CSP Development Status and Trends

Dipl.-Ing. Klaus Hennecke DLR Institute of Solar Research klaus.hennecke@dlr.de

Content

- Worldwide Market Overview
- Review of Research and Development
 - Efficiency Increase
 - Investment Cost Reduction
 - Operation and Maintenance Improvements
 - Support to improve Financing Conditions
- Summary and Conclusions

CSP in the worldwide power market

Installed capacity by 2015:

- CSP: 4,8 GW

- PV: 234 GW

- Wind: 432 GW

Hydro: 1064 GW

Total generating capacity worldwide (2012): 5550 GW

CSP assessment:

- Still at beginning of the learning curve
- Unique selling point: dispatchable power
 - Storage
 - Fuel back-up

CSP projects and plants worldwide overview Status July 2016

- Operational: 4805 MW

Under Construction: 1260 MW

- Project Development: 1994 MW

CSP technology representation in the market Status July 2016

- Parabolic trough dominating
- Power Tower coming up

- Some Linear Fresnel
- Dish negligible

Commercial Parabolic Trough Technology Solana, Arizona, USA

Commercial Tower Technology Crescent Dunes / Tonopah, Nevada, USA

- Molten Salt
- 110 MWe
- 10 h Storage

Commercial Tower Technology Ivanpah, California, USA

- Steam
- 3x125 Mwe
- No storage!

CSP cost reduction potential Study by DLR under contract from and in co-operation with IRENA

- Present LCOE: 15-19 \$ct/kWh depending on DNI and financing conditions
 - Published reference values NOOR ppa: 14-15 \$ct/kWh
- LCOE below 10 \$ct/kWh achievable by 2025
- Main drivers for LCOE reduction
 - Efficiency increase
 - Solar field cost reduction
 - Improved operation and maintenance
 - Improved financing conditions "bankability"

- IRENA: The power to change: Solar and Wind cost reduction potential to 2025 (download: www.irena.org/publications)
- Dieckmann et.al.: LCOE reduction potential of parabolic trough and solar tower CSP technology until 2025, SolarPACES2016 AbuDhabi, Oct.11-14, 2016

CSP current R&D activitiesMy personal selection from SolarPACES 2015, Capetown

- Efficiency increase
 - Increased temperature
 - New heat transfer media
 - New power cycles
- Solar field cost reduction
 - Collector design optimization
 - Heliostat optimization
- Improved operation and maintenance
 - Optimized control and operating strategies
 - Dynamic modelling, control and operation optimization
- Improved financing conditions "bankability"
 - Reduce risks and uncertainties
 - Quality assurance and standards

For details and references refer to: Proceedings of SolarPACES 2015 International Conference on Concentrating Solar Power and Chemical Energy Systems, Capetown Oct. 13-16 2015 http://scitation.aip.org/content/aip/proceeding/aipcp/1734

Efficiency increase

New heat transfer media

- Improved thermal oil for higher temperature (Parabolic trough)
 - No system change, limited potential (up to 450°C approx)
- <u>Direct steam Generation</u> (Power tower, Parabolic trough, Linear fresnel)
 - Commercial plants realized without storage
 - Once-through process for cost reduction
 - High research activities for cost-effective steam storages
- <u>Liquid Metal</u> (Power tower)
 - Good heat transfer characteristics for high flux / high temperature systems, but safety concerns
- Particles (Power tower)
 - Direct absorption and storage for high temperature systems
 - Medium to long term research activities
- Molten salt (Power tower, Parabolic trough, Linear fresnel)
 - Commercial in power tower, good Rankine cycle efficiency, cost effective storage

Efficiency increase New heat transfer media: Molten salt

R&D on open issues in line-focus systems

- Freeze Protection

Eickhoff et al.: New operating strategies for molten salt in line focusing solar fields – daily drainage and solar receiver preheating

- Experimental facilities and experience
 Gaggioli et al.: Effects assessment of 10
 functioning years on the main componets
 of the molten salts PCS experimental
 facility of ENEA
- System integration
 Seubert et al.: Analysis of a helical coil once-through molten salt steam generator: Experimental results and heat transfer evaluation

Efficiency increase New power cycles

Supercritical CO₂ brayton cycle

Supercritical CO₂ Brayton Power Cycle For Molten Salt Receivers Liu Sijie and Yann Le Moullec

Case 1: sCO2 regenerative cycle bot gas generator Case 1: sCO2 regenerative cycle bot gas generator main compressor cooler cooler main compressor occler occler cooler cooler cooler cooler cooler cooler

Supercritical steam cycle

Dynamic modeling of concentrated solar power molten salt tower system with supercritical steam and with Thermal Energy Storage Baligh El Hefnia

Solar field cost reduction Heliostat optimization

- Commercial systems from 1m² to 140m²
- Size optimization
 - Structure costs proportional r³
 - Actuator costs, foundations, controls etc. <r2
- Optimization study by SBP concludes 40-60m²
 Balz et.al.: Stellio development, construction and testing of a smart heliostat
- Factors motivating choice of smaller units:
 - Small modular towers need smaller heliostats
 - Optics for future higher T processes (Brayton, Fuels etc.)
 - Easier to prototype
 - Mass production volumes reached with smaller total field sizes

Summary based on K. Lovegrove: Trends in concentrating solar collectors, Presentation at SolarPACES 2015, Capetown

Improved operation and maintenance Dynamic modelling, control, operation optimization

- Numerical models and investigations
 - Jiahui et al.: Numerical molten salt tower STE plant model
 - Qiang et al.: Simulation and experimental research of 1 MWe's solar tower power plant in China
 - Bubolz et al.: Influence of spatiotemporally distributed irradiance data input on temperature evolution in parabolic trough solar field simulations
 - Many more!
- Meteorological input
 - Hirsch et al.: Direct Normal Irradiance nowcasting methods for optimized operation of concentrating solar technologies (DNICast)

Improved financing conditions – "bankability" Quality assurance and standards

Steps towards a CSP Yield calculation guideline: A first draft for discussion in the SolarPACES working group *guisSmo* (Hirsch et al.)

CSP current R&D activities Other prominent issues

- Industrial solar process heat and decentral CSP applications
- New mirror materials
 - Polymer films or Aluminium, durability issues
- Receivers
 - Parabolic trough: higher temperatures, durability issues
 - Tower: Great variety of receiver types for different media, detailed investigation on losses and their mitigation
- Thermal/Thermochemical Energy Storage
 - Sensible: molten salt, cheap solid materials
 - Latent: cost reduction, de-coupling of storage capacity from heat exchanger size
 - Thermochemical: Materials research and labscale demonstrators
- Solar Fuels
 - Different approaches for long term vision

Oroz et al.: Low-Cost Small Scale Parabolic Trough Collector Design for Manufacturing and Deployment in Africa

Rojas: Thermal/Thermochemical Energy Storage at SolarPACES 2015

Summary and Conclusions

- CSP will have an important role in a renewables based energy system
 - Dispatchable power to cover residual load and stabilize the grid
- R&D activities to support near term market deployment
 - System trend: Molten salt, direct storage, Rankine cycle
 - Potential conflict: innovation versus "bankability"
- Long term research on solar fuels
 - Synergies with high temperature developments for power generation
- CSP is still at the beginning of the learning curve
 - Research and development must go on
 - Joint efforts needed to transfer innovation quickly into applications
 - Reference installations facilitate "bankability"
 - This still needs financial and regulatory support

