pine test 
site in Northwest Indiana with the size of 145 145 220× × and 
10 nm spectral resolutions over the range of 400-2500 nm, 
mainly including several kinds of vegetation. More specific 
classes and the number of samples can be found in Table 1. 
2) 2013 IEEE GRSS Data Fusion contest image: The second 
image-set was provided for the 2013 IEEE GRSS Data Fusion 
contest acquired by the ITRES-CASI 1500 sensor with the 
size of 349 1905 144× ×  in the range of 380-1050 nm, which 
includes more varied categories.  

B. Results of Indian Pine AVIRIS image 
For the first image-set, we adopted two sampling strategies to 
select training samples and test samples: random sampling and 
region-based sampling. Random sampling is a common way 
for the validation of hyperspectral classification. In contrast, 
classification using region-based sampling is more practical 
and challenging due to high correlation and limited variability 
of training samples, and thus an effective way to investigate 
the performance of the proposed method. We randomly 
assigned around 5% of total samples as cross-validation 
samples and then divided the rest into two parts: training 
samples (5% of total samples), by random sampling or region-
based sampling, and test samples (90% of total samples). 
Moreover, ten replications were performed for selecting 

training and test samples based on the two aforementioned 
sampling strategies. The specific number of cross-validation, 
training, and test samples is listed in Table 1 [40]. We compare 
the classification results on dimensionality-reduced data using 
the proposed method with those using some benchmark DR 
methods (PCA, KPCA [41], LLE, LE, and LTSA) and original 
spectral features (OSF). Three step-by-step methods, i.e., JN, 
HNS, and RLMR, are used for the proposed methods to 
investigate the effects of JN, LFS, and the integration of 
spatial information.  
 
1) Performance Comparison and Analysis between RLMR 
and Classical DR methods 
Initially, we conducted a five-fold cross-validation on training 
samples in order to select the optimal parameter combination. 
Table 2 shows the classification accuracies obtained by using 
the nine methods with optimal parameters (d, k). It should be 
noted that two kinds of classification accuracy are applied 
here, including overall accuracy (total classification accuracy 
of all classes) and average accuracy (the average of 
classification accuracy of each class), to evaluate the 
performance of the listed methods. The proposed methods 
outperform the other methods both with random sampling and 
region-based sampling. Compared to OSF, JN, HNS, and 
RLMR increase the overall accuracy by 8.25%, 12.71%, and 
21.1%, respectively, with random sampling, and 7.42%, 
8.83%, and 10.46%, respectively, with region-based sampling. 
For the average accuracy, on the other hand, the corresponding 
increases are respectively 10.2%, 12.89%, 18.11% with 
random sampling, and 9.68%, 10.95%, 11.54% with region-
based sampling. The classification maps are shown in Figure 6 
and Figure 7. It can be seen that the classification maps of JN, 
HNS, and RLMR include less salt-and-pepper errors. In 
particular, those of RLMR are smoother in the local spatial 
region, resulting from the embedding of spatial information. 
These results demonstrate the effectiveness of all three 
technical components of the RLMR, i.e., JN, RNS, and the 
integration of spatial information, and imply that they 
successfully contribute to extracting robust and discriminative 

TABLE 1 THE NUMBER OF TRAINING SAMPLES AND TEST SAMPLES FOR EACH 
CLASS 

NO. Class Name Total Cross-
validation 

Training Testing 

1 Corn-Notill 1434 50 50 1334 
2 Corn-Mintill 834 50 50 734 
3 Corn 234 50 50 134 
4 Grass-Pasture 497 50 50 397 
5 Grass-Trees 747 50 50 647 
6 Hay-Windrowed 489 50 50 389 
7 Soybean-Notill 968 50 50 868 
8 Soybean-Mintill 2468 50 50 2368 
9 Soybean-Clean 614 50 50 514 

10 Wheat 212 50 50 112 
11 Woods 1294 50 50 1194 
12 Bldg-Gra-Tr-Driv 380 50 50 280 
13 Stone-Stel-Towers 95 15 15 65 
14 Alfalfa 54 10 10 34 
15 Grass-Past-Mowed 26 5 5 16 
16 Oats 20 5 5 10 
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low-dimensional feature representations. In contrast, the 
classification accuracies of the classical LML methods (e.g., 
LLE, LTSA) are holistically higher than those obtained by 
using OSF and PCA, and yet lower than the results of our 
proposed methods due to the sensitivity of variability with 
respect to LLE and the unavoidable loss of information with 
respect to LTSA. As for the performance of LE, it is even 
inferior to the performances of OSF and PCA, and 
considerably lower than LLE and LTSA, as discussed in 
Section 2. This indicates that the performance of these 
methods is unstable in DR due to challenges involved in 

neighbor selection and affinity calculations. 
As shown in Table 2 and Figure 6 and Figure 7, the 

classification results change substantially when using the two 
different sampling strategies. The classification accuracy of 
region-based sampling is much lower than those of random 
sampling, whereas our methods JN, HNSP, and RLMR are 
still superior to other methods, even though their classification 
performance sharply degrades as expected. It should be noted 
that, as a result of its full use of spatial information, the 
proposed RLMR leads to a smooth classification map. 
However, the rate of misclassification using region-based  

 

              
           (a) Ground truth                                 

          
                  (b) OSF                                       (c) PCA                                       (d) KPCA                                      (e) LLE                                        (f) LE                                        

        
 

                (g) LTSA                                       (h) JN                                         (i) HNS                                         (j) RLMR 

Figure 6 Classification maps for the different methods via NN using the random sampling strategy corresponding to the parameters in Table 2. (a)-(j) are the 
results for ground truth, OSF, PCA, KPCA, LLE, LE, LTSA, JN, HNS, RLMR, respectively. 

         
               (a) Ground truth                                (b) OSF                                       (c) PCA                                       (d) KPCA                                      (e) LLE 

         
                       (f) LE                                       (g) LTSA                                       (h) JN                                         (i) HNS                                         (j) RLMR 

Figure 7 Classification maps for the different methods via NN using the region-based sampling strategy corresponding to the parameters in Table 2. (a)-(j) are the 
results for ground truth, OSF, PCA, KPCA, LLE, LE, LTSA, JN, HNS, RLMR, respectively. 
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sampling for training data is still so high that many integrated 
regions are misclassified completely. This is caused by limited 
training samples, as shown in Figure 7. 
   In order to effectively support the conclusion obtained by 
nearest neighbor classifier, an advanced and common 
classifier –SVM [44] is also applied for classification under 
the same condition. Classification accuracies obtained via 
SVM and corresponding optimal parameters for nine methods 
are listed in the Table 3. Figure 7 and Figure 7 shows 
classification maps for the different methods using the random 
sampling and region-based sampling strategies respectively. 
Note that SVM is usually categorized by three versions: linear 
SVM, polynomial SVM and kernel SVM. In this paper, a 
linear version of SVM is selected for classification task in 
order to clarify that the contribution of nonlinear properties is 
from the reduced feature extracted from manifold learning 
rather than kernel-based SVM.  

In addition, we can observe that the performance of JN, 
HNS and RLMR is progressively which can be contributed by 
the used of normalization, RNS and spatial information, 
respectively. However, it is still lack of an explanation and 
proof that how important or effective RNS is. Consequently, 
an additional experiment is performed to compare the 
performance with RNS and without RNS, listed in Table 4. We 
can clearly see that the classification accuracies of those 

methods with RNS are stably higher than those without RNS 
as well as the proposed method JN+RNS (HNS) obtains the 
best performance. 
2) Sensitivity Analysis of Parameters and Robustness against 
Noise 
 
a. Sensitivity Analysis of Parameters  

The sensitivity of parameters is examined by varying the 
number of neighbors (k) and the size of reduced 
dimensionality (d) for local manifold learning methods, and 
the variance (v) of kernel for KPCA. As shown in Figure 10 
and Figure 11, the performance of the LML methods is less 
sensitive to the parameters. In general, as observed from the 
data dimensionality point of view, classification accuracy 
increases with increasing dimensionality, to a certain extent, 
and then holds steady. When the reduced dimensionality d 
reaches approximately 50, the results are basically stable for 
those ML based methods, while the number of neighbors k is 
around 60 when accuracy reaches the nearly optimum level. 
As the number of neighbors gradually increases, the 
corresponding classification accuracy progressively increases 
to a peak (e.g., k is equal to around 50) and then dramatically 
drops. A large number of neighbors may obscure the local 
structure, whereas a small number of neighbors may not 

TABLE 2 CLASSIFICATION ACCURACIES USING OPTIMAL PARAMETER COMBINATION VIA NN FOR DIFFERENT DR METHODS IN INDIAN PINE DATASET 

Method Optimal parameter 
combination 

Classification accuracy 
Random sampling Region-based sampling 

Overall accuracy Average accuracy Overall accuracy Average accuracy 
OSF / 64.74% 72.72% 44.78% 56.67% 
PCA d=50 64.62%  72.66% 44.74% 56.64% 

KPCA d=50, v=10 66.95% 76.03% 48.79% 61.25% 
LLE d=60, k=40 68.49%  75.51% 47.45% 59.55% 
LE d=60, k =7 59.57%  68.19% 40.92% 52.73% 

LTSA d=60, k=70 71.22% 81.12% 51.63% 66.09% 
JN d=70, k=40 72.99%  82.92% 52.20% 66.35% 

HNS d=70, k=40 77.45%  85.61% 53.61% 67.62% 
RLMR d=50, k=80 85.84%  90.83% 55.24% 68.21% 

 

 
 

TABLE 3 CLASSIFICATION ACCURACIES USING OPTIMAL PARAMETER COMBINATION VIA SVM FOR DIFFERENT DR METHODS IN INDIAN PINE DATASET 

Method Optimal parameter 
combination 

Classification accuracy 
Random sampling Region-based sampling 

Overall accuracy Average accuracy Overall accuracy Average accuracy 
OSF / 73.86% 76.04% 47.39% 61.87% 
PCA d=30 70.60%  79.50% 47.82% 58.38% 

KPCA d=60, v=10 72.16% 80.88% 50.36% 63.52% 
LLE d=40, k=50 71.47%  72.51% 47.23% 62.49% 
LE d=80, k =3 56.93%  65.06% 36.59% 52.85% 

LTSA d=40, k=70 75.49% 84.93% 52.79% 64.51% 
JN d=90, k=60 76.52%  83.03% 52.83% 66.95% 

HNS d=100, k=50 78.75%  85.04% 54.73% 68.03% 
RLMR d=40, k=90 87.06%  90.93% 56.92% 69.24% 

TABLE 4 PERFORMANCE COMPARISON: CLASSIFICATION ACCURACIES USING OPTIMAL PARAMETER COMBINATION FOR DIFFERENT DR METHODS IN INDIAN PINE 
DATASET 

Method Optimal parameter 
combination 

Classification accuracy 

Random sampling Region-based sampling 

EU+LLE d=60, k=40 68.49% 47.45% 
EU+RNS d=90, k=50 70.24% 48.85% 

SAM+LLE d=60, k=80 70.85%  48.97% 
SAM+RNS d=70, k=50 72.67%  49.50% 

JN d=70, k=40 72.99%  52.20% 
JN+RNS (HNS) d=70, k=40 77.45% 53.61% 
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sufficiently represent the local structure, causing the 
degradation of the DR performance. Proper parameters are 
determined from Figure 10 and Figure 11, which are basically 
consistent with parameter selection defined via cross-
validation shown in Table 2, where the LML methods are used 
for classification.  

However, it is worth noting that due to robustness of our 
proposed method (RLMR), its results remain stable with the 
increase in the number of neighbors k and reduced 
dimensionality d. Conversely, the performances of JN and 
HNS are progressively degrading with the change of 
parameters; particularly in a situation with a large k, the 
classification accuracies even degrade to a level similar to 
classical LML methods. 

Unlike manifold learning methods, the size of reduced 
dimensionality (d) is the only parameter for PCA, and a 
limited number of d, around 30, is sufficient to obtain the best 
classification accuracy. Compared to PCA, KPCA shows a 

better performance owing to its advantage to capture nonlinear 
properties of the data; however, the parameter selection of 
kernel is important.  

Except for the two parameters: the number of neighbors (k) 
and the size of reduced dimensionality (d) , there are still 
several parameters in the proposed method, including α in 
RNS (Eq.(14)), penalty parameter λ  (Eq.(19)) and the number 
of spatial neighbors (Eq. (17)) . The parameter α is to balance 
similarity generated by KLD from the point of view of data 
distribution. KLD between target point and its neighbors 
consists of two parts: one is the similarity of data distribution 
from target point to its neighbors (TPN) and another is the 
similarity of data distribution form neighbors to target point 
(NTP).  Obviously, the similarity of TPN should be more 
important than that of NTP, which means the parameter α 
should be less than 1 as shown in Figure 12(a), therefore this 
optimal value is 0.2 corresponding to the best classification 
accuracy. Accordingly, the λ   is set to 1 as shown in Figure  

         
               (a) Ground truth                                (b) OSF                                       (c) PCA                                       (d) KPCA                                      (e) LLE 

         
 

                       (f) LE                                       (g) LTSA                                       (h) JN                                         (i) HNS                                         (j) RLMR 

Figure 8 Classification maps for the different methods via SVM using the random sampling strategy corresponding to the parameters in Table 3. (a)-(j) are the 
results for ground truth, OSF, PCA, KPCA, LLE, LE, LTSA, JN, HNS, RLMR, respectively. 

         
               (a) Ground truth                                (b) OSF                                       (c) PCA                                       (d) KPCA                                      (e) LLE 

         
                       (f) LE                                       (g) LTSA                                       (h) JN                                         (i) HNS                                         (j) RLMR 

Figure 9 Classification maps for the different methods via SVM using the region-based sampling strategy corresponding to the parameters in Table 3. (a)-(j) are 
the results for ground truth, OSF, PCA, KPCA, LLE, LE, LTSA, JN, HNS, RLMR, respectively. 
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(a)                                                                                   (b)                                                                                   (c) 

  

(d)                                                                        (e)                                                                                     (f) 

   
(g)                                                                                     (h)                                                                                     (i) 

 
Figure 10 Performance comparison: Classification accuracy as a function of data dimension using random sampling. (a)-(i) are the results using a different 
number of neighbors, respectively. 
 
 
      
 
 

 
                                                (a)                                                                                  (b)                                                                                  (c) 

   
 (d)                                                                                     (e)                                                                                     (f) 
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12(b) in order to balance embedding term and spatial 
constraint term in Eq. (19). While for the parameter - the 
number of spatial neighbors, over-larger or over-smaller one 
would result in over-used or under-used of spatial contextual 
information. As a result, the value of this parameter should be 
selected eclectically and in terms of the best classification 
accuracy observed from Figure 12(c), it is set as 4.  
b. Robustness Analysis  

      In order to validate the robustness of RLMR, a further 
experiment is performed, which adds noise with a different 
signal-to-noise-ratio (SNR) into the AVIRIS Indian Pine 
image. The Gaussian noises are added to the image band by 
band with the same SNR. Classification was performed with 
various SNRs to investigate the robustness of the DR 
algorithms against noise. Figure 13 shows the classification 
accuracies under the two sampling strategies. As the SNR 
decreases, the performance of JN, HNS, and RLMR are 
comparatively stable and superior compared to those of 
classical ML methods, PCA, KPCA, and OSF. This 
demonstrates the robustness of the proposed method against 
noise and implies its effectiveness for low SRN hyperspectral 
images. 

C. Results of 2013 IEEE GRSS Data Fusion contest image 
Similarly, we obtained the classification accuracies for the 
nine methods under the optimal parameters tuned by five-fold 
cross-validation via NN and SVM classifiers using the given 
training samples in DFC, as listed in Table 5 and Table 6. As 

  

 

Figure 13 Classification accuracy using the parameters in Table 2 for the 
different DR methods under the two sampling strategies on the Indian 
Pine dataset with different SNRs. 
 

 
 

  
(g)                                                                                     (h)                                                                                     (i) 

Figure 11 Performance comparison: Classification accuracy as a function of data dimension using region-based sampling. (a)-(i) are the results 
using a different number of neighbors, respectively. 
 

       
                           (a)                                                                                        (b)                                                                                   (c) 

Figure 12 The optimal parameter analysis corresponding to the best classification accuracy on the Indian Pine dataset  
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can be seen in Table 5 and Table 6, RLMR outperforms the 
other methods in DFC dataset. This demonstrates that the 
proposed novel ML method can indeed obtain the good feature 
representation, thereby further improving the classification 
accuracy. What’s more, similar results contributing similar 
conclusions are obtained, even though using different 
classifiers, e.g., the nearest neighbor algorithm, linear SVM, 
resulting in the effectiveness and robustness of the proposed 
method. 

     For simplicity, a general framework for the out-of-samples 
extension of ML proposed by Bengio [42][43] is used in this 
paper in order to obtain the full classification map. The out-of-
samples extension can be separated into two parts: first, an 
appropriate kernel function should be constructed (Here, a 
Gaussian kernel is chosen) ; next, Nystrom formulation should 
be applied for the generalization of a new data point. 
Classification maps for different DR methods using the 
aforementioned optimal parameters are given in Figure 14 and 
Figure 15, respectively corresponding to NN and SVM 
classifiers. As shown in Figure 14 (a), the east side of the 
scene is covered with shadows of clouds, resulting in the 
performance degradation of those previous DR methods – 
such as in Figure 14 (b-g) and Figure 15 (a-f) – while our 
proposed methods are rather robust against this variability 
observed in Figure 14 (h-j) and Figure 15  (g-j). 

V. CONCLUSION 
In this work, a novel local manifold learning methodology – 
RLMR – is developed for hyperspectral dimensionality 
reduction in order to tackle two challenges of LML, involving: 
1) neighbor selection due to complex spectral variability (e.g., 
noise, illumination, non-uniform data distribution) and 2) the 
computation of affinity weights due to collinearity. The 

TABLE 5 CLASSIFICATION ACCURACIES USING OPTIMAL PARAMETER 
COMBINATION VIA NN FOR DIFFERENT DR METHODS IN DFC 

Method Optimal parameter 
combination 

Classification accuracy 
Overall accuracy Average accuracy 

OSF / 72.83% 76.16% 
PCA d=50 72.85% 76.19% 

KPCA d=50, v=10 73.80% 77.79% 
LLE d=40, k=50 74.23% 77.49% 
LE d=60, k =20 66.70% 70.66% 

LTSA d=40, k=50 75.40% 78.75% 
JN d=60, k=50 77.45% 80.69% 

HNS d=80, k=70 78.52% 81.75% 
RLMR d=70, k=50 80.87% 82.77% 

TABLE 6 CLASSIFICATION ACCURACIES USING OPTIMAL PARAMETER 
COMBINATION VIA SVM FOR DIFFERENT DR METHODS IN DFC 

Method Optimal parameter 
combination 

Classification accuracy 
Overall accuracy Average accuracy 

OSF / 74.68% 77.84% 
PCA d=30 74.78% 77.79% 

KPCA d=30, v=10 75.12% 78,14% 
LLE d=60, k=40 75.33% 78.03% 
LE d=20, k =30 70.71% 72.98% 

LTSA d=30, k=50 76.04% 79.18% 
JN d=70, k=60 77.86% 80.12% 

HNS d=90, k=60 78.98% 82.01% 
RLMR d=90, k=100 81.13% 82.79% 

 

 

 
 

 

 
(a) RGB image 

 
(b) OSF                                       

 
(c) PCA                                       

 
(d) KPCA 

 
(e) LLE 

 
(f) LE 

 
(g) LTSA                                       

 
(h) JN                                         

 
(i) HNS                                         

 
(j) RLMR 

Figure 14 Classification maps on the DFC dataset via NN classifier using the 
different DR methods with the optimal parameters tuned as given in Table 4. 
(a) is an RGB image from the original hyperspectral image. (b)-(j) are the 
results using OSF, PCA, KPCA, LLE, LE, LTSA, JN, HNSP, RLMR, 
respectively. 
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proposed method is based on JN, RNS, and the integration of 
spatial information. It was validated via classification using 
two benchmark hyperspectral datasets. Compared to other 
state-of-the-art methods, the proposed method achieves better 
performance in terms of classification accuracy. RLMR has a 
more robust and stable performance than the other methods 
due to JN, RNS, and the embedding of spatial information, as 
shown in a series of experiments. In the future, we will further 
focus on how to more effectively embed the spatial 
information into dimensionality reduction framework. 
Additionally, the application of manifold learning methods to 
large-scale data should be given more attention in the future. 
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