CSP Development
Status and Trends

Dipl.-Ing. Klaus Hennecke
DLR Institute of Solar Research
klaus.hennecke@dlr.de
Content

- Worldwide Market Overview
- Review of Research and Development
 - Efficiency Increase
 - Investment Cost Reduction
 - Operation and Maintenance Improvements
 - Support to improve Financing Conditions
- Summary and Conclusions
CSP in the worldwide power market

Installed capacity by 2015:
- CSP: 4.8 GW
- PV: 234 GW
- Wind: 432 GW
- Hydro: 1064 GW

Total generating capacity worldwide (2012): 5550 GW

CSP assessment:
- Still at beginning of the learning curve
- Unique selling point: dispatchable power
 - Storage
 - Fuel back-up

![Graph showing operational capacity growth from 1994 to 2015 for Wind, PV, and CSP]
CSP projects and plants worldwide overview
Status July 2016

- Operational: 4805 MW
- Under Construction: 1260 MW
- Project Development: 1994 MW
CSP technology representation in the market
Status July 2016

- Parabolic trough dominating
- Power Tower coming up
- Some Linear Fresnel
- Dish negligible
Commercial Parabolic Trough Technology
Solana, Arizona, USA

- Thermal Oil
- 280 MWe
- 6h storage
 (molten salt)
Commercial Tower Technology
Crescent Dunes / Tonopah, Nevada, USA

- Molten Salt
- 110 MWe
- 10 h Storage
Commercial Tower Technology
Ivanpah, California, USA

- Steam
- 3x125 Mwe
- No storage!
CSP cost reduction potential
Study by DLR under contract from and in co-operation with IRENA

- Present LCOE: 15-19 $ct/kWh depending on DNI and financing conditions
 - Published reference values NOOR ppa: 14-15 $ct/kWh
- LCOE below 10 $ct/kWh achievable by 2025
- Main drivers for LCOE reduction
 - Efficiency increase
 - Solar field cost reduction
 - Improved operation and maintenance
 - Improved financing conditions – “bankability“
- For details and comparison to other renewables refer to
 - IRENA: The power to change: Solar and Wind cost reduction potential to 2025
 (download: www.irena.org/publications)
CSP current R&D activities
My personal selection from SolarPACES 2015, Capetown

- Efficiency increase
 - Increased temperature
 - New heat transfer media
 - New power cycles

- Solar field cost reduction
 - Collector design optimization
 - Heliostat optimization

- Improved operation and maintenance
 - Optimized control and operating strategies
 - Dynamic modelling, control and operation optimization

- Improved financing conditions – “bankability”
 - Reduce risks and uncertainties
 - Quality assurance and standards

http://scitation.aip.org/content/aip/proceeding/aipcp/1734
Efficiency increase
New heat transfer media

- **Improved thermal oil** for higher temperature (Parabolic trough)
 - No system change, limited potential (up to 450°C approx)

- **Direct steam Generation** (Power tower, Parabolic trough, Linear fresnel)
 - Commercial plants realized without storage
 - Once-through process for cost reduction
 - High research activities for cost-effective steam storages

- **Liquid Metal** (Power tower)
 - Good heat transfer characteristics for high flux / high temperature systems, but safety concerns

- **Particles** (Power tower)
 - Direct absorption and storage for high temperature systems
 - Medium to long term research activities

- **Molten salt** (Power tower, Parabolic trough, Linear fresnel)
 - Commercial in power tower, good Rankine cycle efficiency, cost effective storage
Efficiency increase

New heat transfer media: Molten salt

R&D on open issues in line-focus systems

- Freeze Protection
 Eickhoff et al.: New operating strategies for molten salt in line focusing solar fields – daily drainage and solar receiver preheating

- Experimental facilities and experience
 Gaggioli et al.: Effects assessment of 10 functioning years on the main components of the molten salts PCS experimental facility of ENEA

- System integration
 Seubert et al.: Analysis of a helical coil once-through molten salt steam generator: Experimental results and heat transfer evaluation
Efficiency increase
New power cycles

Supercritical CO$_2$ brayton cycle

Supercritical CO$_2$ Brayton Power Cycle For Molten Salt Receivers
Lin Sijie and Yann Le Moullac

Supercritical steam cycle

Dynamic modeling of concentrated solar power molten salt tower system with supercritical steam and with Thermal Energy Storage
Baligh El Hefnawy
Solar field cost reduction
Heliostat optimization

- Commercial systems from 1m² to 140m²
- Size optimization
 - Structure costs proportional r^3
 - Actuator costs, foundations, controls etc. $<r^2$
- Optimization study by SBP concludes 40-60m²
 Balz et.al.: Stellio – development, construction and testing of a smart heliostat
- Factors motivating choice of smaller units:
 - Small modular towers need smaller heliostats
 - Optics for future higher T processes (Brayton, Fuels etc.)
 - Easier to prototype
 - Mass production volumes reached with smaller total field sizes

Summary based on K. Lovegrove: Trends in concentrating solar collectors, Presentation at SolarPACES 2015, Capetown
Improved operation and maintenance
Dynamic modelling, control, operation optimization

- Numerical models and investigations
 - Jiahui et al.: Numerical molten salt tower STE plant model
 - Qiang et al.: Simulation and experimental research of 1 MWe's solar tower power plant in China
 - Bubolz et al.: Influence of spatio-temporally distributed irradiance data input on temperature evolution in parabolic trough solar field simulations
 - Many more!

- Meteorological input
 - Hirsch et al.: Direct Normal Irradiance nowcasting methods for optimized operation of concentrating solar technologies (DNICast)
Improved financing conditions – “bankability”
Quality assurance and standards

Steps towards a CSP Yield calculation guideline: A first draft for discussion in the SolarPACES working group *guisSmo* (Hirsch et al.)
CSP current R&D activities
Other prominent issues

- Industrial solar process heat and decentral CSP applications
- New mirror materials
 - Polymer films or Aluminium, durability issues
- Receivers
 - Parabolic trough: higher temperatures, durability issues
 - Tower: Great variety of receiver types for different media, detailed investigation on losses and their mitigation
- Thermal/Thermochemical Energy Storage
 - Sensible: molten salt, cheap solid materials
 - Latent: cost reduction, de-coupling of storage capacity from heat exchanger size
 - Thermochemical: Materials research and labscale demonstrators
- Solar Fuels
 - Different approaches for long term vision
Summary and Conclusions

- CSP will have an important role in a renewables based energy system
 - Dispatchable power to cover residual load and stabilize the grid

- R&D activities to support near term market deployment
 - System trend: Molten salt, direct storage, Rankine cycle
 - Potential conflict: innovation versus “bankability”

- Long term research on solar fuels
 - Synergies with high temperature developments for power generation

- CSP is still at the beginning of the learning curve
 - Research and development must go on
 - Joint efforts needed to transfer innovation quickly into applications
 - Reference installations facilitate “bankability”
 - This still needs financial and regulatory support