Methanol production via solar mixed reforming

Introduction & Aim

- Chemical storage of solar energy and CO₂ utilization by solar mixed reforming of methane
- Intermediate product is further processed into methanol for transportability and storability → solar fuel
- Endothermal reaction is carried out in **solar power tower**
- → The solar methanol process (SOLME) is developed
- Optimum operating parameters and process performance are determined

The SOLME process

- Simplified flowsheet in Fig. 2
- Quasi stationary operation with heat storage
- Significant amounts of off-heat
 - Heat integration
 - Conversion into electricity in Rankine cycle (RC)
- Off-gas can be used to supply high temp. heat to reformer or for electricity generation
 - Heat supply to reformer allows for reduction of solar receiver temperature
 - Efficient electricity generation in CCGT
- Optimization parameters are (cf. Fig. 2)
 - Split fraction f_{Split}
 - Reforming temperature T_{Ref}

Fig. 2: Simplified flow sheet of SOLME process

Evaluation Procedure

- Conventional evaluation criteria (e.g. energy efficiency) do not apply due to the different forms of energy involved
- New evaluation procedure is developed for solarized industrial processes
- The solarized process is **compared to a reference system** that produces the same products and uses the same amount of solar energy (cf. Fig. 3)
- For solarized industrial processes, the criterion *h* will be called **the** *efficiency of solarization*, it is defined as the ratio of fuel savings to solar energy input:

$$h = \frac{\Delta E_{\text{Fue}}}{E_{\text{Solar}}}$$

- In Figure 3, the difference in fuel consumption is $\Delta E_{\mathrm{Fuel}} = F + G B$
- *h* should be maximized and values > 0 imply a benefit compared to the reference system

Conclusions

- The proposed evaluation procedure allows to determine if an industrial process can be efficiently operated with solar energy
- A Process for solar methanol (SOLME) production is developed, results indicate that it uses solar energy more efficiently than conventional solar power plants
- In the SOLME process, the utilization of off-gas for heat supply to the reformer is not or only to a small extent beneficial.
- More information in recent publication: von Storch et al., On the assessment of renewable industrial processes: Case Study for solar co-production of methanol and power, Applied Energy, 183 (2016, 121 132, 10.1016/j.apenergy.2016.08.141

Acknowledgements:

This work was carried out with financial support from the Ministry of Innovation, Science and Research of the State of North Rhine-Westphalia (MIWF NRW), Germany under contract 323-2010-006 (Start-SF)

