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Abstract

Quantitative interpretation of the electron spectroscopy data requires the information on differential inverse inelastic mean free
paths (DIIMFP) and differential surface excitation probabilities (DSEP). In this paper, we test an algorithm of extracting DIIMFP
and DSEP from reflected electron energy loss spectra (REELS) and photo-electron spectra (PES) in which the desired functions are
parametrized on the base of linear respond theory. Unknown parameters are found by using the fitting procedure. To account for
surface excitations, the investigated samples are considered as multi-layer systems. Simulations of REELS and PES are performed
by making use of the partial intensity approach. The partial intensities for the reflection function and the photo-electron density flux
are computed on the base of the invariant imbedding method. Extracted DIIMFPs and DSEPs are compared with those obtained
by other authors. Finally, REELS and PES spectra for Be, Mg, Al, Si, Nb and W are computed using the retrieved DIIMFPs and
DSEPs, and compared with the experimental spectra. All comparisons show good agreement.
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Knowledge of the inelastic scattering parameters of solids is
important for quantitative understanding of the energy loss pro-
cess. The differential inverse inelastic mean free path (DIIMFP)
and the differential surface excitation probability (DSEP) give
the distribution of energy losses per unit path length in an indi-
vidual inelastic collision in bulk and surface layers of solids, re-
spectively. They are the main quantities characterizing inelastic
scattering in solids. However, in practice, only integral quanti-
ties such as the inelastic mean free path (IMFP) and the electron
stopping power are available in spectroscopic databases (e.g.
NIST database by Powell and Jablonski [1]). Studies involving
linear response theory [2] can predict only the general shape of
the DIIMFP, while using more sophisticated approaches (e.g.
based on density functional theory [3]) is complicated for real
atomic structures. Bearing that in mind, it seems to be more
feasible to extract information on the DIIMFP and DSEP from
experimental optical data [4] or REELS spectra rather than to
compute them from basic physical principles.

A convenient numerical framework for the REELS spec-
tra analysis is the partial intensity approach [5, 6], in which
a REELS spectrum is given by the weighted sum of multiple
cross convolutions of DIIMFP and DSEP functions. The cor-
responding weighting factors are referred to as “partial inten-
sities”. To obtain DIIMFP and DSEP from REELS, the latter
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has to be deconvolved to filter out multiple scattering effects.
Several techniques have been proposed to retrieve DIIMFP and
DSEP from REELS spectra employing the partial intensity ap-
proach. A direct numerical inversion scheme was proposed by
Tougaard and Chorkendorff [7], and Tougaard and Kraaer [8]
to extract DIIMFP from a REELS spectrum. The P1-approxi-
mation was used to compute the partial intensities. The main
drawback of this scheme is that it does not take into account sur-
face excitations. As a result, the extracted “effective” DIIMFP
(being some kind of mixture of the actual DIIMFP, DSEP and
their cross-convolution) can have negative values in the region
corresponded to the cross-convolution of DIIMFP and DSEP.
Further, this approach was extended by Werner (e.g., see [9,
10]) to two-layer systems. There, DIIMFP and DSEP are re-
trieved from a pair of REELS spectra by reversing the bi-variate
power series in Fourier space. A similar technique has been
proposed by Afanas’ev et al. [11] which employs the REELS
expansion through partial intensities only in the original space.

Note, that all direct numerical inversion schemes above are
severely ill-posed, i.e. the noise in the spectrum results in phys-
ically irrelevant peaks in the shapes of extracted DIIMFP and
DSEP. To regularize the inversion, Werner [12] proposed to fit
extracted functions to the Drude-Lindhard model and in this
way to get a physically-consistent result.

The intent of this paper is to test a method for DIIMFP and
DSEP retrieval from REELS and PES spectra in which the de-
sired functions are parametrized on the base of linear respond
theory. Unknown parameters of the model are found by means
of the fitting procedure. An important part of our retrieval algo-
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rithm is the fast yet accurate method for partial intensity com-
putations. It employs ideas of Waterman [13] and Flatau and
Stephens [14], and relies on the numerical solution of the in-
variant imbedding equations for scattered electrons. The for-
ward simulations for REELS and PES are performed in the
same framework, so that the DIIMFP functions extracted from
REELS and PES can be cross-validated.

The rest of the paper is organized as follows. In Section 2,
we briefly review the partial intensities approach and describe
a technique for computing partial intensities using the invari-
ant imbedding method. Section 3 provides basic relations for
reflection and transmission functions in the case of multi-layer
systems. A description of the retrieval algorithm set-up follows
in Section 4. Here, DIIMFP and DSEP functions are extracted
from REELS and PES spectra for a set of materials (Be, Mg,
Al, Si, Nb and W). Section 5 summarizes the present work and
outlines future tasks.

2. Evaluation of partial intensities for single layers

In this section we consider a single layer illuminated by the
electron beam or the X-ray irradiation. Expanding the reflec-
tion function R (τ,∆, µ0, µ, ϕ) of electrons into a Fourier cosine
series gives

R (τ,∆, µ0, µ, ϕ) =
∞∑

m=0
(2 − δm0) Rm (τ,∆, µ0, µ) cos (mϕ) .

(1)
Here τ = z/ltot is the dimensionless layer thickness, z is the
geometrical thickness of the layer, ltot = [n (σin + σel)]−1 is
the total mean free path, n is the concentration of scatters, σel

and σin are the elastic and inelastic scattering cross-sections,
respectively, ∆ is the energy loss, µ0 is the cosine of the inci-
dent zenith angle, µ is the cosine of the viewing zenith angle, ϕ
is the azimuthal angle between incident and sighting directions,
and δmm′ is the Kronecker delta. Within the partial intensity
approach, the functions Rm can be expanded as follows:

Rm (τ,∆, µ0, µ) =
∞∑

k=0
Rm

k (τ, µ0, µ) xk
in (∆) , (2)

where x0
in (∆) = δ (∆) is the Dirac function, x1

in (∆) = xin (∆) is
the NDIIMFP (DIIMFP normalized to unity area), and xk

in (∆)
is the spectrum of energy losses after k successive inelastic
scattering events. The latter is computed as the k-fold self-
convolution:

xk
in (∆) =

∆ˆ

0

xk−1
in (ε) xin (∆ − ε) dε,

and DIIMFP (∆) = xin (∆) /IMFP.
In practice, the summation in Eq. (2) is performed up to the

K-th term, where K is the maximum number of inelastic scat-
tering collisions taken into account. The transmission function
T (τ,∆, µ0, µ, ϕ) and the photo-electron flux density Q (τ,∆, µ0, µ, ϕ)
are expanded analogously as in Eqs. (1) and (2) providing the
partial intensities T m

k (τ, µ0, µ) and Qm
k (τ, µ0, µ). Further we omit

the m-superscript for convenience. Note, that Rk (τ, µ0, µ), Tk (τ, µ0, µ)
and Qk (τ, µ0, µ) refer to the k-fold inelastically scattered parti-
cles, while R0 (τ, µ0, µ), T0 (τ, µ0, µ) and Q0 (τ, µ0, µ) refer to the
elastically scattered electrons.

Assuming the Poisson stochastic process for multiple en-
ergy losses [15], the energy distribution of electrons passed path
τ is written as

L (τ,∆) =

∞∑
k=0

Lk (τ,∆) =

∞∑
k=0

{
exp (−τ)

(1 − λ)k τk

k!
xk

in (∆)
}
,

(3)
where λ is the single scattering albedo, and Lk (τ,∆) is the dis-
tribution of energy losses after k-fold scattering as a function of
τ [16, 17].

To compute partial intensities we adopt the concept of in-
variant imbedding, which is due to Ambarzumian [18]. He
derived an equation for reflection from a semi-infinite atmo-
sphere by noting that the reflection function remains unchanged
upon addition of a new layer. This technique was generalized
by Chandrasekhar [19] for a finite layer. The extension of this
method to the partial intensity approach is described in [20].
Derivation of equations for functions Rk, Tk, and Qk involves
the following steps [21]:

1. add an infinitely thin layer to the sample;

2. consider single scattering processes in that layer which
contribute to the change in Rk, Tk, and Qk;

3. express Rk, Tk, and Qk functions for the system “sample
+ layer” through corresponding functions for the sample.

The resulting equations for elastically scattered electrons (k =

0) read as follows:

∂

∂τ
R0 (τ, µ0, µ) +

(
1
µ

+
1
µ0

)
R0 (τ, µ0, µ)

= λx−el (µ0, µ) + λ
1́

0
x+

el (µ0, µ
′) R0 (τ, µ′, µ)

dµ′

µ′

+λ
1́

0
R0 (τ, µ0, µ

′) x+
el (µ′, µ)

dµ′

µ′

+λ
1́

0

1́

0
R0 (τ, µ0, µ

′) x−el (µ′, µ′′) R0 (τ, µ′′, µ)
dµ′

µ′
dµ′′

µ′′
,

(4)

∂

∂τ
T0 (τ, µ0, µ) +

1
µ

T0 (τ, µ0, µ)

= λL0

(
τ

µ0

)
· x+

el (µ0, µ) + λ
1́

0
T0 (τ, µ0, µ

′) x+
el (µ′, µ)

dµ′

µ′

+λL0

(
τ

µ0

)
·

1́

0
x−el (µ0, µ

′) R0 (τ, µ′, µ)
dµ′

µ′

+λ
1́

0

1́

0
T0 (τ, µ0, µ

′) x−el (µ′, µ′′) R0 (τ, µ′′, µ)
dµ′

µ′
dµ′′

µ′′
,

(5)
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∂

∂τ
Q0 (τ, µ0, µ) +

1
µ

Q0 (τ, µ0, µ)

= λγF− (µ0, µ) + λ
1́

0
Q0 (τ, µ0, µ

′) x+
el (µ′, µ)

dµ′

µ′

+λγ
1́

0
F+ (µ0, µ

′) R0 (τ, µ′, µ)
dµ′

µ′

+λ
1́

0

1́

0
Q0 (τ, µ0, µ

′) x−el (µ′, µ′′) R0 (τ, µ′′, µ)
dµ′

µ′
dµ′′

µ′′
.

(6)

Here xel (µ0, µ) is the azimuthal expansion coefficient of the
differential elastic scattering cross-section normalized to unity
area while F is the azimuthal expansion coefficient of the dif-
ferential photo-ionization cross section, x+

el, x−el and F+, F− are
defined asx+

el (µ0, µ) = xel (µ0, µ) , sign (µ0 · µ) = 1,
x−el (µ0, µ) = xel (±µ0,∓µ) , sign (µ0 · µ) = −1.

(7)

The equations for k-fold inelastically scattered electrons are
given by

∂

∂τ
Rk (τ, µ0, µ) +

(
1
µ

+
1
µ0

)
Rk (τ, µ0, µ)

= (1 − λ)
(

1
µ0

+
1
µ

)
Rk−1 (τ, µ0, µ)

+λ
1́

0
x+

el (µ0, µ
′) Rk (τ, µ′, µ)

dµ′

µ′

+λ
1́

0
Rk (τ, µ0, µ

′) x+
el (µ′, µ)

dµ′

µ′

+λ
1́

0

1́

0
Rk (τ, µ0, µ

′) x−el (µ′, µ′′) R0 (τ, µ′′, µ)
dµ′′

µ′′
dµ′

µ′

+λ
1́

0

1́

0
R0 (τ, µ0, µ

′) x−el (µ′, µ′′) Rk (τ, µ′′, µ)
dµ′′

µ′′
dµ′

µ′

+λ
k−1∑
i=1

{ 1́

0

1́

0
Ri (τ, µ0, µ

′) x−el (µ′, µ′′) Rk−i (τ, µ′′, µ)
dµ′

µ′
dµ′′

µ′′

}
,

(8)

∂

∂τ
Tk (τ, µ0, µ) +

1
µ

Tk (τ, µ0, µ)

=
1 − λ
µ

Tk−1 (τ, µ0, µ) + λLk

(
τ

µ0

)
· x+

el (µ0, µ)

+λ
1́

0
Tk (τ, µ0, µ

′) x+
el (µ′, µ)

dµ′

µ′

+λ
k∑

i=0

{
Li

(
τ

µ0

)
·

1́

0
x−el (µ0, µ

′) Rk−i (τ, µ′, µ)
dµ′

µ′

}
+λ

1́

0

1́

0
Tk (τ, µ0, µ

′) x−el (µ′, µ′′) R0 (τ, µ′′, µ)
dµ′

µ′
dµ′′

µ′′

+λ
k−1∑
i=0

{ 1́

0

1́

0
Ti (τ, µ0, µ

′) x−el (µ′, µ′′) Rk−i (τ, µ′′, µ)
dµ′

µ′
dµ′′

µ′′

}
,

(9)

∂

∂τ
Qk (τ, µ0, µ) +

1
µ

Qk (τ, µ0, µ)

=
1 − λ
µ

Qk−1 (τ, µ0, µ) + λγ
1́

0
F+ (µ0, µ

′) Rk (τ, µ′, µ)
dµ′

µ′

+λ
1́

0
Qk (τ, µ0, µ

′) x+
el (µ′, µ)

dµ′

µ′

+λ
1́

0

1́

0
Qk (τ, µ0, µ

′) x−el (µ′, µ′′) R0 (τ, µ′′, µ)
dµ′

µ′
dµ′′

µ′′

+λ
k−1∑
i=0

{ 1́

0

1́

0
Qi (τ, µ0, µ

′) x−el (µ′, µ′′) Rk−i (τ, µ′′, µ)
dµ′

µ′
dµ′′

µ′′

}
.

(10)
Eqs. (4)–(10) are discretized in the angular domain by defin-

ing a set of Gaussian quadrature points and weights in the zenith
direction. We are led to a differential matrix equations which
can be solved by using either the backward differentiation for-
mula (BDF) [22] or the matrix exponential formalism [23]. In
[20] both techniques are validated against Monte-Carlo simu-
lations and experimental angular distributions of scattered elec-
trons. An agreement within 1% is obtained between them, while
the computational time for solving Eqs. (4)–(10) is less than a
second on Intel Xeon CPU E5-1620 3.60GHz (the performance
can be further enhanced by using acceleration techniques for
the discrete ordinate method [24] or by parallel computing [25]).
Hence, the proposed technique for partial intensities computa-
tions is robust and can be effectively used in the direct search
methods of nonlinear optimization.

3. REELS and PES spectra computation for multi-layer sys-
tems

To take into account surface excitations, we consider a two-
layer system containing a surface layer (designated by the sub-
script “S”) and a semi-infinite bulk layer (designated by the sub-
script “B”), as shown in Fig. 1a. The reflection function RBS

for two-layer systems can be expressed as follows:

RBS (τS ,∆, µ0, µ, ϕ) = RS (τS ,∆, µ0, µ, ϕ)

+
∆́

0
dε

έ

0
dε′

2π´
0

1́

0

2π´
0

1́

0
TS (τS ,∆ − ε, µ0, µ

′, ϕ′)

·RB (ε − ε′, µ′, µ′′, ϕ′′ − ϕ′)

·TS (τS , ε
′, µ′′, µ, ϕ − ϕ′′)

dµ′

µ′
dϕ′

dµ′′

µ′′
dϕ′′,

(11)

where RS and TS are the reflection function and transmission
function for the surface layer, respectively, while RB stands for
the reflection function of the semi-infinite bulk layer (τB → ∞).
Analogously, the photo-electron flux density QBS for the two-
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layer system (see Fig. 1c) reads as follows:

QBS (τS ,∆, µ0, µ, ϕ) = QS (τS ,∆, µ0, µ, ϕ)

+
∆́

0
dε

2π´
0

1́

0
QB (∆ − ε, µ0, µ

′, ϕ′)

·TS (τS , ε, µ
′, µ, ϕ − ϕ′)

dµ′

µ′
dϕ′

+
∆́

0
dε

έ

0
dε′

2π´
0

1́

0

2π´
0

1́

0
QS (τS ,∆ − ε, µ0, µ

′, ϕ′)

·RB (ε − ε′, µ′, µ′′, ϕ′′ − ϕ′)

·TS (τS , ε
′, µ′′, µ, ϕ − ϕ′′)

dµ′

µ′
dϕ′

dµ′′

µ′′
dϕ′′.

(12)

Here QS and QB are the photo-electron flux densities for the
surface and bulk layers, respectively.

In the energy range 1–50 keV of the probing beam, the
thickness of the surface layer is much less than the transport
mean free path. Therefore, the trajectories in the surface layer
can be approximated by straight lines. As shown in [26], the er-
ror induced by this assumption does not exceed 3% excluding
glancing sighting angles. Consequently, Eqs. (11) and (12) can
be simplified as follows:

RBS (τS ,∆, µ0, µ, ϕ) = RS (τS ,∆, µ0, µ, ϕ)

+
∆́

0
RB (∆ − ε, µ0, µ, ϕ) L

(
τS

(
1
µ

+
1
µ0

)
, ε

)
dε

(13)

QBS (τS ,∆, µ0, µ, ϕ) = QS (τS ,∆, µ0, µ, ϕ)

+
∆́

0
QB (∆ − ε, µ0, µ, ϕ) L

(
τS
µ
, ε

)
dε.

(14)

In some cases it is beneficial to increase the number of fit-
ting parameters in order to reduce the residual between com-
puted and measured spectra. In particular, an additional “in-
termediate” layer (designated by the subscript “G”) between
surface and bulk can be assumed. The reflection function for
the three-layer system (see Fig. 1b) can be derived in the same
manner as that for the two layer system and is given by

RBGS (τG + τS ,∆, µ0, µ, ϕ) =

= RGS (τG + τS ,∆, µ0, µ, ϕ)

+
∆́

0

ε′´
0

RB (∆ − ε′, µ0, µ, ϕ)

·L
[
τS

(
1
µ

+ 1
µ0

)
, ε′ − ε′′

]
· L

[
τG

(
1
µ

+ 1
µ0

)
, ε′′

]
dε′′dε′.

(15)

4. Retrieval of inelastic scattering properties

4.1. Algorithm for NDIIMFP and NDSEP extraction
Unknown NDIIMFP/NDSEP functions are sought in the

following form:

xin (∆) =

Npl∑
i=1

λpl ixpl i (∆) +

Nion∑
j=1

λion jxion j (∆) , (16)

where Npl and Nion are the numbers of plasmons and ionization
processes taken into account, respectively, λpl i and λion j are

the corresponding weights, while xpl and xion are basic func-
tions for plasmons and ionization processes, respectively. The
expression for xpl is given by

xpl i (∆) =
Apl i∆

β(
∆2 − ε2

pl i

)2
+ b4−α

i ∆α
. (17)

This formula is a modification of the dispersion relation in solids
and can be derived within linear response theory [2]. The coef-
ficient Apl is required for normalization of xpl to unity area, εpl

is the effective plasmon energy corresponded to the plasmon
peak position, b is the attenuation coefficient which controls
the width of the function, while α and β are tuning parameters
related to the asymmetry of xpl. For xion we use the modified
Rutherford formula:

xion j (∆) =
Aion j

∆2+a η
(
∆ − Jion j

)
. (18)

Here η is the Heaviside step function, Jion j is the j-th ionization
potential, while a is the coefficient accounting for the electron
screening of a Coulomb potential.

The values for Jion j are taken from [27]. The elastic scatter-
ing parameters are taken from NIST Elastic-Scattering Cross-
Section Database – Version 3.2 [28] based on the code ELSEPA
[29]. The IMFP values are taken from NIST Electron Inelastic-
Mean-Free-Path Database – Version 1.2 [1], which encapsu-
lates the experimental optical data as well as IMFP values com-
puted with the predictive TPP-2M formula [30].

To account for the instrumental energy broadening, all cal-
culated spectra are convolved with a slit function of the energy-
analyzer. The convolution procedure transforms zero-width elas-
tic peaks (k = 0) of Eq. (2) to the Gaussian-like form, smoothes
the whole spectrum and leads to a better agreement between
computed spectra and experimental data. For PES we also take
into account effects described in [31]. The rest parameters in-
cluding the surface layer thickness are obtained by using ei-
ther the fitting procedure or global optimization methods which
minimize the residual between computed and measured spec-
tra. Note, that local optimization techniques may fail here since
the residual has many local minima. Computations of REELS
and PES spectra are performed using the solution technique de-
scribed in Section 2.

There is a controversy regarding the photo-electron energy
losses due to so-called intrinsic plasmon excitations. In [32,
33] the intrinsic plasmon excitations related to electron photo-
ionization effects are considered. In this paper, computations
of PES spectra are performed without accounting for intrinsic
plasmon excitations since plasmons are essentially collective
processes while ionization is a local process in our model.

4.2. DIIMFP and DSEP extraction from Mg, Al and Si REELS
spectra

The procedure outlined above was implemented and ap-
plied to experimental Mg, Al and Si REELS spectra taken from
[7, 34, 35]. The two-layer model is used to take into account
surface excitations. The reflection function RB is calculated in-
volving Eqs. (1), (2), (4) and (8). Figures 2, 3 and 4 illustrate
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Figure 1: Multilayer models of a sample for REELS: (a) two-layer model, (b) three-layer model; and for PES: (c) two-layer model. The arrows represent processes
defined by reflection (R), transmission (T) and photo-electron flux density (Q) functions forming a signal from a multilayer system.
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Figure 2: Comparison of experimental REELS spectra from [34] of Mg with
calculated spectra. The initial energy is 1505 eV. The average relative error is
5.4%.

the result of fitting. For all considered cases the maximum dis-
crepancy is of about 5% while the average discrepancy is of
about 1 % the range of energy losses 0–100 eV. The retrieved
normalized DIIMFPs and DSEPs for Mg, Al and Si are shown
in Fig. 5, 6 and 7, respectively. The surface plasmon energy
is lower than the bulk plasmon energy approximately by factor√

2 [36]. Note, that it is sufficient to take into account two in-
elastic collisions in the surface layer to get a good agreement
with measured spectra.

4.3. Obtaining DIIMFP and DSEP functions for Nb from REELS
spectra

Here we address the problem of DIIMFP retrieval for Nb.
For analysis we take five REELS spectra of Nb measured at sev-
eral probing energies E0: 5 keV, 10 keV, 20 keV, 25 keV and
40 keV (the measurements have been performed by M.Went
and M.Vos (Australian National University) [39]). Retrieval
of DIIMFP and DSEP is performed within a three-layer model
[40]. The reflection function is simulated using Eq. (15). Ex-
tracted functions together with the normilized DIIMFP taken
from [37] are shown in Fig. 9 while the measured and com-
puted spectra for some probing energies are presented in Fig. 8.
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Figure 3: Comparison of experimental REELS spectra from [7] of Al with cal-
culated spectra. The primary electron energies are 1180 eV (a) and 2000 eV (b);
the average relative errors are 6.0% (a) and 8.2% (b), respectively.

The relative difference in the REELS spectra does not exceed
5%. Figure 10 shows the thicknesses of surface and interme-
diate layers (τS and τG, respectively) as functions of E0. The
width of the surface scattering zone reduces with E0 approx-
imately as E−0.5

0 . This is consistent with the theory given in
[41].

The necessity of using the three-layer model deserves some
words of explanation. In our previous studies, we saw that the
interpretation of Nb REELS spectra can be performed within a
two-layer model. In this case, the residual is small only if the
basic functions (17), (18) depend on E0. This somewhat com-
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Figure 4: Comparison of experimental REELS spectra of Si with calculated
spectra. The primary electron energy is 2000 eV. The average relative error is
3.5%.
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Figure 5: Retrieved NDIIMFP and NDSEP of an outgoing 1505 eV electron
for Mg sample.

plicates the retrieval since the space of DIIMFP functions be-
comes significantly larger and it is more difficult to find a global
minimum of the residual. The DIIMFP obtained within three-
layer models can be regarded as an intermediate result. In par-
ticular, it can be transformed to that corresponded to two-layer
models by introducing an effective DSEPe which is a weighted
sum of DSEP in surface and intermediate layers:

DSEPe(∆) =
τGDSEPG(∆) + τS DSEPS (∆)

τG + τS
, (19)

In addition, REELS spectra of relatively low resolution can be
interpreted within a one layer model, as it was shown in [42].
Thus, an optimal number of layers depend on the initial prob-
lem and the retrieval strategy.

4.4. Retrieval of DIIMFP and DSEP for Be and W from PES
spectra

Bearing in mind, that the number of PES spectra available
for analysis exceeds that of REELS by order of magnitude [43–
45], it is beneficial to have an algorithm for retrieving DIIMFP
and DSEP functions from PES spectra. At the same time, it
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Figure 6: Comparison of retrieved NDIIMFP and NDSEP of an outgoing
2000 eV electron for Al sample with NDIIMFP from [37].
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Figure 7: Comparison of retrieved NDIIMFP and NDSEP for Si sample with
NDIIMFP from [38]. The primary electron energy is 2000 eV.

is quite challenging to develop such an algorithm based on the
direct numerical extraction schemes since the impacts of sev-
eral molecular electronic transition are overlapped in the PES
spectrum.

In this section we extract DIIMFP and DSEP information
from PES spectra by means of the fitting procedure. Our re-
trieval algorithm for PES is similar to that for REELS. The
computations of PES spectra are performed in three steps:

1. we calculate Qk (τ, µ0, µ) function for each considered molec-
ular electronic transition by solving a system of Eqs. (4)–
(10);

2. given Qk (τ, µ0, µ), we compute an energy loss spectrum
for each molecular electronic transition using expansions
analogous to Eqs. (1) and (2), and

3. we sum up impacts from all transitions (levels).

For Beryllium we consider Qk (τ, µ0, µ) functions related to
the photo-electron emission from the energy level 1s1/2. At
least 7 inelastic scattering events must be taken into account to
correctly reproduce the PES spectrum (see Fig. 11). For Tung-
sten we consider a set of Qk (τ, µ0, µ) functions related to the

6
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Figure 8: Comparison of experimental REELS spectra of Nb [39, 40] with calculated spectra. The primary electron energies are 5 keV (a), 20 keV (b) and 40 keV (c);
the average relative errors are 5.6% (a), 7.3% (b) and 6.8% (c), respectively.
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Figure 9: Comparison of retrieved NDSEP for surface (S) and intermediate (G)
layers and NDIIMFP of an outgoing 5 keV electron for Nb sample for with
NDIIMFP from [37] .

photo-electron emission from levels 5s1/2, 5p1/2, 5p3/2, 4 f5/2,
4 f7/2. For adequate description of emission from these levels,
7 inelastic scattering collisions must be taken into account.

Figures 12 and 14 show the extracted DIIMFPs for Be and
W, respectively, obtained from PES spectra. In addition, we
plot the DIIMFP taken from [37] . The extraction is performed
within the two-layer model.

Computed PES spectra and experimental data are shown in
Fig. 11 and Fig. 13 for Be and W, respectively. The agreement
between experimental data and computed spectra is within 5%
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Figure 10: Nb surface excitation parameters (τS , τG) as functions of the elec-
tron energy.

over the entire energy loss range of interest.
Note that each peak in the extracted DIIMFP is related to

the specific physical process (whether it is a plasmon excitation
or ionization of 5s1/2, 5p1/2 and 5p3/2 shells). The DIIMFP ex-
tracted by the direct numerical deconvolution (e.g., see [37] )
has five peaks in the energy loss range 0 − 50 eV with insuffi-
ciently clear physical meaning. However, both DIIMFPs repro-
duce energy loss spectra. This is due to the fact that retrieval
of DIIMFPs from REELS is a severely ill-posed problem and
there is no unique solution to it. In this regard, a regularization
technique employing physical models is highly required.
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Figure 11: Comparison of experimental PES spectra [45] of Be with calculated
spectra. The average relative error is 2.4%.
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Figure 12: Comparison of retrieved NDIIMFP and NDSEP for Be sample for
PES spectra with NDIIMFP from [37] .

4.5. PES for Si, Al, Mg and Nb, computed with DIIMFPs ob-
tained from REELS spectra

To validate the DIIMFP and DSEP functions obtained from
REELS, we use them to compute PES spectra. For Si, Al and
Mg one has to sum up 2p1/2, 2p3/2 and 2s1/2 lines. For Nb one
has to sum up 3d3/2, 3d5/2, 3p1/2, 3p3/2 and 3s1/2 lines. Fig-
ures 15, 16, 17 and 18 illustrate experimental PES spectra for
Mg, Al, Si and Nb, respectively, as well as spectra, computed
using DIIMFPs obtained from REELS. Good agreement is ob-
tained, what proves the consistency of the proposed method.

5. Summary

We presented a unified approach for computing REELS and
PES spectra. It is based on the invariant imbedding equations
solved by using the discrete ordinate method and the backward
differential formula. This approach provides a numerical so-
lution of transport equations without ad hoc assumptions and
simplifications. Note that the forward model is robust, e.g. the
computational time for one PES spectrum simulation does not
exceed 0.1 sec on Intel Xeon CPU E5-1620 3.60GHz.
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Figure 13: Comparison of experimental PES spectra [45] of W with calculated
spectra. The average relative error is 3.3%.
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Figure 14: The same as Fig. 12 except for W.

Using this approach as a tool to account for multiple scatter-
ing effects, we have developed the algorithm for DIIMFP and
DSEP extraction from REELS and PES spectra. The desired
functions are parametrized on the base of linear respond theory.
Unknown parameters are found by means of the fitting proce-
dure, which minimizes the residual between simulated spectra
and measurements. Unlike direct numerical inversion schemes,
the proposed method is stable and provides physically relevant
results.

To account for surface plasmons, the multi-layer model is
used. In particular, the DIIMFP and DSEP functions for Mg,
Al, Si have been extracted from REELS in the framework of
the two-layer model. To interpret Nb REELS spectra at sev-
eral probing energies, we have tested a three-layer model with
surface, intermediate and bulk layers. In this case, retrieval of
DIIMFP and DSEP from Nb REELS spectra is performed in
two steps. At the first step, DIIMFP of bulk, and DSEPs for sur-
face and intermediate layers are extracted. At the second step,
two upper layers are reduced into one surface layer with effec-
tive DSEPe. This model seems to be useful in practice since it
simplifies the parametrization of DIIMFPs and their retrieval.
The shape of the DIIMFP is given by a linear combination of
basic functions (see Eqs. (17) and (18)), which do not change

8



1320 1340 1360 1380 1400 1420 1440
0

5000

10000

15000

Electron energy E [eV]

In
te

n
si

ty
 [

re
l.

u
n
.]

 

 

Experiment

Theory

2s
1/2

2p

Figure 15: Comparison of the experimental PES spectrum [45] for Mg with that
computed using obtained DIIMFPs from REELS. The average relative error is
7.8%.
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Figure 16: The same as Fig. 15 except for Al. The average relative error is
7.8%.

with the initial energy.
We have applied the same retrieval strategy to PES spectra.

The DIIMFP and DSEP for Be and W have been extracted. Fi-
nally, the DIIMFPs/DSEPs extracted from REELS have been
validated by using them in PES computations. Good agreement
is found between computed and measured spectra.

With the fast and flexible tool for REELS and PES spectra
simulations, our intention is to consider larger sets of experi-
mental data and to retrieve DIIMFP functions by using optimal
estimation approach, wherein the residual is minimized over the
whole available data. That will be the topic of our future papers.
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