First steps towards a model of Mg-S batteries

Raphael Richter*1,2, Jessica Lück1,2, Timo Danner1,2 and Arnulf Latz1,2,3

1German Aerospace Center (DLR), Institute of Engineering Thermodynamics, Stuttgart Germany
2Helmholtz Institute Ulm for Electrochemical Energy Storage (HIU), Ulm, Germany
3University of Ulm, Institute of Electrochemistry, Ulm, Germany

Helmholtzstraße 11, 89081 Ulm, Germany
Phone: +49 (731) 50 34321 E-Mail: raphael.richter@dlr.de

The use of alkaline/alkaline earth metal as anode material, such as Li, Na, Mg, or Zn offers many benefits compared to conventional intercalation chemistry based battery technologies. Lithium-sulfur batteries are one of most investigated systems of that type. In recent years magnesium-sulfur batteries are highly discussed as a next-generation energy storage system. Magnesium can be directly used as anode material due to its dendrite-free deposition and thus increases the safety as well as energy density of such a cell. Two electrons are stored per Mg atom which compensates the rather low discharge potential of magnesium-sulfur cells of 1.7 V and provides a high capacity of 3832 mAh/cm³ and 2230 mAh/g [1]. The system offers a theoretical energy density of over 3200 Wh/l, which is beyond that of lithium-sulfur batteries and is therefore very promising for automotive and stationary applications [2]. Furthermore magnesium and sulfur are both naturally abundant, low in price and non-toxic. However, magnesium-sulfur batteries are in a very early stage of research and development. The first proof of concept was reported by Kim et al. in 2011. Critical issues of this first cell were a short lifetime of only two cycles and an initial discharge potential of only 1 V indicating side reactions [3]. A new electrolyte recently developed by Zhao-Karger et al. pushed the system to the next level and a cell with a lifetime of more than 50 cycles and a discharge potential near the theoretical value was demonstrated. However, analogous to lithium-sulfur batteries magnesium-sulfur batteries show polarization effects during charging, low cyclic stability, initial capacity fading, and a polysulfide shuttle. The reaction mechanism is proposed analogous to those of lithium-sulfur batteries but is still not investigated in detail.

To the best of our knowledge there are no continuum models of magnesium-sulfur batteries in the literature. Therefore, we present the first step towards a mechanistic model of magnesium-sulfur cells. Our aim is to provide more insight in the operation of Mg-S batteries and to support the experimental progress. We use a continuum model based on porous electrode and dilute solutions theory. The transport of dissolved species is described by the Nernst-Planck equation where transport occurs via diffusion and migration. Our kinetic model includes a reduced reaction mechanism from our previous work on Li-S cells which was able to reproduce the key experimental results [4]. In this work we additionally take into account adsorption and desolvation effects [5] which are expected to be prominent for Mg cations. In close collaboration with experimentalists we aim at guiding new developments of the Mg-S system.

References: