Brennstoffe aus solarthermischen Prozessen – Stand und Perspektiven

Workshop Gemeinsame Initiative Energiesystem 2050 – FT3, Jülich, 3. Mai 2015

Knowledge for Tomorrow

Dr. Martin Roeb und Dr. Christian Sattler Martin.roeb@dlr.de

Introduction

- Background: Political, Economical, Ecological, Technical
- Concentrating Solar Systems
- Solar fuels technology scale-up
- Project examples
- Outlook

Political Drivers: Examples – EU Sustainable Energy Technology Plan (SET-Plan 2007) G7 Goals (2015)

• Goals of the EU until 2020 (20/20/20)

- 20% higher energy efficiency
- 20% less GHG emission
- 20% renewable energy
- Goal of the EU until 2050:
 - 80% less CO₂ emissions than in 1990
- G7 Goals, Elmau, Germany
 - 100% Decarbonisation until 2100
 - **100 bln \$/year** for climate actions in developing countries, large share by industrial investment

Development of EU GHG emissions [Gt CO₂e]

- 1 Large efficiency improvements are already included in the baseline based on the International Energy Agency, World Energy Outlook 2009, especially for industry
- 2 Abatement estimates within sector based on Global GHG Cost Curve
- 3 CCS applied to 50% of large industry (cement, chemistry, iron and steel, petroleum and gas, not applied to other industries)

SOURCE: www.roadmap2050.eu

Temperature Levels of CSP Technologies

Heliostats

Paraboloid: "Dish"

Solar Tower (Central Receiver System)

Parabolic Trough / Linear Fresnel

Solar Towers

CSP Market Development according to IEA

Potential Solar High Temperature Applications under Investigation

High Temperature Electrolysis

Water and CO₂ splitting

Gasification of coal and biomass

Reforming of natural gas

Thermochemical storage

Recycling of sulfuric acid

Processing of ores

Calcination / Cement production

Ammonia / Fertilizer Production

Metal Smelting and Recycling

Glass production

Potential of Solar Energy

Principle of Solar Fuel Production

Solar hydrogen production: From raw material to fuel

Efficiency comparison for solar hydrogen production from water (Siegel et al., 2013)*

Process	T [°C]	Solar plant	Solar- receiver + power [MW _{th}]	η T/C (HHV)	η Optical	η Receiver	η Annual Efficiency Solar – H ₂
Elctrolysis (+solar- thermal power)	NA	Actual Solar tower	Molten Salt 700	30%	57%	83%	13%
High temperature steam electrolysis	850	Future Solar tower	Particle 700	45%	57%	76,2%	20%
Hybrid Sulfur- process	850	Future Solar tower	Particle 700	50%	57%	76%	22%
Hybrid Copper Chlorine-process	600	Future Solar tower	Molten Salt 700	44%	57%	83%	21%
Metaloxide two step Cycle	1800	Future Solar dish	Particle Reactor < 1	52%	77%	62%	25%

*N.P. Siegel, J.E. Miller, I. Ermanoski, R.B. Diver, E.B. Stechel, Ind. Eng.Chem. Res., 2013, 52, 3276-3286.

Technical Optimization in all Dimensions necessary

 $10^4 - 10^2 \, \text{m}$ Solar Plant

Site Solar field Simulation

 $10^2 - 10^1 \text{m}$ Receiver

Design Simulation Construction Testing Development

(c) Pulver bei 800 °C

(d) Pulver bei 900 °C

10⁻² – 10⁻⁸ m **Reactive Systems**

Simulation Synthesis **Chemical Charactristics Physical Characteristics**

Environmental impact

Next-Generation-

 $10^{1} - 10^{-2}$ m Receivercomponents

Materials Design Heat and Mass transport Simulation Testing and Development

Solar Field Development

The field has to be designed for its application:

- Location
- Concentration ratio to achieve the Process temperature
- At high concentration (1000 suns) secondary optics have to be taken into account

M. Schmitz et al., Solar Energy 80 (2006) 111–120.

Scale evolution

TGA

Example how a technology is developed The HYDROSOL concept

Net Reaction: $H_2O \rightarrow H_2 + \frac{1}{2}O_2$

HYDROSOL Development

Hydrosol Plant - Design for CRS tower PSA, Spain

- European FCH-JU project
- Partner: APTL (GR), HELPE (GR), CIEMAT (ES), HYGEAR (NL)
- 750 kW_{th} demonstration of thermochemical water splitting
- Location: Plataforma Solar de Almería, Spain, 2016
- Use of all heliostats
- Reactor set-up on the CRS tower
- Storage tanks and PSA on the ground

Sulfur-based thermochemical cycles for hydrogen production: on-sun operation on Solar Tower Jülich

- 07 09/2015: Assembly of pilot plant on research platform
- 09 10/2015: Initial operation with water/first test with sulphuric acid
 - Water volume flow: 600 ml/min
 - Absorber temperature: ~1200 °C @ 50 kW solar power on aperture
 - Gas outlet temperature (steam): ~1000 °C
 - Lessons Learned: e.g. reactor temp. too low, secondary cooling not sufficient, system is generally resistant to sulphuric acid
- 11/2015 today: **Modification** of pilot plant/preparation of 2nd on-sun test
 - E.g. enhanced secondary cooling, changed catalyst location

Solar Ammonia Production

Air separation based on model material: Copper oxide

DLR Strategie-Projekt: Future Fuels – **Flüssige Energie für Strom, Wärme und globalen Transport**

 DLR Strategie-Projekt Future Fuels vernetzt 8 Institute in
6 multilateralen Teilprojekten, um das Potential zukünftiger flüssiger Kohlenwasserstoffe zu untersuchen

EU STAGE-STE

- Task "Technology assessment of solar thermochemical fuel production"
 - Entwicklung von Flowsheets
 - Bewertung von Technologien für verschiedene Szenarien
 - Einordnung in die europäischen Energieprogramme (SET Plan)
 - Ökonomische Analyse

Flowsheet einer thermochemischen Wasserstoffanlage

Outlook Specific Solar Fuel Demonstration Tower needed!

CRS Tower PSA, Spain 2008 and 2016

- High concentration > 1000
- Heliostats fit to receiver size
- Field control adapted to fuel production processes

Solar Fuels Tower, Location?

2020

EU Project Sun-to-Liquid – Current state of field design

- One unit ST44M2HEL3M purchased installed and tested
- 15m tower and target implemented for testing at representative slant range
- On-site fabrication of one curved facet from flat mirror by Rioglass (1.6x2.2 m)
- Spherical curvature with radius 50 m

