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Remco J. Renken

NeuroImaging Center,
University Medical Center Groningen,

University of Groningen, Groningen, The Netherlands

A key property of human visual behavior is the very
frequent movement of our eyes to potentially relevant
information in the environment. Observers thus
continuously have to prioritize information for directing
their eyes to. Research in this field has been hampered
by a lack of appropriate measures and tools. Here, we
propose and validate a novel measure of priority that
takes advantage of the variability in the natural viewing
behavior of individual observers. In short, our measure
assumes that priority is low when observers’ gaze
behavior is inconsistent and high when it is very
consistent. We calculated priority for gaze data obtained
during an experiment in which participants viewed
dynamic natural scenes while we simultaneously
recorded their gaze position and brain activity using
functional magnetic resonance imaging. Our priority
measure shows only limited correlation with various
saliency, surprise, and motion measures, indicating it is
assessing a distinct property of visual behavior. Finally,
we correlated our priority measure with the BOLD signal,
thereby revealing activity in a select number of human
occipital and parietal areas. This suggests the presence of

a cortical network involved in computing and
representing viewing priority. We conclude that our new
analysis method allows for empirically establishing the
priority of events in near-natural vision paradigms.

Introduction

During natural visual behavior such as visual search,
human observers make eye movements toward loca-
tions that require further attention and scrutiny
(Yarbus, 1967). Therefore, eye movements indicate
what observers (or at least their visual systems)
consider potentially important in a scene (Henderson,
2003). A key challenge in visual neuroscience has been
to explain how the human brain prioritizes certain
events or objects in a scene over others, with priority
being defined as a combination of all bottom-up and
top-down factors driving overt gaze behavior. Unfor-
tunately, no measure of priority exists today. An
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important reason is that a computational derivation of
priority is challenging, if not impossible.

Assuming that eye movements form the observable
output of the putative prioritization process, we hy-
pothesized that we can take advantage of the variability
of the viewing behavior across individuals in order to
design a novel measure to empirically determine priority
in naturalistic viewing paradigms. The second hypothesis
that we tested is if this measure can be used to trace the
neural correlates of priority in the human visual cortex of
observers looking at dynamic natural stimuli.

Two aspects appear to determine where an observer
will gaze at in a scene: first, locations that ‘‘stand out’’ in
one way or the other from their surrounding may attract
gaze. Second, top-down factors such as the task at hand
or instructions also affect the guidance of our eyes
(Buswell, 1935; Gitelman et al., 1999; Hayhoe & Ballard,
2005; Rothkopf, Ballard, & Hayhoe, 2007; van Beilen,
Renken, Groenewold, & Cornelissen, 2011). A number
of theories and computational models propose that the
brain uses stimulus information, such as local contrast or
orientation differences, to determine regions that stand
out from their surroundings, thereby constructing a
saliency map (a map highlighting the most prominent
features). Such a map can be used to predict the gaze
behavior of observers (Bruce & Tsotsos, 2009; Itti &
Koch, 2001; Itti, Koch, & Niebur, 1998; Koch & Ullman,
1985). However, even though models based on the
concept of saliency have become increasingly sophisti-
cated and can handle natural dynamic stimuli, they still
fail to account for a substantial portion of observers’
fixations (Hayhoe & Ballard, 2005). Moreover, task
demands can easily overrule stimulus saliency as the
dominant factor determining viewing behavior (Hender-
son, Brockmole, Castelhano, & Mack, 2007). For this
reason, it has been argued that task, rather than saliency,
may be the primary determinant of viewing behavior
(Hayhoe & Ballard, 2005). Furthermore, memory (Aivar,
Hayhoe, Chizk, & Mruczek, 2005) and anticipatory
behavior play an important role in guiding viewing
behavior (Hayhoe & Ballard, 2005). This implies that
contextual information can modulate the expression of
saliency. Indeed, the neuronal expression of object
saliency is higher when it is consistent with the behavioral
goals of the observer (Fecteau & Munoz, 2006). This
finding led Fecteau and Munoz (2006) to propose that
priority—the integrated representation of saliency and
task-related relevance—could describe the firing patterns
of neurons in the human brain more effectively.

Here, we here propose an empirical and quantitative
measure of viewing priority based on an observer’s gaze
position that can be used to quantify viewing priority
during the free observation of dynamic natural scenes.
Our measure exploits the variability in the natural
viewing behavior of individual observers. Our intuition
was the following: When the gaze behavior of an

observer is consistent with that of other observers, the
information gazed at has a high priority. If, on the
other hand, the observer’s gaze behavior is inconsistent
with others, the information has a low priority. In the
Methods section below, we provide a more formal
description of our measure. We found that our new
measure was highly consistent across participants, yet
was clearly different from state-of-the-art image-based
measures of saliency, surprise, and motion. This
indicates that our measure of priority captures both the
bottom-up and top-down influences that drive gaze
behavior in natural dynamic conditions.

Next, we explored the use of our measure to trace the
neural correlates of viewing priority using concurrent
functional magnetic resonance imaging (fMRI) and eye
tracking in participants viewing movies of natural
scenes. Our results suggest viewing priority is repre-
sented in the temporal parietal junction (TPJ), the
precuneus, and area V5/MT in the human brain.

Methods

Definition of viewing priority

We defined viewing priority as the combination of
salience and relevance and assume it underlies the
viewing pattern of an observer. We assumed that a
participant gazes at aspects of a scene to which his
brain assigned the highest viewing priority. Based on
this assumption, we hypothesized that viewing priority
can be derived from gaze behavior of a single
participant as follows: When the viewing behavior of a
participant is consistent with that of a reference group,
it has a high viewing priority. In other words, if
everyone is fixating at the same point in the same
context, the fixation must be a prioritized one.
Therefore, fixation events have a higher priority when
the individual’s viewing behavior is more consistent
with that of a reference group of observers.

Mathematically, this behavior—the conformity of a
fixation to a reference group of fixations—can be seen
as a typical example of a clustering problem. In the
general case, the clustering of items is based on
calculating optimal class centers based on minimizing
distances within the class and maximizing distances
between classes. Here, if the distance between the
fixation and the reference group is small, it has a high
priority. The further away this distance falls from the
center of the reference group, the lower the priority
value should become. Therefore, our goal is to derive a
value of priority based on the distances between the
fixation at hand and the reference group. However, in
standard clustering algorithms (e.g., k-nearest neigh-
bor) the labeling is discrete and would only discrimi-
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nate whether or not the fixation belongs to the
reference group. An improvement upon this method is
fuzzy c-means (FCM) clustering (Bezdek, 1981),
allowing for probability of the final class labels (i.e., the
degree of belongingness of the fixation to the reference
group and therefore providing in a priority value).

The following definitions were used: (a) Fixation of
interest: the individual fixation made by an observer in a
certain context (e.g., watching a video sequence, or
performing a cognitive task) at a specific time. When
comparing an observers’ fixation with that of a reference
group, the context has to be the same. Both fixation
location and duration are taken into account. (b)
Reference set: the distribution of fixations made around
the same time by other observers in the same context. (c)
Random set: the distribution of fixations made around
the same time by other observers in a different context
(e.g., watching a different video sequence).

Priority was calculated by comparing the fixation of
interest with regards to the reference set. The null
distribution for priority is given by the distribution of
the priorities for each fixation of the random set to the
reference set (see the example in Figure 1). The priority
associated with a fixation during a certain context is
characterized by calculating the degree of belonging-
ness to each reference fixation where the definition of
belongingness is derived from the FCM methodology
(Bezdek, 1981).

FCM is traditionally applied to divide a finite set of
data into a number of classes. The strength of FCM
compared to traditional k-means clustering is having
continuous membership values instead of discrete ones.
In FCM, these membership values are calculated for
each element with respect to each class, indicating to
what degree the element belongs to the class. The sum
over all distances between each element xi and each
class center cj is minimized (Equation 1). The formula
for belongingness of element xi to class cj is given in
Equation 2:

argmin
Xn
i¼1

Xc
j¼1

wm
ij jjxi � cjjj2 ð1Þ

wi;j ¼
1Xc

k¼1

jjxi � cjjj
jjxi � ckjj

� � 2
m�1

ð2Þ

We adapted this algorithm and state that each element
(in our case a fixation location) defines its own class,
and make use of the continuous membership scores for
the current fixation location toward the location of
reference fixations.

A step-by-step procedure for calculating the priority
measure is given below.

Step 1

Given a fixation (f) of an observer, it has a location
within a certain time interval s (i.e., all time points
falling inside the start and end of the fixation) in a given
context (e.g., a movie). A reference set of fixation
locations (X) is selected from all fixations of other
observers that show a temporal overlap with s during
that same context. Similarly, a random set of fixation
locations (R) is selected, again from the other
observers, using the same time interval but made during
a set of different contexts.

Step 2

Let xk be the kth element of X; let xl be an element of
X with l 6¼ k; and let ri be the ith element of R. First,
belongingness lk of an arbitrary fixation q having the
location fq is defined as:

lkðfqÞ ¼
1

X
l 6¼k

dðfq; xkÞ
dðxl;xkÞ

 ! 2
m�1

where d(fq, xk) and d(xp, xk) are the Euclidian distances
between fq and xl to xk, respectively and m is a fuzzy
parameter. The ratio between d(fq, xk) and d(xp, xk)
represents the weighted distance between fq and xk. In
clustering algorithms, m is commonly defined such that
the total belongingness is equal to 1, and the individual
belongingness lk represents a fraction. As a result, m will
adapt to the spatial distribution of X (see Figure 2 and
Appendix A). To prevent the algorithm from becoming
unstable, zero distances are not taken into account in the
calculation of belongingness. In principle, each arbitrary
fixation fq will result in a different value for m. Therefore,
mi is calculated for each fixation in R, ri (Figure 2).

Step 3

The parameter m is fixed to the median of all mis for
all contexts. In this way, the belongingness captures the
effects of the spatial distribution of X. Note that
typically, m is chosen a priori with a desired level of
fuzziness. Due to possible spatial bias in both the
random and reference set, m has to be determined on
the data first, before this a priori value can be set.

Step 4

In order to calculate priority, the total belongingness
(
P

lk) is calculated using the fixed m as described
above, for the fixation of interest (fq) and all random
fixations. Priority is now defined as the fraction of total
belongingness of R below total belongingness of fq.
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Figure 1. Simple example. The graph on the upper left shows simulated data: two fixations of interest (bright and dark red dots),

reference fixations (blue dots), and random fixations (green dots). The graph on the upper middle shows the sorted distribution of

belongingness lx for the two fixations of interest based on the differences in location to all reference fixations (x-axis denotes fixation

index of the reference set, y-axis denotes lx). The graph on the upper right shows the cumulative histograms of belongingness lx for
the two fixations of interest (red colors) and all random fixation locations (green). Priority values are 1 and 0.6 for the bright red and

dark red fixations, respectively. Note that in this simple case, fuzzy parameter m has already been fixed (value: 3.486; see Figure 2 for

more details). The lower graphs denote the case where a bias is present in the random set (green). This has no effect on the

distribution of lx for the fixations of interest (lower middle graph). For this example, priority values are 1 and 0 for the bright red and

dark red fixations, respectively.

Figure 2. Illustration of fuzzy parameter m. The graph on the left shows simulated data as shown in Figure 1: reference fixations (blue

dots) and random fixations (green dots). Indices are written next to each random fixation, and correspond to the x-axis of the graph

on the right. The graph on the right shows values of m for each random fixation. The black dashed line indicates the median value of

m, which is subsequently used to calculate viewing priority.

Journal of Vision (2016) 16(6):3, 1–18 Marsman et al. 4

Downloaded From: http://jov.arvojournals.org/pdfaccess.ashx?url=/data/Journals/JOV/935165/ on 12/05/2016



Functional magnetic resonance
imaging

Participants

The study included 18 healthy participants (eight
women, 10 men, aged 18–24 years) who reported
normal or corrected-to-normal vision. All participants
were right-handed as tested using the Edinburgh
handedness inventory. Although we initially scanned 19
participants with the fMRI, one participant was
excluded due to technical problems in the registration
of eye movements during the experiment. All partici-
pants gave their informed consent prior to participa-
tion. The medical ethics committee of the University
Medical Center Groningen approved this study.

Stimuli, task, and design

The stimuli used in the present study came from a
previous eye-tracking study by our group (Böhme,
Dorr, Martinetz, & Barth, 2006). A high-definition
television video camera (JVC JY-HD10, JVC, Yoko-
hama, Japan) was used to record 18 video sequences of
a variety of real-world scenes in and around the city of
Lübeck (videos are available online: http://www.inb.
uni-luebeck.de/tools-demos/gaze). Video resolution
was 1024 3 768 pixels. Each video sequence lasted
approximately 20 s, where seven sequences depicted
people (e.g., in a pedestrian area, on the beach, playing
in a park), four sequences depicted traffic scenes (e.g.,
populated streets and roundabouts), four sequences
depicted animals, and three sequences depicted mis-
cellaneous scenes, such as a ship passing by at a
distance. The same video sequences were used as
stimuli in the fMRI experiment described in this paper.
To prevent abrupt onset effects, video sequences faded
in and faded out of a gray background (Tukey window,
a¼ 0.5 [i.e., the total fading transition lasted 4.5 s]).

Stimulus presentation

Video sequences were presented using custom
software written using the Psychtoolbox (Cornelissen,
Peters, & Palmer, 2002; Pelli, 1997) in Matlab (Version
7.8, MathWorks, Natick, MA) and displayed using a
Barco LCD Projector G300 (Barco, Kortrijk, Belgium)
on a translucent display at a resolution of 1024 3 768
pixels. The dimensions of the translucent display were
443 34 cm. This subtends a visual angle of 328 3 25.58
for the entire screen. An Apple MacBook Pro (Apple,
Cupertino, CA) was used to drive the stimulus display.

Via a 458 tilted mirror, placed on top of the head coil,
the subject was able to see the entire presentation
display. The distance from the eyes to the screen (via
the mirror) was 75 cm.

Eye-tracking

Gaze behavior was recorded using a 50-Hz magnetic
resonance (MR) compatible eye tracker (SMI, Teltow,
Germany), connected via fiber optics to a dedicated PC
(Pentium 600 Mhz, 256 MB RAM) running IView X
software (Version 1.0, SMI, Teltow, Germany). Com-
munication between this PC and the stimulus PC took
place using ethernet (user datagram protocol) and
using various routines of the Eyelinktoolbox (Corne-
lissen et al., 2002). A second mirror relayed the image
of the eye to the infrared camera of the eye tracker
mounted at the foot of the scanner bed. Manual
calibration (nine-point calibration technique) and
validation of the eye position signal took place before
the start of each session.

The fMRI experiment consisted of two sessions, with
different instructions given in each session. During the
first session (free viewing), participants were instructed
to observe the video sequences as if they were watching
television. This instruction was to prevent them from
making excessive eye movements. During the second
session (fixating), participants were asked to fixate on a
18 marker at the center of the screen. The marker was
present during the entire fixation session. During each
session, a series of 18 natural video sequences was
shown twice. To minimize contextual effects across
subjects, the order of presentation during a series was
fixed. A 30-s blank grey screen (average luminance:
3262 cd/m2) with a central fixation cross preceded the
first series of video sequences. This was shown again
between the two series and after the second series. Nine
participants first performed the fixation session.

fMRI data acquisition

Scanning was performed using a 3.0 T MRI Scanner
(Philips, Best, the Netherlands) with an eight-channel
SENSE head coil. Functional recordings (axial slices
recorded in a descending manner) were made using the
following parameter settings: flip angle: 708; echo time:
28 ms; repetition time: 1800 ms, field of view: 2243 156
3 224 mm; 35 slices were acquired in descending order
(slice thickness of 4 mm, in-plane resolution of 3.5
mm). Two sessions were recorded, each consisting of
482 dynamic volumes (approximate duration 14.5 min).
Each volume contained 35 slices recorded in a
descending manner with an in-plane resolution of 3.5
mm and slice thickness of 4.0 mm. Between the two
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sessions, a high-resolution anatomical scan was re-
corded. The anatomical T1 volume was made with an
in-plane resolution of 1 3 1 mm and contained 160
slices, recorded transversal. The field of view was 2323
170 3 256 mm.

Eye-tracking data analysis

Fixations were calculated based on the recorded gaze
behavior using IView X software (SMI, Teltow,
Germany). A fixation duration threshold of 80 ms was
used. Fixations having the same position and separated
by a short blink (indicating noise) were concatenated.
Fixations were exported for each participant using the
IDF (Iview X DataFile) Event detector (IDFconverter)
with default settings (Version 2.0.1.13, SMI, Teltow,
Germany) with a minimal fixation period of 80 ms and
a maximal dispersion of 100 pixels. All further eye
movement analyses were performed in Matlab (Version
7.8, Mathworks, Natick, MA) using in-house written
software.

In the remainder of the analysis, only fixations made
during the presentation of the video sequences were
taken into account; those recorded during resting
periods were excluded. Additionally, we excluded
fixations falling outside the display boundaries (ap-
proximately 0.5%).

Viewing priority measures

For each participant, viewing priority was calculated
for each fixation made during the free-viewing session.
The sequence of viewing priorities associated with all
fixations made during a session by one participant is
hereafter referred to as the viewing priority time series.

Baseline viewing priority time series

A baseline viewing priority time series was calculated
for each subject based on eye movement data for a
random subject other than the selected subject recorded
during a different movie than the movie at hand. This
baseline viewing priority will act as a null distribution
capturing any systematic/structured effects (e.g., cap-
turing gaze behavior related to the onset of a stimulus).
In contrast to choosing completely random spatial
data, we maintain the structure of consecutive viewing
in similar settings, but for a different context. The
expected value of the resulting baseline viewing priority
time series will be 0.5, if fixations are made uniform
across the screen (see Appendix A). The real viewing
priority time series are tested against these baseline time
series.

Group-average viewing priority time series

A group-average viewing priority time series was
calculated to investigate the idiosyncrasy of our
measure. To calculate a group-average viewing priority
and variance of viewing priority across participants
(red lines in Figure 4), individual viewing priority time
series were linearly interpolated to obtain viewing
priority values at each 100-ms time point. This
interpolation step was necessary because fixation onsets
and durations vary across participants. To explore the
effect of presenting the same movie for a second time
on viewing behavior, we compared the variances in the
viewing priorities obtained for the first and second
presentation of the series of movies (during free
viewing); a Kolmogorov-Smirnov test was performed.

Correlations between viewing priority and eye
movement parameters

To test for associations between viewing priority and
eye movement parameters, correlations were calculated
between viewing priority and (a) fixation duration, (b)
amplitude of the previous saccade, (c) phase angle of
the previous saccade, (d) amplitude of the subsequent
saccade, (e) phase angle of the subsequent saccade, (f)
distance vector (i.e., the distance of the fixation to the
center of the screen), and (g) phase angle (i.e., the angle
of the distance vector).

Correlations between viewing priority and a number of
image-based saliency measures

We also assessed correlations between viewing
priority and a number of image-based—or bottom-
up—measures of saliency, surprise, and motion.
Traditionally, saliency measures are represented in
maps having the dimension of the image or movie. For
our present method, a saliency value was computed
for each fixation by placing it on a downsampled
saliency map. A summary statistic for a small region
centered on the position of the fixation and at the time
of occurrence was computed using the following
algorithms: (a) standard Itti Koch saliency measure
(Itti & Koch, 2001; Itti et al., 1998); (b) a Bayesian
measure of saliency and surprise, using an implemen-
tation of the Fast Saliency Using Natural statistics
algorithm with default parameters (Butko, Zhang,
Cotrell, & Movellan, 2008); (c) an analytical saliency
measure (Vig, Dorr, & Barth, 2011), which is
determined using a classification algorithm that learns
visual representations on multiple scales at the
location of fixations (geometrical invariants of the
structure tensor);1 and (d) a velocity or optic flow
measure based on the Minors of the Structure Tensor
algorithm (Barth, 2000).2
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Figure 3. A graphical depiction of viewing priority. Movie stills overlaid with examples of single fixations of an individual participant

(indicated by red dots) that were assigned high (left column) to low (right column) viewing priority values. The priority values are

displayed in the upper left corner for each movie still. Blue crosses: fixations made by all other participants while viewing the same

movie in the time window defined by the participant’s fixation (reference set); green dots: fixations made within the same time

window by all other participants while viewing all other movies (random set).
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fMRI analysis

All fMRI analyses were performed using SPM8
(Wellcome Trust Centre for Neuroimaging, London,
UK) in Matlab 7.4 (Mathworks, Natick, MA).
Preprocessing consisted of realignment to correct for
subject movement, coregistration to align all functional
data to the subject’s anatomical volume, normalization
to convert all images to Montreal Neurological
Institute (MNI) space and spatial smoothing with a
Gaussian kernel of 8 mm (full width at half maximum).
No slice timing correction was applied.

Analysis of fMRI data based on individually determined
viewing priority time series

In a previous study we showed that fixations are
meaningful events in fMRI analysis, despite their
nonrandom statistical properties, thus enabling Fixa-

tion Based Event-Related (FIBER) fMRI analysis
(Marsman, Renken, Velichkovsky, Hooymans, &
Cornelissen, 2012). We used the same approach in the
present study. In this method, fixations are used as
rapid events over time to construct a design matrix,
which is consequently used in a general linear model.
An additional measure can be added per fixation and
used as a covariate (i.e., a parametric modulator). A
(voxelwise) general linear test for this covariate results
in a brain map containing the effect measure on top of
the average response (the main effect) for fixations.
This map of t statistics can be thresholded and
interpreted as the modulatory effect of the covariate.
Event-related analyses were conducted using onsets and
durations of fixations recorded during the presentation
of movies. Two linear parametric modulations were
added in the following order: distance and viewing
priority; viewing priority correlated with distance. By
including the modulations in this order, brain activity

Figure 4. Viewing priority time series (red) and group-average random viewing priority time series (green) across 18 participants.

Horizontal axes denote time in seconds. Panels A1–D1 detail viewing priority during four selected movies presented during the first

series of presentations. Panels A2–D2 show viewing priority for the same movies during their second presentation in the same free

viewing session. Background: Gray colorings (light and dark gray) denote the presentation and change of movies; white coloring

denotes the presentation of a central fixation cross on a uniform gray background (0–20 s, 420–440 s, 840–860 s).
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related to viewing priority modulation (residual or
otherwise) can be uniquely assigned (van Rootselaar et
al., 2008). We used the priority measure to model the
activity prior to the eye movement (see also the
macaque research study; Mirpour & Bisley, 2013).

To allow for variation in the width and onset of the
estimated hemodynamic responses, an informed basis set
was used (Henson, Rugg, & Friston, 2001). This set
comprised the canonical hemodynamic response function
and its temporal and dispersed derivatives. At the first
level of the fMRI analysis, contrasts were calculated for
(a) the main effect of a fixation event, (b) the viewing
priority parameter, and (c) the distance parameter, all
using the amplitude component only (i.e., the first basis
function of the informed hemodynamic response func-
tion model). At the second level of the fMRI analysis, a
one-sample t test of each of these contrasts was
performed (p , 0.05 Family Wise Error [FWE] cluster
corrected, with an initial threshold of p¼ 0.001). To
visualize the results, functional maps were overlaid on a
three-dimensional brain in Caret using average fiducial
mapping with the metric-enclosing-voxel algorithm (Van
Essen et al., 2001). The corresponding z-scores depicted
in the fMRI activation maps were calculated using 3dcalc
implemented in afni (http:// afni.nimh.nih.gov/afni/).

Analysis of fMRI data recorded during central fixation
based on individually determined viewing priority time
series

To verify the influence of covert attention and to
assess the relevance of measuring overt eye movements,
we also conducted an analysis of the fMRI data
recorded while participants were fixating on the fixation
marker at the center of the screen. In this analysis, we
applied the same statistical parametric mapping (SPM)
model to the functional imaging data for central
fixation in the first level analyses (with events and
priority time series for each subject used in the free
viewing condition). Other aspects were identical as
described in the section ‘‘Analysis based on individually
determined viewing priority.’’

Analysis based on group-averaged viewing priority time
series

To verify the relevance of using individually deter-
mined viewing priority time series—rather than group
averages, the first level of the fMRI analysis was
performed using the average viewing priority time series
across participants (see above). In this analysis, zero-
duration events were set every 100 ms and assigned the
corresponding average viewing priority value. Distance
was not included in the SPM model. Other aspects were
similar to those described in the section ‘‘Analysis based
on individually determined viewing priority.’’

Viewing priority versus analytical saliency

Since other measures of saliency showed negligible
correlations with priority (See Results section ‘‘Corre-
lations between Viewing Priority, Saliency, Surprise
and Motion’’) only analytical saliency was taken into
further inspection. To explore the differences between
viewing priority and analytical saliency even further, we
compared fMRI models of either regressor. Similar
models to viewing priority models were estimated using
analytical saliency as a regressor (informed basis set).
In these models, eccentricity was also added as a
regressor before analytical saliency.

Four bilateral regions of interest were created based
on the main effect of fixation using Marsbar (p , 0.05,
FWE corrected; Brett, Anton, Valabregue, & Poline,
2002). From this contrast, peak voxels within the
remaining clusters were selected as centers for our
regions of interest (ROIs). Spheroid ROIs were defined
with a radius of 3 mm. We calculated the fractions of
variance explained by the fMRI models (combining
amplitude, time derivative, and dispersed information)
with respect to the total explained variance of the
model for both viewing priority and analytical saliency
for all voxels within these ROIs for each subject using
in-house written software. To test for significance of the
difference in these explained variance fractions between
viewing priority and saliency, we employed permuta-
tion testing on this difference comprising 5,000
permutations; an effect was considered significant at
p , 0.05, FWE corrected for the search volumes
comprising all ROIs).

Results and discussion

Evaluation of the priority measure

We propose a new method to quantify viewing
priority in observers that freely observed dynamic
natural scenes (i.e., movies). The method is based on
fuzzy clustering, allowing for continuous class mem-
bership values inside the algorithm. This also serves as
the core mechanism in determining priority in our
algorithm, and would therefore not work with standard
clustering techniques such as k-means clustering as a
starting point. Some examples of viewing priority are
shown in Figure 3. Our measure for viewing priority
adapts itself to the spatial distribution of the fixations
made at about the same time by other participants
viewing the same stimulus material (see Figure 3;
Appendix A). Biases present in both the reference
fixation set (i.e., the blue crosses in Figure 3) and the
random set (i.e., the green dots in Figure 3), such as a
tendency to view the center of the screen more
frequently, are therefore taken into account when
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calculating viewing priority. Simulations were run to
verify the robustness of our measure for different types
and degrees of bias (see Appendix A). Furthermore, we
found that viewing priority generally showed very low
correlations with classical eye-movement parameters.
An exception was distance of the fixation location from
the center of the screen, which showed a moderate
correlation of �0.55.

In earlier work, Borji, Sihite, and Itti (2013) have
attempted to disentangle fixation behavior into a
saliency component and a top-down component. Based
on voting mechanisms they count the number of
fixations on an object to determine its saliency
agreement. The main difference between our methods is
that their aim was to segregate saliency from top-down
context, while we wanted to develop a rich measure
encompassing all contributing factors to overt gaze
behavior. Moreover, Borji et al. (2013) employed
computationally expensive image processing methods
that are based on visual analysis of the stimuli
themselves. In contrast, our method only needs the
positions of fixations and is therefore a relatively
lightweight algorithm (once m is determined, that is),
which could even be feasible for real-time usage.

Group-average viewing priority and baseline
viewing priority time series

Figure 4 shows group-average viewing priority time
series across observers (red) and random viewing
priority time series (green). A number of observations
can be made.

First, viewing priority varied relatively little across
participants. This can be seen from the standard error
around the red lines in Figure 4. This suggests that
despite the presence of individual differences, partici-
pants gazed at the movies in a relatively similar
manner. Moreover, during some time frames, there was
a high viewing priority with hardly any variance,
indicating highly coherent gaze behavior across all
participants (e.g., in Figure 4, panel D1 an abrupt
movie effect was present in the beginning [after
approximately 4 s] which resulted in almost no
variation in the viewing priority).

Second, group-averaged viewing priorities during the
first and second movie presentations were similar.
Nevertheless, the variance was significantly larger for
the second series of movie presentations (Kolmogorov–
Smirnov test, p , 0.0001; see Figure 4). This is not
entirely surprising. During the second presentation of a
movie, participants may choose to gaze at different—
perhaps less salient—events, may anticipate or ignore
events, or may only direct covert attention to certain
events. Note that these are some of the same reasons
why image-based saliency measures have failed to

predict a substantial portion of fixations (Birmingham,
Bischof, & Kingstone, 2009; Henderson et al., 2007). A
similar finding has been reported in Dorr, Martinez,
Gegenfurter, and Barth (2010), who have characterized
viewing behavior on the exact same stimuli for 54
subjects extensively (Dorr et al., 2010). Third, the
group-averaged random viewing priority (green) fluc-
tuated around 0.5, which was in accordance with our
expectation for a random, uniform distribution of
fixations (see ‘‘Baseline viewing priority time series’’ in
the Methods section).

Analysis of eye movement parameters

We analyzed the fixation duration across partici-
pants across movies. No systematic trends in fixation
duration were present over the time course of the
experiment. Furthermore, the pace of eye movements
was similar across all subjects throughout the experi-
ment. However, similar to Böhme et al. (2006), we
found a strong center bias present in the eye-tracking
data. In Appendix A, we describe why this does not
affect our priority measure, as it is adaptive for this
bias, which is present in both the random and the
reference set.

Correlations between viewing priority, saliency,
surprise, and motion

A high viewing priority could be the result of a
suddenly appearing conspicuous object in the movie
that draws the gaze of all participants. In this case, our
measure will not be very different from an image-based
salience or surprise measure. However, our measure is
based exclusively on gaze behavior and does not take
image properties into account. Therefore, high values
of viewing priority could result equally well from
consistent behavior among participants that is driven
by contextual information or dynamic events in a
movie sequence. For example, the destination of a car
could be anticipated by gazing at it, irrespective of the
conspicuity of that location.

We found that image-based saliency, surprise, and
velocity measures have a relatively low (and nonsig-
nificant) correlation with viewing priority (median
values of 0.1, 0.1, 0.12, and 0.08, respectively). These
low correlations indicate that our measure of viewing
priority does not simply reflect bottom-up saliency; it
supports the assumption that saliency is but one
aspect that determines participants’ gaze and that it is
only one of the components that determine viewing
priority.

We have now characterized the behavior of viewing
priority and have compared it with eye movement
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properties as well as measures of saliency. The
following sections deal with results from the functional
imaging experiments and elaborate on the neural
correlates of viewing priority, as determined by our
measure.

fMRI results for viewing priority

To investigate the neural correlates of viewing
priority, we conducted an exploratory parametric
analysis of the free viewing sessions using individual
fixations as events. Two parametric modulations were
added to these events: distance of the fixation to the
center of the screen (distance) and viewing priority. We
investigated three effects: the main effect of fixation,
the modulatory effect of distance, and the modulatory
effect of viewing priority (the latter effect after
correcting for the modulatory influence of distance).
Moreover, we performed a number of control analyses.
The priority measures derived from the free viewing
condition were also applied to the session in which
participants fixated the center of the screen while
viewing the same movies. This can indicate to what
extent the activations depend on the actual execution of
eye-movements. Furthermore, we conducted paramet-
ric analyses, one based on the group-averaged viewing
priority time series and one based on the random
viewing priority time series.

fMRI results for central fixation viewing based on
individually determined viewing priority time series

In this analysis (results shown in Figure 8) we found
brain regions that correlate with our measure of viewing
priority that strikingly resemble the original activation
map for viewing priority (Figure 6). At lower thresholds,
also V5/MT, the precuneus, and the TPJ appear (Figure
can be found in Appendix B). This suggests that our
priority measure not only accounts for brain activity
that is tied to the execution of eye movements, but also
accounts for attentionally modulated activity.

fMRI results for group averaged priority time series

Figure 9 shows the brain activity when a group-
average viewing priority signal is used as a regressor
instead of the individual one. In comparison with
Figures 6 and 7, we see that most activity for the
group-averaged viewing priority is not present, al-
though V5/MT shows a very weak activation.
Therefore, priority can only be considered to be
meaningful at the level of the individual.

Viewing priority compared with analytical saliency

First, we investigated which regions were active
during fixation events (shown in Figure 5). We found

Figure 5. Maps of the brain activation in visual and parietal

cortical regions associated with the occurrence of fixations

(main effect of fixation event) Average results for 18

participants; maps thresholded at p ¼ 0.001, uncorrected. This

activation pattern shows that occipital and parietal regions are

involved during natural viewing behavior.

Figure 6. Maps illustrating that brain activation in a select

number of visual and parietal cortical regions is associated with

individually derived viewing priority during the presentation of

natural movies. Average results for 18 participants; maps

thresholded at p , 0.05 (FWE cluster corrected, initial threshold

p ¼ 0.001). This signifies that the priority measure can be

specifically linked to certain visual processes in the following

reported brain regions: bilateral precuneus (highlighted in pink),

bilateral V5/MT (highlighted in green) and rTPJ (highlighted in

blue).
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that early visual regions and regions along the dorsal
and ventral streams were active when a fixation is
made. No brain regions showed significant activation
that correlated with distance. So, even though distance

of the fixation location to the center of the screen
correlated with viewing priority, it is not associated
with brain activity.

Both Figure 6 and Table 1 show cortical regions
whose response correlated with viewing priority.
Because we modeled viewing priority orthogonally to
distance, we can justify attributing these brain activa-
tions to the modulation of viewing priority. Figure 8
shows that priority signals also correlated—albeit less
strongly—with data obtained when participants held
central fixation. Figure 9 shows that group-averaged
viewing priority explains only a minute fraction of the
brain activity found with individually determined
viewing priority. Despite their relatively higher vari-
ance compared to the average viewing priority time
series, the use of individual priority time series in the
fMRI analysis turned out to be crucial to establish the
results. Note that a control analysis using random
priority signals revealed no significant correlations in
the brain at all. Therefore, no figure was included for
these results.

The regions shown in Figure 6 are V5/MT,
precuneus, and TPJ. Coordinates of cluster centers of
V5/MT coordinates (Table 1) correspond with the

Figure 7. Maps for individually derived viewing priority during

the presentation of natural movies once velocity has been

accounted for. Average results for 18 participants; maps

thresholded at p , 0.05 (FWE cluster corrected, initial threshold

p ¼ 0.001). Right precuneus (highlighted in pink), bilateral V5/

MT (highlighted in green), and rTPJ (highlighted in blue) remain

specifically active when the velocity component is taken out of

the priority measure.

Figure 8. Maps illustrating neural correlates of viewing priority

determined from functional data acquired while subjects were

fixating centrally during the viewing of movies. The viewing

priority time series used in the analysis came from conditions in

which observers could freely view the same movies. Average

results for 18 participants; maps thresholded at p , 0.05 (FWE

cluster corrected, initial threshold of p ¼ 0.001).

Figure 9. Maps illustrating brain activation associated with

group-averaged viewing priority. Average results for 18

participants; maps thresholded at p¼ 0.001, uncorrected. Note

that in the medial views of these maps no activations were

present.

Region

x

(mm)

y

(mm)

z

(mm) t value Z value

V5/MT (left) �48 �70 0 6.79 4.59

V5/MT (right) 48 �66 0 7.49 4.84

Temporal parietal

junction (right) 54 �44 8 5.38 4.01

Precuneus (left) �10 �50 44 5.59 4.10

Precuneus (right) �8 �52 46 5.13 3.89

Table 1. Locations of brain regions that correlate with viewing
priority. Notes: MNI Coordinates refer to the voxels of maximum
activation within significant clusters ( p , 0.05, FWE corrected
at cluster level, initial threshold p , 0.001).
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coordinates reported by Dumoulin et al. (2000).
Furthermore, TPJ coordinates (Table 1) overlap with
previously reported centers for the TPJ in visuospatial
attention paradigms (Downar, Crawley, Mikulis, &
Davis, 2000; Natale, Marzi, & Macaluso, 2009; van
Beilen et al., 2011). Finally, we found activity in the
bilateral precuneus (Table 1).

V5/MT

We found strong correlations between viewing
priority and activity in bilateral V5/MT (Figure 6).
V5/MT activation is commonly associated with
motion processing (Tootell et al., 1995). Previous
research has suggested that V5 has a central role in the
processing of change during natural stimulation
(Bartels & Zeki, 2004). To evaluate whether the
contribution of V5/MT can (solely) be attributed to
motion processing, we discuss the outcomes of a
number of our analyses. First, the correlations
between image-based motion and surprise measures
on the one hand and viewing priority on the other are
rather low. Second, in the fMRI analysis based on the
group-averaged priority, we find only a weak V5/MT
response. In addition, we investigated post hoc the
brain activation maps for priority when velocity was
accounted for (Figure 7). Here, we found the same
pattern of activation with the main difference that all
regions show weaker activation. From these results,
we conclude that velocity (i.e., the motion component
in a movie) plays only a relatively minor role in
determining viewing priority. Third, we regressed the
individual viewing priority time series acquired during
free viewing also to an fMRI data set acquired in a
different experiment (Figure 8). In this experiment,
subjects had to fixate in the center of the screen. Here,
we found a similar pattern of brain activity only with
weaker activations. Moreover, no activity in right TPJ
showed up. These findings indicate that (a) the
generation of eye movements is a component of the
priority signal, and that (b) priority does also correlate
with covert attention (when no eye movements are
made). Overall, these results imply that the responses
in the precuneus, right TPJ (rTPJ), and V5/MT not
only represent motion information per se, but may
integrally represent the priority this information has
for guiding gaze behavior of an individual.

Precuneus

The second set of regions whose activity correlated
with viewing priority is the bilateral precuneus. The
precuneus lies along the dorsal stream of the visual
system (Milner & Goodale, 1993) and has been

associated with visuospatial attention and orienting
(Cavanna & Trimble, 2006). Interpreted in the light of
the premotor theory of attention (Rizolatti, Riggio,
Dascola, & Umilta, 1987), previous fMRI studies
suggested that the precuneus, together with the
neighboring posterior parietal cortex, is involved in
shifting attention without accompanying eye move-
ments (Beauchamp, Petit, Ellmore, Ingeholm, &
Haxby, 2001; Gitelman et al., 1999; Rizolatti et al.,
1987). This is also in line with our current finding, as we
find that the precuneus shows a strong response for
individual viewing priority (Figure 6), which even
remains present in the activation maps obtained from
data in which participants held central fixation (Figure
8).

Temporal parietal junction

We also found strong correlations between viewing
priority and activity in the rTPJ. This TPJ activation in
human observers corroborates the finding in macaques
that the lateral intraparietal area contains a priority
map (Bisley & Goldberg, 2010). The TPJ has previously
been identified as a circuit breaker for ongoing
cognitive events. Corbetta et al. (2000) suggested that
the rTPJ may underlie the process of spatially
redirecting the focus of attention towards the location
of unattended stimuli. Other studies also suggest that
the rTPJ redirects attention to behaviorally relevant
sensory stimuli that are outside the present focus of
processing (Cavanna & Trimble, 2006; Corbetta &
Shulman, 2002). Correlations between rTPJ activity
and novelty have been reported in multimodal sensory
processing by Downar et al. (2000, 2002). Additionally,
Shulman, Astafiev, McAvoy, d’Avossa, and Corbetta
(2007) have reported deactivation of the rTPJ during
visual search. These authors suggested that the rTPJ
filters out irrelevant input, which is in line with our
present findings that the rTPJ shows a different
activation for viewing priority compared to saliency
(Figure 8). Furthermore, the rTPJ activity revealed in
the activation maps for analytical saliency is much
lower compared to that for the priority measure (and
did not survive FWE correction). This difference in
activation corroborates previous results reported in the
literature and provides further evidence that the rTPJ is
involved only when eye movements are made. For this
reason, it should be considered part of the oculomotor
component of the attentional system.

Our results suggest a unified interpretation for these
findings and hypotheses in terms of priority: The
presumed filter role of the TPJ is the result of
prioritizing various information and selectively re-
sponding to high priority events only, while the
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novelty-associated responses of the TPJ are the result
of novel events receiving a high priority.

fMRI results for analytical saliency

Overall, our present results indicate that activity in
specific cortical regions correlates with our measure
of viewing priority. This is most clear for data
recorded while participants were overtly attending the
movies (Figure 6; Table 1). This supports our
assumption that priority can be inferred from eye
movements. In addition, we believe that the regions
activated play a role in the processing of visual input
in assessing priority, in contrast to the steering of the
eyes. Although this interplay must be inherently
existent throughout the brain, we have restricted our
interpretations in interpreting these as processing
regions.

A comparison between viewing priority and ana-
lytical saliency in terms of explained variance of the
parametric models reveal a substantial resemblance
for V1, V5/MT, and precuneus (Figure 10). This also
appears when comparing Figures 6 and 11. Although
the same regions show activity in the maps for both
analytical saliency and viewing priority, the effects are
much lower for analytical saliency (Figure 11; Table
2), in Figure 11 the maps have not been corrected for
multiple comparisons. After such correction, only the

bilateral V5/MT remained significantly active. More-
over, the right TPJ shows a significant difference in
explained variance (Figure 10). This indicates that
priority can be considered distinct from analytical
saliency, in support of the theory of Fecteau and
Munoz (2006). According to their framework, both
salience and relevance affect the same brain regions.
However, while each yields a different neural signal
the spiking patterns of oculomotor system neurons
appear to reflect their combination.

Limitations and future extensions

Regarding the algorithm of viewing priority, one
limitation is that reference data needs to be collected
and that random data needs to be determined prior to

Figure 10. Fractions of explained variance of viewing priority

and analytical saliency with respect to the total explained

variance of the model. Four regions selected (bilaterally) based

on the main effect for fixations. Red bars denote analytical

saliency; blue bars denote viewing priority. A significant

difference between analytical saliency and viewing priority was

found for the rTPJ only ( p , 0.05 FWE corrected), even though

a similar trend can be observed in the left TPJ.

Figure 11. Maps illustrating brain activation associated with

analytical saliency in free viewing. Average results for 18

participants; maps thresholded at p ¼ 0.001, uncorrected.

Bilateral precuneus (highlighted in pink), bilateral V5/MT

(highlighted in green), and rTPJ (highlighted in blue) show a

moderate association for analytical saliency.

Region

x

(mm)

y

(mm)

z

(mm) t value Z value

V1 (left) �16 �96 6 10.66 5.22

V5/MT (right) 66 �34 4 9.01 4.88

Superior colliculi �12 �22 �6 8.23 4.63

V5/MT (right) 46 �54 �30 7.99 4.55

Table 2. Locations of cluster centers that correlate with analytical
saliency. Notes: MNI Coordinates in mm refer to the location of
voxels having the maximum of activation within significant
clusters (p , 0.05, FWE corrected at cluster level, initial
threshold p , 0.001). Please note that activity in V5/MT is listed
twice since two significant clusters are found in that area.
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the calculation of priority. Moreover, it should be
noted that our method—in its current form—does not
predict gaze behavior (yet it could provide predictive
power for a future observer). It provides a current
statistic on the fixation at hand that is based on human
behavior rather than that it guesses what the visual
cortex finds important. As such, our method provides a
new and unique approach.

In our present experiment, only passive viewing
without a task was studied and, consequently, our
fMRI analyses are primarily exploratory. As such, the
neural correlates of viewing priority that we found
need to be corroborated by future—more elaborate—
experiments. For example, the addition of various
tasks might help tease apart the contributions of the
priority and saliency components to viewing priority
and reveal the roles of specific brain areas in priority
computations.

Our goal for the present method was to track and use
priority variations over time. Technically, it is also
possible to use our method to generate spatial priority
maps similar to saliency maps, which might perhaps
find employ in predicting viewing behavior in new
observers. In addition, spatiotemporal varying priority
maps could potentially be used in a fashion somewhat
akin to retinotopic mapping to localize cortical maps
representing priority.

Conclusions

We presented a new measure to determine viewing
priority based on eye movements. It shows only limited
correlation with various saliency, surprise, and motion
measures, indicating it is assessing a distinct property of
visual behavior. Moreover, we showed that it can be
used to determine regions in the brain whose responses
correlate with viewing priority. Neural correlates of
viewing priority were observed in the precuneus, the
rTPJ, and V5/MT. Our measure of viewing priority
correlated most strongly with human brain activity
when actual eye movements were made and when the
individual participants’ priority signals were taken into
account. We conclude that our new analysis method
allows for empirically establishing the priority of events
in near-natural vision paradigms.

Keywords: eye movements, priority, attention, fMRI,
saliency
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Footnotes

1 Specific settings: third spatial scale pyramid level,
and third temporal pyramid level 4 cyc/8, 7.5 fps.

2 Specific settings: Input smoothing with a spatial
five-tap and a temporal seven-tap binomial, an omega
of seven-tap binomials in space and time, a final
(spatial) blur with a 21-tap binomial, Tm¼ 0.001, TH¼
458, and the two relative and absolute thresholds for
Mii set to 0.001 and 10�7, respectively. Velocity was
estimated on each scale of a pyramid with five spatial
and three temporal levels and then combined (1 pixel/
frame on the second spatial, second temporal scale
corresponds to 4 pixels/frame on the highest scale).
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Appendix A

Simulations

To investigate the properties of our measure of
priority, we conducted two simulations. First, we
varied the cluster spread of the reference fixations.
Second, we varied the cluster spread of both the
reference and random fixations. In the simulations,
priority was calculated for a grid of observed fixations
located across the screen. Fixations were located 8
pixels apart in both the x and y direction (Figure A).

Two sets of artificial fixations were generated, a
random set and a reference set. The reference fixations

Journal of Vision (2016) 16(6):3, 1–18 Marsman et al. 17

Downloaded From: http://jov.arvojournals.org/pdfaccess.ashx?url=/data/Journals/JOV/935165/ on 12/05/2016

http://www.ncbi.nlm.nih.gov/pubmed/18217811
http://jov.arvojournals.org/article.aspx?articleid=2121973


were sampled from a random uniform distribution
combined with two Gaussian point spread functions at
two different locations, of which the full width at half
maximum (cluster spread) was varied systematically (5–
100 pixels with steps of 5 pixels). For the first
simulation, the random set was sampled from a
random uniform distribution only. In the second
simulation, the random set was created in the same way
as the reference set. The number of fixations for both
sets was varied systematically (1, 2, 4, 8, 16, 32, 64, 128,
512, and 1,024 fixations).

The results of both simulations show a decreasing
trend for l(x) as cluster spread of the reference set
increases (uppermost bar graphs in Figure 3; only
results from the first simulation are depicted). This
decreasing trend implies that the priority measure is
adaptive for the cluster spread values present in the
reference set. More scattering of the reference fixations
(larger cluster spread) results in a less skewed weighting
of distances to each reference fixation. In other words,
the priority measure considers fixations located nearby
reference fixations more important when the reference
fixations are less scattered. The change of spatial
distributions for the random set did not affect our
viewing priority.

Based on these simulations, we conclude that the
behavior of our measure of priority is adaptive for both
the distribution of reference fixations and the distri-
bution of random fixations.

Appendix B

Activation map for viewing priority where
subjects were fixating at the center shown with
lower threshold

Figure A. Behavior of m for different cluster spread. The upper figures show fuzzy parameter m related to the cluster spread of the

reference set, where the random set is uniformly distributed across the screen (left) and where a strong center bias is present in the

random set (right). The lower figures denote two examples with cluster spread of the reference set to either 25 pixels (left) or 100 pixels

(right) for both types of random set. Reference fixations are denoted with blue dots and random fixations are indicated with green dots.

Figure B. Maps illustrating viewing priority assessed on

functional data acquired while subjects were fixating centrally

during the viewing of movies. Average results for 18

participants; maps thresholded at p , 0.01 uncorrected.
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