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Abstract
As the Global Navigation Satellite Systems (GNSS) are intensively used as main source of
Position, Navigation and Timing (PNT) information for maritime and inland water naviga-
tion, it becomes increasingly important to ensure the reliability of GNSS-based navigation
solutions for challenging environments. Although an intensive work has been done in de-
veloping GNSS Receiver Autonomous Integrity Monitoring (RAIM) algorithms, a reliable
procedure to mitigate multiple simultaneous outliers is still lacking.

The presented work evaluates the performance of several methods for multiple outlier
mitigation based on robust estimation framework and compares them to the performance
of state-of-the-art methods. The relevant methods include M-estimation, S-estimation, Least
Median of Squares LMS-based approaches as well as corresponding modifications for C/N0-
based weighting schemes. The snapshot positioning methods are also tested within the
quaternion-based Unscented Kalman filter for integrated inertial/GNSS solution.

The proposed schemes are evaluated using real measurement data from challenging in-
land water scenarios with multiple bridges and a waterway lock. The initial results are
encouraging and clearly indicate the potential of the discussed methods both for classical
snapshot solutions as well for the methods with complementary sensors.

Keywords - Integrated Navigation Systems; Robust Estimation; Global Navigation Satellite Sys-
tem GNSS; Kalman Filtering; Inertial Sensing.





Resumen
A medida que el Sistema Global de Navegación por Satélite se ha convertido en fuente
principal de información para la posición, navegación y temporarización en aplicaciones
marítimas y continentales, se vuelve cada vez más importante garantizar la fiabilidad de la
navegación en entornos más exigentes. A pesar del empeño puesto por la la comunidad
científica en el desarrollo de algoritmos para la Monitorización de la Integridad en la lo-
calización, aún se carece de un sistema que permite mitigar el efecto de múltiples señales
erróneas simultáneamente.

Este trabajo evalúa el funcionamiento de numerosos métodos, catalogados como ro-
bustos, frente a la presencia de señales de los satélites con grandes errores, y compara su
rendimiento frente a los algoritmos del Estado del Arte. Entre los métodos presentados se
encuentran los estimadores M, S y LMS. Además, estos métodos se modificarán para incluir
información de la intensidad de las señales recibidas. Todas estas técnicas carecen de memo-
ria, empleando únicamente la información de los satélites recibida en ese preciso instante.
Para paliar esta falta de memoria, la navegación por satélite se combinará con navegación
inercial por medio de un Filtro de Kalman.

Los métodos desarrollados han sido evaluados en campañas de medición reales, con es-
cenarios en los que las señales de los satélites se encontraban severamente afectadas por su
reflexión en estructuras. Los resultados obtenidos son alentadores, e indican que hay clara-
mente un gran potencial en la aplicación de estimación robusta en la navegación por satélite.

Palabras clave - Sistemas de Navegación Integrada; Estimación Robusta; Sistema Global de Nave-
gación por Satélite; Filtro de Kalman; Sistemas inerciales.
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Chapter1
Introduction

Global Navigation Satellite Systems (GNSS) are the cornerstone and the main information
source for Positioning, Navigation and Timing (PNT) data in maritime and inland water
navigation systems. However, the performance of the system can be disturbed due to space
weather events, multipath, jamming or overall system failures. The International Maritime
Organization (IMO) has stated that resilient PNT is essential for safer and more efficient
shipping and the European Commission has defined the carriage of goods through inland
waterways as climate-friendly and energy-efficient mean of transportation, encouraging
more companies to make use of this mode of transport. However, this proposal results
in far more challenging scenarios when compared to maritime applications, making redun-
dant and complementary information for different sensors indispensable to bridge possible
GNSS outages and compensate for the presence of multipath and non-line-of-sight (NLOS)
signals.

Every year, there is a large amount of marine accidents and casualties. According to the
statistical summary of the Transportation Safety Board of Canada, more than 300 accidents
were reported during the last year for vessels registered in this country. In a report released
by the Baltic Marine Environment Protection Commission [40], more than 50% of the marine
accidents are caused by navigation causes - inaccurate nautical data, misinterpretation of
navigational data or incomplete situation awareness among others -. This is a clear indicator
that the navigation for maritime applications needs to be improved in terms of accuracy and
detection of failures for the navigation solution.

The classical code-based positioning using an iterated Least Squares (LS) method lacks
robustness as even a single outlier can introduce a gross error in the final position solution.
This issue becomes even more prominent as high sensitivity receivers are increasingly used
to ensure sufficient GNSS availability. To address this problem, several approaches have
been proposed. Classical Receiver Autonomous Integrity Monitoring (RAIM) techniques
have been designed to perform fault detection and exclusion. The RAIM procedures are
usually based on a single fault assumption and still could fail when there are multiple si-
multaneous outliers [68]. Although modifications have been suggested to reject multiple
failures sequentially, the methods could fail due to correlations in test statistics and lead to
wrong identification of the outliers.

The robust estimation methods provide an alternative view to the problem of multiple
GNSS faults. Although some authors have already applied robust regression methods to
improve the performance of GNSS positioning in non-favorable environments, a systematic
review and comparison of robust methods for positioning applications is still missing. Most
of the authors have compared separate robust schemes against classical LS positioning, but
not against competing robust methods. A few comparisons of robust methods were per-
formed (e.g., [26]), but only simulated data have been used. This work addresses a weak



2 1. Introduction

point of the related by using real measurement data from a challenging highly dynami-
cal scenario, where not artificially induced outliers of known statistics are applied, but real
faults caused by true multipath effects and NLOS signals.

The developed schemes are evaluated using a challenging inland waterways scenario
with several bridges and a waterway lock. An importance of this scenario has been noticed
as an evaluation of accidents involving vessels reveals that there is still a rather significant
number of bridge collisions (approximately 20-30 per year) which result both in heavy dam-
age to the vessel and potential injuries to the persons onboard the vessel [18]. Furthermore,
such collisions could also damage light bridge structures and have a tremendous effect for
inland water traffic due to a ban of shipping along the river for a longer period of time.
Moreover, due to multipath and NLOS effects, similar scenarios result in extremely chal-
lenging conditions for a pure GNSS-based navigation and can be effectively used to bench-
mark the performance of GNSS-based positioning.

In order to increase the reliability of the PNT solution, it is indispensable to integrate
additional sensors whose error patterns are independent from those of GNSS. A typical
complementary sensing modality is the inertial sensing. These sensors are immune to jam-
ming and can track fast and subtle motion and are able to bridge short GNSS outages and
smooth the noise of code-based GNSS solutions. The information from the Inertial Measure-
ment Unit (IMU) and the GNSS receiver can be integrated synergistically by combining an
excellent short term performance of the IMU and long term stability of the GNSS solution
within the hybrid navigation system. The presented work assesses the impact of the pro-
posed robust positioning schemes in integrated navigation solutions by fusing the output of
the robust GNSS positioning with the data from the onboard IMU employing an Unscented
Kalman Filter (UKF) with quaternion attitude parametrization.

1.1 Objectives

The aim of this thesis is to study and improve the performance of different approaches to
automatically detect, mitigate and exclude the effects of faulty GNSS signals, responsible for
large errors in the position estimation. This work is composed by the following tasks:

1. Systematic evaluation of the most promising techniques for outlier detection, includ-
ing novelty methods in RANdom SAmple Consensus (RANSAC) and recent advances
on Recursive Bayesian Estimation (RBE).

2. Address snapshot (memoryless) techniques for robust positioning.

3. Integration of the robust techniques in a system which fuses satellite and inertial-based
navigation.

4. Test of the performance of the developed algorithms on challenging scenarios present-
ing multiple simultaneous outliers, using real data.

The development of this work has been financed and supported by the department of
Nautical Systems, which is part of the Institute of Communication and Navigation of the
German Aerospace Center (DLR) for a period of seven months. The initial schedule estab-
lished in order to fulfil all the proposed tasks evolved as new techniques were investigated
and some other were considered as a dead-end. The time invested for each of the phases of
this work can be seen in the next Fig. 1.1.
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Time schedule for the development of this work

FIGURE 1.1: Time invested for each of the tasks during the development of
this work.

The algorithms have been built in MATLAB, as it is convenient for fast prototyping, as
well as presenting several advantages such as its large database of statistical functions, the
capability to work with matrices or its appealing debugging process. Nonetheless, the data
from the GNSS and IMU recorded during the measurement campaigns is extracted from a
C++ software framework developed during the last years in the Nautical Systems depart-
ment at DLR. This real-time framework operates with high rate GNSS data, and contains
the implementation of several algorithms for GNSS positioning for subsequent research and
project work, as well as live demonstrators. After prototyping the proposed algorithms in
MATLAB, the next step within this work is the migration of those to the C++ real-time
framework.

1.2 Thesis Outline

The rest of this work is organized as follows: next chapter provides a discussion on the state
of the art of robust estimation for GNSS navigation and the related work. Then, chapters 3 to
5 constitute the methodology and the basics of satellite-based navigation, inertial navigation
and robust estimation respectively. Chapter 6 presents the experimental setup of the vessels
and the scenarios in which the algorithms will be tested. Chapters 7 and 8 discuss the results
on the snapshot positioning using robust methods and on the fusion of the IMU and GNSS
information in KF. Finally, in the last chapter the conclusions and future work of this study
are presented.
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Chapter2
Related Work

Classical methods of LS estimation are known to be rather susceptible to outliers or extreme
observations, responsible for gross and unexpected errors in GNSS positioning. These large
errors in the position solution constitute a serious concern for the community, especially for
transport safety critical applications in domains such as aviation, maritime, railway or road.
In the said domains, degradation in the navigation system performance without a notice
within the specified time to alert would endanger lives.

In order to find a solution which is less affected by the outliers, a number of robust
estimation schemes had been developed [26]. These methods are mainly based on checking
the consistency of the observations where the influence of the measurements not fitting the
underlying functional or stochastic model is reduced compared to those which fit well [69].

The methods of robust regression have a relatively long history with numerous reported
applications for general data analysis as [38]. The usage of similar methods for robust GNSS
positioning had also recently attracted an attention due to the advent of multi-constellation
multi-frequency receivers, which allow to exploit an inherent redundancy of the observ-
ables. For example, mitigation of multiple outliers for GNSS positioning has been reported
in [68] using M-estimation and the authors confirmed superior performance of the scheme
over classical LS solution for the scenarios with multiple outliers. A modified Danish method
using correlated phase observations for double difference phase approach had been pre-
sented in [69], although the test data have been taken only for the static scenario.

Although some attempts to benchmark different robust estimation schemes have been
recently reported, the works either considered only few methods for general linear regres-
sion (e.g. non-positioning application) problem [61] or used simulated GNSS faults [26].
Although an extensive analysis had been provided in [26] with a representative set of meth-
ods covered, the authors used the data with multiple simulated outliers of significant am-
plitude, and, therefore, the performance of the approaches in real environment with less
prominent faults is still not clear. Moreover, highly practical extensions of the methods for
C/N0 leveraged GNSS observations (weighting schemes) were not considered in this work.
Some reports have addressed a problem of developing robust schemes exclusively for chal-
lenging GNSS positioning applications. For example, in a series of works [55, 57] the authors
suggested to employ RANSAC-like strategies using minimum observation subset for GNSS
outlier mitigation. Although the methods showed promising performance on the simulated
data, no comparison to the performance of alternative robust schemes has been provided.
Interestingly, similar consistency checking approach based on the measurement subset com-
parison as reported in [15] was equally likely to improve or degrade the positioning accu-
racy. According to [15], this effect could be partially explained as removal of a poor measure-
ment can result in adverse signal geometry and, subsequently, degraded position accuracy.
Some previous works of the same group also showed that although conventional sequential
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testing approaches can successfully eliminate NLOS and multipath-contaminated signals in
environments where the majority of signals are LOS, in environments with multiple NLOS
and multipath signals, the sequential testing approaches (i.e., RAIM-like) are prone to elim-
inating wrong signals. Still, the overall results as reported in [15] were neutral, and, as only
one specific robust scheme had been evaluated, can hardly be generalised for other robust
schemes.

In 2008, [56] presented the Range Consensus (RANCO) algorithm which follows a strat-
egy similar to the one in some classical robust estimators: the selection of the "best" subset of
satellites to get a position solution, rather than use all satellites in view. The novelty of this
work is that it includes an exclusion and ranking of the subsets based on the quality of the
geometry of the satellites conforming those subsets. Additional satellite measurements can
be labelled as inliers and take part in the position solution of a subset if their residuals pass
certain threshold based on range comparison. Fig. 2.1 illustrates the flow diagram of the
RANCO algorithm (WSSE stands for Weighted Sum of the Squared Errors). As drawback,
one could mention that this technique relies too heavily on the geometry of the satellites
within a subset and it lacks a statistical meaning justifying its robustness.

RANCO Algorithm

FIGURE 2.1: Data flow diagram for the RANCO algorithm. Image adapted
from [56].

A typical approach to cope with the deficiencies of pure GNSS positioning is to augment
the system with auxiliary sensors, such as inertial ones. Among clear advantages of the
inertial sensors one could mention that they are completely self-contained, immune to inter-
ference, highly dynamical, small size and relatively lightweight. Unfortunately, the inertial
sensors provide only incremental information and the integration output drifts over time
when no external reference is provided. However, inertial sensors have complementary
properties to those of GNSS and both sensors are often integrated to improve navigation
robustness resulting both in highly dynamical and drift-free system. IMU utilization allows
to bridge short-term GNSS outages caused by signal blockage or antenna shadowing and
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7

even to support navigation in jammed environments especially if tight or even deep inte-
gration of GNSS raw data and inertial outputs is used. Finally, the accuracy of the combined
system usually exceeds the specified accuracy of the GNSS alone and allows less than four
satellites to play a role in the final navigation solution when tightly-coupled architectures
are employed.

Augmentation of GNSS with inertial sensors in order to mitigate intentional or uninten-
tional GNSS signal interference has been reported by several authors [34, 9]. Such systems
are able to deliver position and velocity information at rapid update rate while preserv-
ing a low noise content due to the smoothing behavior of inertial integration. Increasingly,
commercial systems [12] are becoming available which provide an integration of GNSS and
Micro-Eletro-Mechanical Systems (MEMS) IMUs. The navigation systems for maritime ap-
plications have also a relatively long history of integration using Extended KF (EKF) such
as [39], where early GPS, speed log and Loran-C have been combined. The seminal work
[41] also tried to assess the possibility to replace more expensive Fiber Optic Gyro (FOG)
IMU with lower cost MEMS IMU in hybrid navigation systems and assessed the perfor-
mance of the system under presence of GNSS faults in maritime scenarios. In our recent
work [70] it is have evaluated the impact of inertial sensor quality on the performance of
hybrid IMU/GNSS system in maritime applications. The obtained results confirmed that
the quality of the inertial sensor mainly affect the GNSS outage bridging (both position and
heading), while the performance of Fault Detection and Exclusion functionality (part of In-
tegrity Monitoring in RAIM) as well as the accuracy (smoothing of GNSS noise) remained
almost not affected by the quality of IMU.
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Chapter3
Satellite-based Navigation

This chapter will present the basics of the methodology for satellite-based navigation. This
chapter is divided into seven sections: the first one will be dedicated to the different coordi-
nate frames used for navigation purposes and the relationships between them. The second
is devoted to the explanation of the GNSS architecture. In the next section, one finds a
characterization of the sources of error for the satellite signal. Finally, the last sections are
devoted to the description of the estimation of position, velocity and attitude of the target.

3.1 Coordinate Frames and Transformations

In navigation, we face the problem of dealing with multiple coordinate systems. On one
hand, inertial sensors measure their motion with respect to an inertial or body frame. On the
other hand, GNSS measures the position and velocity of a receiver’s antenna with respect to
a constellation of satellites. However, the user wants to know their position with respect to
the Earth, and these coordinates have to be represented in some understandable format for
him (e.g. coordinates within the local navigation area).

For accurate navigation, the relationship between the different coordinate frames must
be properly modelled. In this section, it is presented the coordinate systems in positioning:

Geodetic Coordinate System. The geodetic coordinate system is widely used in GNSS-based
navigation. A point near the Earth’s surface is characterized in terms of longitude, lat-
itude, and height (or altitude), which are respectively denoted by λ, ϕ, and h. The
longitude measures the rotational angle (ranging from −180◦ to 180◦) between the
Prime Meridian and the measured point. The latitude measures the angle (ranging
from −90◦ to 90◦) between the equatorial plane and the normal of the reference el-
lipsoid that passes through the measured point. The height (or altitude) is the local
vertical distance between the measured point and the reference ellipsoid.

Earth-Centered Inertial Coordinate System. The ECI coordinate system locates its origin
at the center of gravity of the Earth. Its z-axis Zi is aligned with the spin axis of the
Earth, the x-axisXi points towards the vernal equinox, and the y-axis Yi completes the
right hand orthogonal coordinate system.

Earth-Centered Earth-Fixed Coordinate System. The ECEF coordinate system is similar to
the ECI frame, except that all axes remain fixed with respect to the Earth. The z-axis Ze
is along the spin axis of the Earth, pointing to the North Pole, The x-axisXe points from
the center to the intersection of the equator with the Prime meridian (which defines the
0◦ longitude), The y-axis Ye is orthogonal to the z and x axis with the usual right-hand
rule, going from the origin to the intersection between the equator and the 90◦ degrees
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FIGURE 3.1: Coordinate systems: Geodetic {λ, ϕ, h}, ECI {Xi, Yi, Zi}, ECEF
{Xe, Ye, Ze} and NED {Xn, Yn, Zn} represented. Image adapted from [4].

east meridian. It is commonly used as the reference frame, as well as the resolving
frame, as the user wants to know their position relative to the Earth.

Local North-East-Down Coordinate System. The local NED coordinate system is also known
as a navigation or ground coordinate system. The local NED frame plays a very im-
portant role in flight control and navigation. It is a coordinate frame fixed to the earth’s
surface. Based on the WGS84 ellipsoid model, with its origin and axes defined as fol-
lowing:

1. The origin On is arbitrarily fixed to a point on the earth’s surface.

2. The X-axis (denoted by Xn ) points toward the ellipsoid north (geodetic north).

3. The Y-axis (denoted by Yn ) points toward the ellipsoid east (geodetic east).

4. The Z-axis (denoted by Zn ) points downward along the ellipsoid normal.

Body Coordinate System. The body frame, sometimes known as the vehicle frame, com-
prises the origin and orientation of the object for which a navigation solution is sought
[14]. The origin is coincident with that of the local navigation frame, but the axes re-
main fixed with respect to the body and are generally defined as x = forward (i.e., the
usual direction of travel), z = down (i.e., the usual direction of gravity), and y = right,
completing the orthogonal set. For angular motion, the x-axis is the roll axis, the y-axis
is the pitch axis, and the z-axis is the yaw axis. Hence, the axes of the body frame are
sometimes known as roll, pitch, and yaw. In reality, there is still a practical difference
between the body of the tracked vehicle and the actually the body of the measured
sensors, due to technical reasons the position and the axis of the sensors (accelerom-
eters, gyroscopes, magnetometers, etc.) are not co-aligned with the rest of the body,
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3.2. GNSS Architecture 11

meaning that a level arm compensation is always required when the information from
the inertial measurements is fused with the satellite navigation.

FIGURE 3.2: An example of body coordinate system.

3.2 GNSS Architecture

Global Navigation Satellite Systems consist of a set of satellites, called constellation, orbiting
around the Earth, constantly transmitting signals with the primary purpose of enabling the
users to determine their position. Its development started in 1973 and with its first proto-
type satellite launched in 1978, the American Global Positioning System (GPS) was the only
fully operation GNSS providing global coverage. The Russian GLObal NAvigation Satellite
System (Glonass) was restored to full operation in December 2011, while the European posi-
tioning system Galileo is still under development by the European Union [14]. Additionally,
there are regional systems being developed by China, India and Japan.

The satellite-based positioning principle is based on the time-of-arrival of the signal re-
ceived by the from the satellites. The transmitted signal encodes its time of emission from
the satellite, therefore the user can subtract the time of arrival minus the time of emission
and, multiplying by the speed of light, obtain the distance between satellite and receiver.
As the position of the satellite is also part of the navigation message, solving the position-
ing problem of the receiver simply consists on solving a geometric problem. At least four
satellite signals are needed to compute the position of the target, as the clock offset of the
receiver must be estimated simultaneously with the position.

GNSS offers a basic radial positioning accuracy of 1.0–3.9m in the horizontal plane and
1.6–6.3m in the vertical axis, although this highly depends on the type of service, the quality
of the receiver and the geometry of the satellites with respect to the target. Differential tech-
niques can improve this to within a meter by making use of base stations at known locations
to calibrate some of the errors. Carrier-phase positioning can give centimeter accuracy for
real-time navigation and millimetre accuracy for surveying and geodetic applications [14].

A GNSS basically consists of three main segments: the space segment, which comprises
the satellites; the control segment (also referred to as the ground segment), which is respon-
sible for the proper operation of the system; and the user segment, which includes the GNSS
receivers providing positioning, velocity and precise timing to users (see Fig. 3.3).
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FIGURE 3.3: GNSS architecture.

Space Segment

The GNSS space segment is constituted by satellite constellations, having enough satellites
to assure a visibility of at least four satellites simultaneously from any point of the surface
of the Earth. The space segment is in charge of the generation and transmission of code and
carrier phase signals, as well as the navigation message. The satellites are equipped with
highly stable atomic clocks (generally using atoms of rubidium, caesium or hydrogen) in
order to provide an accurate measure of the timing.

Satellites have various structures and mechanisms to keep them in orbit, communicate
with the control segment and broadcast signals to receivers. The satellite clocks are one of
the critical components of GNSSs. For this reason, satellites are equipped with high-stability
atomic clocks (rubidium and caesium).

GNSS satellites continuously transmit navigation signals at two or more radio frequen-
cies. These signals contain ranging codes and navigation data to allow users to compute
both the travel time from the satellite to the receiver and the satellite coordinates at any
epoch. The main signal components are described as follows:

• Ranging code: Sequences of zeros and ones which allow the receiver to determine the
travel time of the radio signal from the satellite to the receiver. They are called PRN
sequences or PRN codes.

• Carrier: Radio frequency sinusoidal signal at a given frequency measuring the range
between a satellite and receiver expressed in units of cycles of the carrier frequency.
This measurement can be made with very high precision (of the order of millimeters),
but the whole number of cycles between satellite and receiver is not measurable [44].

• Navigation data: A binary-coded message providing information on the satellite ephemeris
(pseudo-Keplerian elements or satellite position and velocity), clock bias parameters,
almanac (with a reduced-accuracy ephemeris data set), satellite health status and other
complementary information.
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GPS signals are transmitted on two radio frequencies in the L band, referred to as Link 1
(L1) and Link 2 (L2), or L1 and L2 bands of 1575.420 and 1227.600 MHz respectively. The GPS
signal modernisation includes an additional Link 5 (L5) frequency and several new ranging
codes on the different carrier frequencies. They are referred to as the civil signals L2C,
L5C and L1C and the military M code. Specifically, L2C was designed to meet commercial
needs, allowing the development of low-cost, dual-frequency civil GPS receivers and it will
be subject of study in this work. Two services are available in the current GPS system:

SPP: The Single Point Positioning is an open service, free of charge for worldwide users. It
is a single-frequency service in the frequency band L1.

PPP: The Precise Point Positioning is restricted by cryptographic techniques to military and
authorised users. Two navigation signals are provided in two different frequency
bands, L1 and L2.

Additionally, the positioning services can be further improved with the use satellite-based
augmentation systems (SBAS). These systems are constituted by multiple strategically lo-
cated ground stations, receiving the measurements from the satellites providing differential
corrections, service and integrity alerts [14] that are directly broadcasted to the end users.

Control segment

The control or ground segment is responsible for the proper operation of the GNSS. It is
responsible for the following functions:

• to control and maintain the status and configuration of the satellite constellation;

• to predict ephemeris and satellite clock evolution;

• to keep the corresponding GNSS time scale (through atomic clocks);

• to update the navigation messages for all the satellites.

For the GPS, the ground segment is formed by a network of Monitoring Stations (MS), a
Master Control Station (MCS) and the Ground Antennas (GA). The Master Control Station,
located in Colorado Springs, USA, is the core of the control segment. It is responsible for op-
erating the system and providing command, control and maintenance services to the space
segment. The Monitoring Stations are distributed around the world, are equipped with stan-
dard atomic clocks and GPS receivers to collect GPS data continuously for all the satellites
in view from their locations. The collected data are sent to the Master Control Station where
they are processed to estimate satellite orbits (ephemerides) and clock errors, among other
parameters, and to generate the navigation message.

Finally, the Ground Antennas uplink data to the satellites via S-band radio signals. These
data include ephemerides and clock correction information transmitted within the naviga-
tion message, as well as command telemetry from the MCS [54].

User segment

Despite being generally denoted as GNSS receiver, the user segments comprises several
modules whose function will be briefly described next. On first place, the antenna converts
the incoming GNSS radio signals to electrical signals, which in turn, are the inputs for the
receiver. The receiver demodulates the signals using a reference oscillator (generally using
a quartz crystal oscillator) made of to provide a time reference. Then, the ranging processor
uses acquisition and tracking algorithms to determine the range from the antenna to each
of the satellites used from the receiver outputs. It also controls the receiver and decodes the
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navigation messages. Finally, the navigation processor uses the ranging measurements to
compute a position, velocity, and time (PVT) solution. For further information on the user’s
hardware, refer to [14].

User segment equipment

FIGURE 3.4: Diagram with the hardware related to the GNSS user segment.

3.3 Error sources

Errors in satellited-based navigation are grouped into three categories based on their source:

Satellite-based errors Despite being constantly monitored by the ground stations, satellites
are eventually the source of error for positioning errors. Mostly, these errors are due
to the delays in the satellite clock error update for the users or ephemerides errors. It
must be taken into account the time elapsed between the emission and the reception of
the navigation message, as the exact position of the satellite will have slightly changed
from the coordinates provided from the ephemerides.

Receiver-based errors In this case, the errors are due to noise in the reception of the signal,
as well as small errors coming from the inter-channel biases and errors in the antenna
[31].

Signal propagation errors They include delays associated to passing through the ionosphere
and troposphere layers of the atmosphere, as well as intentional jamming and spoofing
of the signals and the errors related to multipath and non-line-of-sight effects.

The accuracy of the Position, Velocity and Timing (PVT) solution highly depends on the
capability to detect and mitigate all these measurement errors. Fig. 3.5 provides an insight
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3.3. Error sources 15

on rough estimations on how much impact each of the error sources might have in the
pseudorange measurement. In this work, signal propagation errors are specially considered,
as they are the only ones that could potentially be detected and mitigated by a regular user.

Error related to the pseudorance measurement

FIGURE 3.5: Pseudorange measurement contents. Image from [54].

In the rest of this section, the source of errors related to signal propagation will be de-
scribed.

Ionosphere errors

The ionosphere is a region of Earth’s upper atmosphere, from about 60 km to 1,000 km
altitude. The propagation speed of the GNSS signals is affected by the presence of electrical
charge in the ionosphere [54]. The influence of the ionosphere varies with the solar activity
and the geomagnetic field. Hence, ionospheric refraction varies with frequency, geographic
location, and time. The resulting range error, for GPS frequencies, can vary from less than
1 m to more than 100 m. This dependence on the signal frequency allows us to remove the
first-order effects using two-frequency measurements through a linear combination of code
measurements:

Riono−free =
f2

1R1 − f2
2R2

f2
1 − f2

2

(3.1)

Single-frequency receivers need to apply a model to remove the ionospheric refraction,
which can reach up to few tens of metres, depending on the elevation of rays and the iono-
spheric conditions. The most well known models for GPS are Klobuchar and NeQuick
Model, which use an approximation of the latitude and longitude of the user position, as
well as the elevation angle and azimuth of the corresponding satellite. An example on the
values for the ionosphere corrections are provided in Fig. 3.6, belonging to the NeQuick2
model. In this work, the ionosphere corrections are taken from the Klobuchar model. De-
spite this model generally provides the ionospheric delay in the GPS L1 signals, it can also
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be used to estimate the ionospheric time delay in other frequency signals or for the Glonass
and Galileo signals, as well. Indeed, taking into account that the ionospheric delay is in-
versely proportional to the square of the signal frequency, the delay for any GNSS signal
transmitted on frequency fk is given by:

Ik =

(
f1

fk

)2

I1 (3.2)

Ionosphere corrections from NeQuick2 model

FIGURE 3.6: Global ionospheric map of 26th February 2010, 12 UT modeled
by the NeQuick 2 model. Image from [42].

In Fig. 3.7, it is shown an example of the values for the ionosphere corrections ob-
tained from the Klobuchar model for the observed satellites during two hours of measure-
ment campaign in Koblenz (Germany). The magnitude of the ionospheric corrections varies
within time, changing from around 11m to almost 26m for one of the satellites signals.

Troposphere errors

The troposphere is the atmospheric layer between Earth’s surface and an altitude of about
60 km. It consists of dry gases and water vapour, causing the GNSS signals to be refracted
and delayed. This delay, frequency independent, depends on the temperature, pressure and
humidity as well as the transmitter and receiver antenna locations, and therefore it is hard
to model troposphere errors accurately using global general models.

It is difficult to separate error components stemming from the radial orbital errors, signal
propagation errors, clock errors, antenna phase center variation, and errors in the station
height. In this work, the troposphere effects are corrected using the Saastamoinen model
[2]. In Fig. 3.8, it is shown the magnitude of the troposphere corrections from Saastamoinen
model. This example is taken during the two hours and in Koblenz, as it is shown previ-
ously for the ionosphere corrections. As it was observed for the ionosphere, troposphere
corrections fluctuate from 3 to 23 meters depending on the satellite, although most of the
satellites have their tropospheric corrections steady between 3 and 5m.

Multipath Errors

The multipath is the phenomenon resulting in a radio signal reaching the receiving antenna
by two o more paths. For land applications, signals are generally reflected off the ground,
buildings, or trees, while for aircraft and ships, reflections off the host-vehicle body are more
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FIGURE 3.7: Ionosphere corrections for the available satellites during a mea-
surement campaign in Koblenz, on the 25th March, 2014.
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FIGURE 3.8: Troposphere corrections for the available satellites during a mea-
surement campaign in Koblenz, on the 25th March, 2014.
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common. Interference can also occur from diffracted signals. The reflected and diffracted
signals are always delayed with respect to the direct signals and have a lower amplitude
unless the direct signals are attenuated (e.g., by a building or foliage). Low-elevation-angle
signals are usually subject to the greatest multipath interference. Specially in urban sce-
narios, with numerous canyons interfering in the signals, The receiver gets a mixture of
non-line-of-sight (NLOS), multipath contaminated and clean line-of-sight (LOS) signals, as
shown as an example in figure 3.9.

Multipath interference

FIGURE 3.9: Example of multipath signal: the receiver gets a mixture of clean
LOS signal and reflected signals from the same satellite.

This error is different for different frequencies. It affects the phase measurements, as well
as the code measurements. In the case of the code, it can reach a theoretical value of 1.5 times
the wavelength of the signal. This means, for instance, that multipath in the GPS L1 code can
reach up to 450m, although higher values than 15m are difficult to observe [54]. A powerful
means for the detection of diffracted signals is inspection of the signal-to-noise ratio (SNR)
or of the carrier-to-noise ratio (C/N0). A proper weighting of the observables, based on
the SNR or C/N0 values, can be used for minimizing the diffraction effect on coordinate
estimates [16]. However, this is not a definitive solution as NLOS signals can be nearly as
strong as the directly received signals [22], but also notably weak, making high-sensitivity
receivers even more susceptible to be affected by this phenomenon.

NLOS Signal Reception

NLOS reception occurs where the direct line-of-sight signal is blocked and the signal is re-
ceived only via reflections, as illustrated with an example in Fig. 3.10. This results in a
pseudo-range measurement error equal to the path delay, which is the difference between
length of the path taken by the reflected signal and the (blocked) direct path between satel-
lite and receiver. This error is always positive and, although typically tens of metres, is
potentially unlimited [16]. Signals received via distant tall buildings can exhibit errors of
more than a kilometre.



3.
SA

T
E

L
L

IT
E

-
B

A
SE

D

N
A

V
IG

A
T

IO
N

3.
SA

T
E

L
L

IT
E

-
B

A
SE

D

N
A

V
IG

A
T

IO
N

3.
SA

T
E

L
L

IT
E

-
B

A
SE

D

N
A

V
IG

A
T

IO
N

3.4. Position Estimation 19

NLOS Reception

FIGURE 3.10: Example of reception of a non-line-of-sight signal, the direct
signal gets blocked by an obstacle.

3.4 Position Estimation

GPS utilizes the concept of TOA (Time of Arrival) ranging to determine the receiver position
p = (x, y, z) and clock offset cδt from pseudorange measurements R of at least four satel-
lites in view. The positioning principle is based on solving a geometric problem from the
measured ranges to the satellites, with known coordinates. The code pseudorange measure-
ments Rj for each of the satellites is expressed as:

Rj = ρj + cδtj + Trj + α̃1I
j +Mj + εj , j = 1, . . . , n (3.3)

where:

• ρj = c
(
tj − t

)
is the product of the speed of light and the difference between the time

of the signal emission from the j satellite and the time from the receiver’s clock at the
reception time.

• cδtj is the clock offset of the jth satellite,

• Trj is the troposphere correction,

• α̃1I
j is the first order ionosphere correction,

• Mj is the signal error from possible multipath effects,

• εj represents the receiver noise terms, and

• n is the number of satellites observed.

The pseudorange can be reformulated, after neglecting the multipath and receiver noise
terms, as the geometric distance between the j satellite and the receiver as:

Rj −Dj ≈
√

(xj − x)2 + (yj − y)2 + (zj − z)2 + cδt, j = 1, ..., n (3.4)
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where the left-hand side containts the measurements Rj and all modelled terms
Dj = −cδtj + Trj + α̃1I

j . The right-hand side contains the four unknown parameters: the
receiver coordinates (x, y, z) and the receiver clock offset cδt.

Equation 3.4 defines a nonlinear system, whose usual solution technique consists of lin-
earising the geometric range ρ in the neighbourhood of a point (x0, y0, z0) corresponding to
the approximate solution of the receiver, as seen in the Fig. 3.11:

FIGURE 3.11: Geometric concept of GNSS positioning: equations are lin-
earised about the approximate receiver coordinates (x0, y0, z0). The correction

(dx, dy, dz) is estimated with a least squares adjustment.

Then, linearising the satellite-receiver geometric range ρj

ρj (x, y, z) =

√
(xj − x)2 + (yj − y)2 + (zj − z)2 (3.5)

gives, for the approximate solution p0 = (x0, y0, z0),

ρj ≈ ρj +
x0 − xj

ρj
dx+

y0 − yj

ρj
dy +

z0 − zj

ρj
dz (3.6)

with dx = x− x0, dy = y − y0, dz = z − z0.
Rewriting the measurements as a linear system, where the unknowns are dx, dy, dz and

cδt, we obtain:

Rj − ρj0 −D
j =

x0 − xj

ρj0
dx+

y0 − yj

ρj0
dy +

z0 − zj

ρj0
dz + cδt, j = 1, . . . , n (3.7)

which can be expressed using matrix notation as:
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R
1 − ρ1

0 −D1

...
Rn − ρn0 −Dn


︸ ︷︷ ︸

y

=


x0−x1
ρj0

y0−y1
ρj0

z0−z1
ρj0

1

...
...

...
x0−xn
ρn0

y0−yn
ρn0

z0−zn
ρn0

1


︸ ︷︷ ︸

G


dx
dy
dz
cδt


︸ ︷︷ ︸

x

(3.8)

where y is a (n× 1) vector containing the residuals between the measured and predicted
pseudoranges; G is the geometry matrix of size (n× 4), containing the receiver-satellite ge-
ometry, whose three first elements of each row are unit vector; and x is a (4× 1) vector
containing the difference between the true and approximate coordinates and the receiver
clock offset cδt.

After solving the equation system 3.8, the estimate of the receiver coordinates is:xy
z

 =

x0

y0

z0

+

dxdy
dz

 (3.9)

Equation 3.4 can be linearised again about the estimation of the receiver’s position. This
iterative process continues until thee change between two consecutive iterations is below a
given threshold. Typically, this process converges quickly, in a few iterations, even if start-
ing with (x0, y0, z0) = (0, 0, 0), that is Earth’s centre.

In general, eq. (3.8) is an over-determined system (for n > 4). As mentioned before,
there are errors related to multipath and receiver noise which were neglected, and for that
reason there is not a "exact" solution fulfilling the system. The parameters’ solution can be
taken as the vector x that minimises the discrepancy in the equation system. That is, the
vector x provides the "best fit" of y ≈ Gx. The standard criterion in satellite navigation is
the use of least squares adjustment. Least squares is an approach used in regression analysis
to estimate the solution of overdetermined systems, for which the sum of the squares of the
errors is minimized:

min‖y−Gx‖2 = min
x

n∑
i=1

(yi − gi xi)2 (3.10)

with gi as the ith row of the G matrix. The solution fulfilling such requirements is given by:

x =
(
GTG

)−1
GTy (3.11)

The discrepancy between the measurements (the difference between the pseudoranges and
the geometric distances between satellites and the receiver) and the solution is the residual
vector, calculated as follows:

r =
[
I −G

(
GTG

)−1
GT
]

y = Sy (3.12)

In order to calculate the error covariance matrix P asociated to the estimated solution, it
is assumed uncorrelated values of the measurements with the same variance σ2

ρ. Taking
R = E =

[
ε εT

]
= σ2I , then:

P = σ2
ρ

(
GT G

)−1
=


σ2
N PN,E PN,V PN,t

PE,N σ2
E PT,V PT,t

PV,N PV,E σ2
V PV,t

Pt,N Pt,E Pt,V σ2
t

 (3.13)
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Nevertheless, measurements are often not equally weighted but leveraged on the strength
of the received signal or the elevation of the satellite. The quality of a measurement can be
introduced into the least squares adjustment with a symmetric, positive-defined weighting
matrix W . The solution using weighted measurements and the corresponding error covari-
ance matrix are given by:

x =
(
GTWG

)−1
GTWy (3.14)

P =
(
GTWG

)−1
GTWRWG

(
GTWG

)−1
(3.15)

The weight matrix W mentioned previously can be defined in whatever manner to account
for the leverage of the measurement. However, if W corresponds to the inverse of the co-
variance matrix R of the measurements W = R−1, then the covariance matrix becomes:

P =
(
GTWG

)−1
(3.16)

The solution from a Weighted Least Squares (WLS) can be considered as the Best Linear
Unbiased Estimate, which means that the solution presents the lowest estimation error
among all linear estimators [28].

3.4.1 Dilution of precision

The quality of the user position estimate depends not only on the quality of the range mea-
surements but also on the user-satellite observation geometry. The Dilution of Precision
(DOP) concept provides a simple measure of the geometrical strength of the user-satellite
configuration [24]. Poor geometry may have the effect of amplifying random errors and bi-
ases and, therefore, produce large position errors. Fig. 3.12 illustrates an example of good
geometry for a simple two-dimensional ranging solution. In case of bad geometry, the rhom-
bus representing the uncertainty regions would be way more elongated. The arcs show the
mean and error bounds for each ranging measurement, while the shaded areas show the
uncertainty bounds for the position solution and the arrows show the line-of-sight vectors
from the user to the transmitters. The overall position error for a given ranging accuracy is
minimized where the line-of-sight vectors are perpendicular.

The position information along a given axis obtainable from a given ranging signal is
maximized when the angle between that axis and the signal line of sight is minimized.
Therefore, the horizontal GNSS positioning accuracy is optimized where signals from low-
elevation satellites are available and the line-of-sight vectors are evenly distributed in az-
imuth. Vertical accuracy is optimized where signals from higher elevation satellites are
available [14].

The DOP parameters are obtained from the elements of the Q matrix, also called cofactor
matrix:

Q ≡
(
GTG

)−1
=


qxx qxy qxz qxt
qyx qyy qyz qyt
qzx qzy qzz qzt
qtx qty qtz qtt

 (3.17)

from the previous matrix, the parameters are estimated as:

• Geometric Dilution of Precision:

GDOP =
√
qxx + qyy + qzz + qtt (3.18)

• Position Dilution of Precision:

PDOP =
√
qxx + qyy + qzz (3.19)
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Uncertainty region

FIGURE 3.12: The measurement noise ε is translated to the position estimation
as an uncertainty region.

• Time Dilution of Precision:
TDOP =

√
qtt (3.20)

The previous DOP values are expressed in the equatorial system. When the local NED
coordinate system is used, the matrix Q must be transformed into the matrix Qn. Denoting
now as Qn,p that part of the matrix that contains only the geometrical components (disre-
garding the time-correlated components), as:

Qn,p = RneQxR
n
e
T =

qnn qne qnd
qne qee qed
qnd qed qdd

 (3.21)

where the rotation matrix Rne contains the axes coordinate system [19]. Having this new Qn,
it is possible to obtain two additional DOP values for the horizontal and vertical position
components:

• Horizontal Dilution of Precision:

HDOP =
√
qnn + qee (3.22)

• Vertical Dilution of Precision:
V DOP =

√
qdd (3.23)

Dilution of Precision is a geometrical interpretation of the timing and positioning accu-
racy. However, it is not an ultimate indication of the quality of the estimated solution. As
can be seen in figure 3.13, despite having an excellent geometry of satellites, the signals that
reach the receiver may be affected by severe multipath or reflection effects, obtaining a final
position estimation with a gross error.
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Examples of geometries for the position solution

FIGURE 3.13: This figure exemplifies how the Dilution of Precision is not al-
ways a proper indicator of the quality of the position solution: even with a
good geometry, the visibility from the receiver to the satellites might not be

direct.

3.5 Velocity Estimation

In navigation, velocity over the ground can be obtained by using the Doppler effect. This
effect denotes the difference between the frequency of the radiation received at a point and
the frequency of the radiation at its source, when observer and source are moving with re-
spect to each other. This value is known from GNSS specification, being denoted as Doppler
shift. The Doppler equation for an electromagnetic wave can be written as:

fr =

(
c+ v

c+ vj

)
f0 (3.24)

where c is the speed of light (m/s), fr is the received frequency (Hz), f0 is the transmitted
frequency (Hz), and v, vj are the speed of the receiver and the jth satellite respectively. note
that this equation is only for 1D problem, as the equation assumes all the velocities to be
along the LOS vector.

Given that the speeds of receiver and satellite are small compared to the speed of light,
it can be proven that eq. 3.24 is approximately:

∆f =
∆v

c
f0 (3.25)

being ∆f = fr−f0 the observed Doppler shift, and ∆v = v−vj is the velocity of the receiver
relative to the jth satellite. On the other hand, the receiver velocity can expressed using the
pseudorange rate observation as:

ρ̇j =
(
vj − v

)
· pj − p
‖pj − p‖

+ ˙cδt+ ε̇j (3.26)

where:

• ρ̇j is the pseudorange rate for the jth satellite,

• vj is the velocity vector for the jth satellite,

• v represents the receiver’s vector velocity,

• ˙cδt is the rate of change of the receiver’s clock offset,
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3.5. Velocity Estimation 25

• ε̇j is the combined error due to changes during the measurement interval in the jth
satellite clock error, troposphere and ionosphere corrections.

Reformulating the above equation in order to have a linear system of equations that can be
solved using a least squares adjustment, as done previously for the position solution:


vx
vy
vz
˙cδt


︸ ︷︷ ︸

x

=
(
GTG

)−1
GT


g1 ·

[
v1

0

]
− ρ̇1

...

gn ·
[

vn

0

]
− ρ̇n


︸ ︷︷ ︸

y

(3.27)

with gj being the jth row of the geometric matrix G.
An important challenge related to the estimation of the velocity is its dependence on the

knowledge of the receiver position. This dependence introduces cross-correlations into the
velocity measurement errors. With the purpose of overpassing this correlation, Kelly [25]
proposed an algorithm for the correction estimation of the velocity:

1. Given the geometry matrix G and the covariance matrix of the position solution (po-
sition and clock offset rate) P from 3.15, it is estimated the values for the covariance
only of the position as:

Rp = J3 P JT3 , where J3 =

1 0 0 0
0 1 0 0
0 0 1 0

 (3.28)

2. Then the calculation the matrix D, as:

D =

d1T

...
dnT

 , where dj = − vj

Rj −Dj
+
(
pj − p

)
· ρj/(Rj −Dj)2 (3.29)

3. Calculate the covariance of the velocity residualsRv using the covariance matrix of the
position Rp and the pseudorange rates:

Rv = D Rp D
T + σ2

ρ̇ I (3.30)

4. Estimate the pseudo-inverse of the measurement matrix:

G† =
(
GTRvG

)−1
GTR−1

v (3.31)

5. Final estimation of receiver’s velocity and clock offset rate by taking into account the
correlation with the position uncertainty:

[
v
˙cδt

]
= G† ·


g1 ·

[
v1

0

]
− ρ̇1

...

gn ·
[

vn

0

]
− ρ̇n

 (3.32)
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3.6 Attitude Determination

GNSS Compass is the mechanism to estimate the attitude of a vehicle or target based on
having three spatially distributed GNSS antennas. As represented in figure 3.14, with a ve-
hicle equipped with two or more GNSS receivers, it is possible to use the information from
the estimated position solutions to obtain the host vehicle’s attitude. Attitude determination
has been a recurrent problem in spacecraft systems, where the two vectors are typically the
unit vector to the Sun and the Earth’s magnetic field vector for coarse "sun-mag" attitude
determination or unit vectors to two stars tracked by two star trackers for fine attitude de-
termination [37].

Baselines representation

FIGURE 3.14: GNSS compass arrangement with 3x GNSS antennas for atti-
tude determination: the baseline bb

i defines the vector with the position dif-
ferences between the antennas for the body frame. With the estimation of the
antennas’ position using satellite navigation, it is constructed the baselines in

the ECEF frame be
i .

Most of the algorithms for estimating attitude from vector measurements look for the
miminization of the loss function proposed by Grace Wahba [66] in 1965:

J(R) =
1

2

N∑
k=1

wk‖bek −Reb bbk‖2 (3.33)

where {wk} are non-negative weights, N is the number observations (normally mapped to
the number of GNSS receivers) and bbk,b

e
k are the baselines representing the unit vectors

defining the directions between the receivers positions in the body and ECEF coordinate
frames respectively. Such baselines are defined as:

bij =
pi − pj
‖pi − pj‖

, with i, j = 1, . . . , N, i 6= j (3.34)

The attitude is determined by the rotation matrix Reb . The latter can then be transformed to
another attitude representation, such as Euler angles or attitude quaternion.
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3.6. Attitude Determination 27

With regards to the weights {wk}, they can be defined in different ways. In [36], the
weights are inverse variances, ak = σ−2

k , to relate Wahba’s problem to Maximum Likelihood
Estimation, while other authors [59] assume the weights to be normalized to unity. In this
work, we follow the approach of the inverse covariances. There is always some errors in the
position estimation, which is propagated to the baselines in form of angle, as can be seen in
figure 3.15. The angular error δα can be estimated using geometry:

Baselines weights

FIGURE 3.15: The weight assigned to the baseline corresponding to two an-
tennas is proportional to the distance between them, as the closer they are to

each other the higher the attitude error may result.

sin (δα) =
δp√

l2 + δp2
, as l� δp =⇒ sin (δα) =

δp

l
(3.35)

Assuming that the angle δα is very small, one can approximate sin(δα) ≈ δα. Then, the
standard deviation of the error is:

σα = δα ≈ δp

l
(3.36)

As said previously, in this work it is followed the approach of considering the weights for
the Wahba’s problem as the inverse covariances. As the distance l between antennas remains
constant, while the position error δp varies over time, it can be excluded to obtain:

wi = σ−2 ' l2 (3.37)

There are several explicit algorithms designed to solve the attitude estimation problem.
In general, one can distinguish between the geometry-based deterministic methods, such as
Triad (Three-Axis Attitude Determination), and the statistical methods such as Davenport’s
q-method.

Triad consists on constructing two triads of orthonormal unit vectors using two of the
available baselines (a pair of baselines per coordinate frame) [3]. This method seeks for the
relationship between the vector observation in the body frame and the reference vector in
the inertial frame be, which under absence of the measurement noise, should strictly satisfy
the following condition:

[te1 te2 te2] = Reb

[
tb1 tb2 tb2

]
(3.38)

The triads are built from the two of the baselines of the system (only from two to assure the
orthogonality of the resulting triad) as:

tb1 = bb1, te1 = be1 (3.39)
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tb2 =
bb1 × bb2
|bb1 × bb2|

, te2 =
be1 × be2
|be1 × be2|

(3.40)

tb3 = tb1 × tb2, te3 = te1 × te2 (3.41)

The attitude is determined by the rotation matrix Reb :

Reb = [te1 te2 te3]
[
tb1 tb2 tb3

]T
(3.42)

Then, one can convert this rotation matrix to a more efficient format, such as Euler angles or
quaternions. This method has the advantage of being relatively intuitive and computation-
ally not demanding, but also it presents some clear drawbacks. If the assumption of noise
free vector observations is violated, the obtained rotation matrix Reb will not be a valid rota-
tion matrix. On top of that, this method only makes use of two measurements (baselines),
so information is wasted in case we have more than two receivers in the system setup.

Another well-known method is the Davenport’s q-method [58], which is based on the
minimization of the loss function J(R) raised from Wahba’s problem. One can expand the
original problem as next:

J(R) =
1

2

N∑
k=1

wk

(
bek −Reb bbk

)T (
bek −Reb bbk

)
(3.43)

=
1

2

N∑
k=1

wk

(
bek

Tbek + bbk
T

bbk − 2bek
TReb bbk

)
(3.44)

As the baselines are normalized, the products bek
Tbek and bbk

T
bbk are equal to unity. The loss

function J(R) becomes:

J(R) =
N∑
k=1

wk

(
1− bek

TReb bbk
)

(3.45)

So minimizing J(R) is equivalent to maximize g(R) =
∑N

k=1wkbek
TReb bbk. It has been shown

in [36] that the optimization problem can be rewritten as:

g(R) =

N∑
k=1

tr
(
RBT

)
(3.46)

where tr denotes the trace operation, and B is defined as:

B =

N∑
k=1

wkbekbbk
T

(3.47)

Making use of the relation between rotation matrix and quaternion from equation A.42, Eq.
3.46 can be expressed in terms of quaternion instead of the rotation matrix. Even though
quaternions have four parameters, using the constraint of unity norm qT q = 1, the required
parameters to three can be reduced to three, leading to:

g(q) = qTKq (3.48)

where K is the Davenport’s matrix

K =

[
σ ZT

Z S − σI3×3

]
(3.49)
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3.6. Attitude Determination 29

with s = tr(B), and S = B + BT . The determination of the optimal attitude is reduced to
finding the quaternion that maximizes the bilinear form 3.48, and after differentiation one
obtains that

Kqopt = λmaxqopt (3.50)

where qopt is the eigenvector associated to the largest eigenvalue of the Davenport matrix
λmax.

There are other methods, but they mostly address the computational problems and nu-
merical accuracy rather. More insight on the topic and information about them can be found
in [46].
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Chapter4
Inertial Navigation

An inertial navigation system (INS) is based on the dead-reckoning principle. Dead reck-
oning measures the change in position or the velocity and add it to the previous position in
order to estimate the current position. As the speed or distance travelled measured belongs
to the body coordinate frame (where the sensors are mounted), an INS requires to obtain
the direction of travel in the reference frame. An INS is composed by an inertial measurement
unit (IMU), which is a set of inertial sensors: three mutually orthogonal accelerometers and,
aligned with these, three gyroscopes.

Accelerometers and gyroscopes are sensors to measure acceleration and angular rate respec-
tively, and can be found in a wide variety based on their performance, size or cost - from
100, 000 e for IMUs used in aviation to the 50 e IMUs used in the automotive industry
and < 5 e for those used in consumer applications. They can also be classified depending
on their operating principle. In case of gyroscopes, one can distinguish between fiber op-
tic gyros (FOG), based on the interference of light to detect mechanical rotation; based on
vibrations, such as the low-cost and relatively low-performance MEMS (micro electrome-
chanical sensor); or based on the principle of the conservation of angular momentum with a
vibrating mass (i.e., gyrocompass belong to this category). On the other hand, accelerome-
ters’ technology can be based on either pendulous and vibrating beams. In general, a higher
performance comes with a higher price and size (even though MEMS sensors are fastly im-
proving in price and size).

In a strapdown INS, the accelerometers are attached to the target and so aligned to the
body frame. The attitude solution obtained from the angular rate measurements is then
employed to rotate the acceleration into to navigation coordinate frame. Subsequently, a
gravity model is used to compensate for the gravity effects. By integrating the acceleration
and adding it to the previous velocity, one gets an update of the velocity. Finally, the process
is repeated integrating the velocity in order to get the estimation of the position. The position
and velocity for all INS and the heading for lower-grade systems must be initialized before
the INS can compute a navigation solution, as can be seen in the basic scheme of an INS in
the figure 4.1.

Gyroscopes measure angular rate, which is used by the navigation processor to maintain
the INS’s attitude solution. The accelerometers, however, measure specific force, which is
the acceleration due to all forces except for gravity. In a strapdown INS, the accelerome-
ters are aligned with the navigating body, so the attitude solution is used to transform the
specific force measurement into the resolving coordinate frame used by the navigation pro-
cessor. A gravity model is then used to obtain the acceleration from the specific force using
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Dead Reckoning Principle

FIGURE 4.1: Basic scheme for an inertial navigation system based on dead
reckoning.

the position solution. Integrating the acceleration produces the velocity solution, and inte-
grating the velocity gives the position solution. The position and velocity for all INS and the
heading for lower-grade systems must be initialized before the INS can compute a naviga-
tion solution.

Attitude Determination

The estimation of the attitude is based on the integration of the angular rate ωbtk read from
the IMU unit. In this work, orientation is expressed using unit quaternions due to their mul-
tiple benefits compared to rotation matrices or Euler angles [29]. More information about
quaternions, their use and operations can be found in Appendix A. The rotation is given by
integrating the skew-symmetric matrix of the angular rate Ω(ω):

δqk =

tk+∆t∫
tk

1

2
Ω(ωbtk) dt (4.1)

Note that the angular rates in the previous equation are corrected already for the bias and
other minor effects such as Earth rotation rate. The update quaternion containing the orien-
tation and the change from the body to the reference navigation frame (ECEF in this work)
is given by:

qk = δqk ⊗ qk−1 (4.2)

Velocity and Position Determination

Velocity is estimated as the addition of the previous velocity and the integration of the cur-
rent acceleration. Once again, one faces the problem of not having the readouts from the
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4.1. Kalman Filtering 33

sensors in the navigation frame.

vik = vik−1 + aik ·∆t (4.3)

The previously estimated quaternion is used to rotate the acceleration from the body to the
navigation frame, and then it is necessary to compensate for the gravity effects:

aik = qk−1 ⊗ abk ⊗ q∗k−1 − ~g i (4.4)

In this context, gravity is often estimated using a gravitational model, dependent on the
estimated position. Given that the Earth is not a perfect sphere and the centrifugal effect of
its rotation, Gravity distribution is not uniform. For instance, the gravitation effect is smaller
along the Equator, where the radius of the Earth is longer, while the opposite happens in the
poles.

For the gravity model in ECEF frame ~g i =
[
gix, g

i
y, g

i
z

]
, in this work the following ap-

proximation is used:

gix = −µx
i

r3

[
1− 3

2
J2

(
R

r

)2
(

5

(
zi
)2
r2
− 1

)]
, (4.5)

giy =
xi

yi
gix, (4.6)

giz = −µz
i

r3

[
1− 3

2
J2

(
R

r

)2
(

5

(
zi
)2
r2
− 1

)]
, (4.7)

where r =
√

(x)2 + (y)2 + (z)2. In the expressions above J2 = 0.00108263, µ = 398600.4418

km3/s2 and R = 6378.137km are the corresponding parameters of the JGM-2 gravity field.
Finally, the position is updated by summing the integrating velocity and double inte-

grating the acceleration to the previous estimated position:

pik = pik−1 + vik−1 ·∆t+ aik−1 ·
∆t2

2
(4.8)

For higher performance system, it would be necessary the use of more elaborated models
which would include Coriolis effects or the Earth rotation.

4.1 Kalman Filtering

For applications such as tracking, in which noisy sensors create an uncertainty increasing
over time, Bayes filters stands for being a great tool, dealing with the ambiguity in measure-
ments and dynamic systems and they provide a probabilistic tool for estimation. Among
Bayes filters, the Kalman filter stands out for being the most commonly used algorithm in
navigation systems. Developed in 1960 by Rudolph Kalman and with the original purpose
of solving the spacecraft navigation problem for the Apollo space program, KF has been ap-
plied in numerous fields such as demographic modelling, econometrics or neural network
training.

In navigation systems, the Kalman filter (KF) constitutes the basis of the vast majority
of estimation algorithms. It provides a smoothed navigation solution, integrates the mea-
surements from noisy inertial sensors with GPS signals and other navigation sensors, and
measures the uncertainty of the estimated solution, as it is shown as an example in figure
4.2.
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Recursive Bayesian Estimation Principle

FIGURE 4.2: A simple example on the estimated state and new measurements
are fused on the recursive bayesian estimation framework.

The algorithm recursively estimates a set of parameters - position, velocity, attitude, ... -
denoted as state xk of a dynamical system by minimizing the mean-squared estimation error
given by noisy measurements. Under the assumption of white Gaussian noise, Kalman filter
computes an optimal solution for a linear system and provides the uncertainty of the system
in form of covariance matrix Pk. Kalman filter is a two steps prediction-correction method,
as can be shown in 4.3:

Prediction. The equations of dynamic model project the predicted or a priori state x̂−k ahead
in time, from tk−1 to tk. Along with it, the prediction of the covariance P−k is updated:

x̂−k = Ax̂+
k−1 +BukP−k = AP+

k−1A
T +Qk (4.9)

where A and B constitute the equations of the dynamical model, and uk is the control
input of the sensors. The noises of the measurements in the prediction model vk are
assumed to be independent, zero meanE [vk vk] = 0, and follow a normal distribution
vk ∼ N (0, Qk).

Correction. The a priori state is corrected incorporating the actual measurements zk and the
observation or measurement modelH . Of first place, the Kalman gain Kk is computed:

Kk = P−k
T (
H P−k H

T +R
)−1

(4.10)

where the noise of the observations νk are introduced in a similar way to the predic-
tion step: E [νk νk] = 0, and follow a normal distribution νk ∼ N (0, R). The matrix
Kk is the gain that minimizes the a posteriori error covariance. The Kalman gain is
proportional to the uncertainty in the state estimate and inversely proportional to the
uncertainty of the measurements. In case the outputs of the sensors have a high un-
certainty level and the state estimate is relatively accurate, the Kalman gain has little
impact on the update of the state estimation, and the system matches the dynamic
model. On the other hand, if the observations are highly reliable, the Kalman gain Kk

would have a big impact on the correction of the state. The a posteriori state x̂+
k and the

error covariance P+
k are given by:

x̂+
k = x̂−k +Kk

(
zk −H x̂−k

)
(4.11)
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4.1. Kalman Filtering 35

P+
k = (I −KkH)P−k (4.12)

The last equation can be ill-conditioned. As the filter converges, the cancelling of sig-
nificant digits in P+

k can eventually lead to matrix asymmetry, or to a non-positive
semi-definite matrix [46]. Thus, the Joseph form is often implemented as:

P+
k = (I −KkH)P−k (I −KkH)T +KkRK

T
k (4.13)

which given its quadratic nature is obviously positive semi-definite.

Whenever the dynamical or the observation model is nonlinear, a different approach of
the Kalman filter is applied to linearise about the current mean and covariance. Even though
there are many approaches to overcome this issue, the two most widely spread versions of
nonlinear KF are Extended Kalman filter (EKF) and Unscented Kalman filter (UKF), which
will be described below.

4.1.1 Extended Kalman Filter

If the models are linear and the probabilities are Gaussian, the linear KF is an efficient and
optimal solution of the estimation problem, following the well-known two steps prediction-
correction structure depicted in figure 4.3. Unfortunately, most of the real-world systems
are nonlinear and modifications to the linear KF (LKF) have been developed to deal with
the nonlinear dynamics and/or measurement models. The extended KF (EKF) is one of the
most popular nonlinear modifications of the LKF and is historically considered as a de facto
standard within the engineering community. In EKF the nonlinear models are linearized
about the current estimate using the Taylor series expansion.

Kalman Filter Scheme

FIGURE 4.3: A prediction-correction structure of the classical Kalman filter
algorithm.

In contrast to the classical linear Kalman filter, the EKF is neither the unbiased minimum
mean-squared error estimator nor the minimum variance estimator of the state. Even more,
the EKF is generally biased. However, the EKF is the best linear unbiased estimator of the
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linearised dynamical system, which can often be a good approximation of the nonlinear
system [21].

It is assumed that the process and measurement models are governed by the non-linear
stochastic differential equations:

xk = f(xk−1,uk,vk), (4.14)
zk = h(xk−1, νk) (4.15)

Such equations f and h can be formulated as a Taylor series expansion about the most recent
estimated state, keeping only the first term and dropping the high order terms (HOT) as:

xk ≈ x̃kJA,k(xk − x̂+
k−1) + JB,kuk + JV,kvk, (4.16)

zk ≈ z̃k + JH,k(xk − x̃) + Jν,kνk (4.17)

where xk and zk are the actual state and measurement vectors, x̃k and z̃k are the approximate
state and measurement vectors and the Jacobians are computed as:

• JA,k is the Jacobian matrix of partial derivatives of the process model f about the state
x:

JA,k =
∂f

∂x

∣∣∣
x̂+k−1,uk,0

(4.18)

• JB is the Jacobian matrix of partial derivatives of f with respect to u:

JB,k =
∂f

∂u

∣∣∣
x̂+k−1,uk,0

(4.19)

• JV is the Jacobian matrix of partial derivatives of f with respect to the process model
noise v:

JV,k =
∂f

∂v

∣∣∣
x̂+k−1,uk,0

(4.20)

• JH is the Jacobian matrix of partial derivatives of the measurement model h with re-
spect to the state:

JH,k =
∂h

∂x

∣∣∣
x̂−k ,0

(4.21)

• JH is the Jacobian matrix of partial derivatives of the measurement model h with re-
spect to the measurement noise:

Jν,k =
∂h

∂ν

∣∣∣
x̂−k ,0

(4.22)

The procedure from EKF follows the two step prediction-correction. Firstly, the state is time
updated by propagating it through the process model:

x̂−k = f
(
x̂+
k−1,uk, 0

)
(4.23)

projecting the covariance with the Jacobian of the matrices. Normally, the control and the
process noises are considered as a combined process model as:

P−k = JA,k P
+
k−1J

T
A,k + JV,k QK JV,k (4.24)
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The computation of the Kalman gain is made as follows:

Kk = P−k J
T
H,k

(
JH,kP

−
k J

T
H,k + Jν,kRkJ

T
ν,k

)−1
(4.25)

The state is then updated with the measurements and the Kalman gain:

x̂+
k = x̂−k +Kk

(
zk − h(x̂−k , 0)

)
(4.26)

with the associated covariance of the state given by:

P+
k = (I −KkJH,k)P

−
k (4.27)

Although the EKF inherits many advantages of the LKF such as limited computational
costs and clear filtering structure, the performance of the estimator strongly depends on the
validity of the linearized model assumption and the filter can become inaccurate or even
unstable if these assumptions are violated [13].

4.1.2 Unscented Kalman Filter

Despite EKF being considered the standard approach for tracking and other nonlinear esti-
mation problems, it holds some well-known drawbacks:

1. The provided solution is only reliable for those systems that are almost linear on the
time scale of the update intervals (e.g. integration time within the inertial mechaniza-
tion).

2. Linearisation can produce highly unstable filters if the assumptions of local linearity
are violated.

3. The derivation of the Jacobian matrices are nontrivial in most applications and of-
ten lead to significant implementation difficulties. As well as, EKF could have some
problems with functional dependencies which are not differentiable (i.e., dependen-
cies given as generating rules).

The UKF, which is a derivative-free alternative to EKF, overcomes the nonlinearity problem
by using a deterministic sampling approach. It is founded on the intuition that it is easier to
approximate a probability distribution that it is to approximate an arbitrary nonlinear function or
transformation [23]. The state distribution is represented using a minimal set of carefully
chosen sample points, called sigma points, which are propagated through the original non-
linear functions for the process and measurement models. Although this method bares a
superficial resemblance to Monte Carlo-type methods, there is a fundamental difference:
the samples are not drawn at random but rather according to a specific, deterministic algo-
rithm [63]. The mean and covariance of the state are then reconstructed back from the sigma
points, as can be seen in the figure 4.4.

The basic algorithm for UKF is explained next Alg. 1, adapted from [46]:
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Algorithm 1 Unscented Kalman Filter
Initialization:
x̂0 = E [x0], P+

0 = E
[
(x0 − x̂0) (x0 − x̂0)

T
]
, vk ∼ N (0, Qk), νk ∼ N (0, Rk).

For k = 1, . . . ,∞ :

1. Calculate σ-points:

Xk ≡


x̂+
k−1

x̂+
k−1 + γ

√
P+
k−1

x̂+
k−1 − γ

√
P+
k−1

(4.28)

2. Time-update with the nonlinear function f of the process model:

X−
k = f(X+

k−1, uk), (4.29)

x̂−
k =

2n∑
i=0

w[i]
mX

−,[i]
k , (4.30)

P−
k =

2n∑
i=0

w[i]
c

(
X−,[i]

k − x̂−
k

)(
X−,[i]

k − x̂−
k

)T
+Qk, (4.31)

where the notation (·)[i] - means i-th column of the matrix.

3. Recalculate σ-points about the predicted state x̂−
k

X−
k =

[
x̂−
k x̂−

k + γ
√
P−
k x̂−

k − γ
√
P−
k

]
, (4.32)

4. Measurement update equations with the measurement model h:

Zk = h
(
X−

k

)
, (4.33)

ẑk =

2n∑
i=0

w[i]
mZ

[i]
k , (4.34)

Pzz,k =

2n∑
i=0

w[i]
c

(
Z [i]

k − ẑk

)(
Z [i]

k − ẑk

)T
+R, (4.35)

Pxz,k =

2n∑
i=0

w[i]
c

(
X−,[i]

k − x̂−
k

)(
Z [i]

k − ẑk

)T
, (4.36)

Kk = Pxz,k P
−1
zz,k, (4.37)

x̂+
k = x̂−

k +Kk (zk − ẑk) , (4.38)

P+
k = P−

k −KkPzz,kK
T
k . (4.39)

In the expressions above the parameter γ =
√
n+ λ and the corresponding weights are:

w[0]
m =

λ

n+ λ
, (4.40)

w[0]
c =

λ

n+ λ
+
(
1− α2 + β

)
, (4.41)

w[i]
m = w[i]

c =
1

2 (n+ λ)
, (4.42)

for i = 1, . . . , 2n, λ = α2 (n+ κ) − n being the compound scaling parameter, 0 < α ≤ 1 being the primary
scaling parameter that determines how far the σ-points are spread from the mean, and β is the secondary
scaling factor used to emphasize the weighting on the zeroth σ-point for the posterior covariance calculation
and can be used to minimize certain higher-order error terms based on known moments of the prior random
variable. For Gaussian priors β = 2 is optimal. The tertiary scaling factor κ is usually set to 0. Note that in
general the optimal values of these parameters are problem specific. Finally

√
· is the matrix square-root using

lower triangular Cholesky decomposition and n is the dimension of the original state vector xk.
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Unscented Transformation

FIGURE 4.4: The principle of the unscented transformation.





5.
R

O
B

U
ST

E
ST

IM
A

T
IO

N

5.
R

O
B

U
ST

E
ST

IM
A

T
IO

N

5.
R

O
B

U
ST

E
ST

IM
A

T
IO

N

5.
R

O
B

U
ST

E
ST

IM
A

T
IO

N

5.
R

O
B

U
ST

E
ST

IM
A

T
IO

N

Chapter5
Robust Estimation

GNSS positioning problems are generally solved by applying least squares estimation and
Kalman filtering techniques, as discussed in the previous sections of this work. In order to
perform optimally, these methods work under the assumption that the noises of the system
are Gaussian. Despite this being justified under regular conditions, real measurements of-
ten contain unexpectedly large errors, which do not fit to the assumption of the Gaussianity
of the noise. In GNSS, the source of this kind of errors is very diverse: multipath and re-
flection of the signals are two very common problems in urban scenarios, where building
are responsible for non-line-of-sights and shadowing; also atmospheric phenomena, such as
ionospheric storms, influence the coverage and quality of the radio signals. Before digging
into the topic, it is important to provide the definition of some key terms:

• Residuals r are defined as the difference between the estimated values of the observa-
tions and the corresponding measured values:

r = y−Gx (5.1)

where y, G and x are defined in 3.8 and represent the difference between the pseudor-
ange and the distance from the receiver and the corresponding satellite, for the case of
code-based positioning.

• Outliers are observations that appear unusually large or small and "out of place" when
compared with the rest of the data values of the set.

• Breakdown point ε∗ is the smallest percentage of contaminated data that can cause the
estimator take on arbitrarily large aberrant values [51].

• Redundancy n − p is the difference between the number of available measurements n
and the amount of unknowns p of the system.

• Cost or objective function, it is the function that seeks minimizing the residuals (e.g., in
the least squares regression, the objective function is minimize

∑n
i=1 r

2
i ).

• Gaussian Efficiency, also called asymptotic efficiency, refers to the similarity of the perfor-
mance of a method with the classical least squares under Gaussian conditions.

The classical least squares method used for positioning consists of minimizing the sum of
the squared residuals. This technique is quite sensitive to outliers, as one single outlier can
drive to aberrant gross errors in the estimation solution [51]. In Fig. 5.1, one can find an
example of much classical LS is affected by outliers in a linear regression problem proposed
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by [50]. Overpassing these limitations of the LS for regression has been a concern for math-
ematicians and engineers for years. Initially, many authors proposed robust alternatives to
the LS by changing the cost function, i.e., Edgeworth [8] introduced the least absolute values
or L1 criterion as:

min
n∑
i=1

|ri| (5.2)

Linear regression affected by outliers

50 55 60 65 70 75
−5

0

5

10

15

20

25

x

y

 

 

Observations
Outliers

FIGURE 5.1: Least squares solution for a linear regression problem. The blue
line represents the solution using the whole set of observations, while for the

red line solution the outliers are removed.

Despite the L1 criterion offering some additional protection against outlying observations,
this regression methods yields the same breakdown point ε∗ as a classical LS. There are
different ways to classify the robust methods that we will present hereafter, however we find
that for our application (exclude and/or mitigate the effects of faulty satellite pseudoranges)
the most convenient classification for robust methods is based on to their implementation:
iteratively reweighted least squares (IRLS) and best subset selection.

Those methods whose implementation is based on the IRLS, use the whole set of ob-
servations to compute a solution for the position problem. Then, the cost functions of the
different robust methods make use of the residuals observations to weight them. This way,
observations having large residuals will get downweighted and the other way around for
observations with very small residuals. According to [43], the IRLS algorithm has only first
degree convergence and needs a good initial estimate to have a fast convergence. How-
ever, these methods are also appealing due to the simplicity of the implementation and its
likelihood with the regular LS algorithm.

On the other hand, we have the "Best subset selection" group of algorithms. In this case,
from the available n measurements it will be made k =

(
n
p

)
= n!

p!(n−p)! subsets, where p
represents the number of unknowns (in our case p = 4, 3-dimensional position/velocity
and clock offset/clock offset rate). We can estimate a solution from the combination of p
observations of each of the k subsets, and from the said solutions we obtain the residuals.The
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Algorithm 2 IRLS algorithm

1: Set initial estimate of the solution (position and clockoffset rate) x
2: Set error tolerance ε and the maximum number of iterations N
3: for k := 1, 2, . . . N do
4: r = y−G x(k−1)

5: wi = ψ (ri/σ̂) / (ri/σ̂)

6: W = diag [w1, . . . , wn]

7: x(k) =
(
GTWG

)−1
GTWy

8: if ‖x(k) − x(k−1)‖ < ε then
9: Stop

10: end if
11: end for

residuals are only associated to the m − n measurements which did not take part in the
solution, judging the quality of the solution with external observations. Finally, we select as
the best solution the one whose residuals minimize the cost function of the corresponding
robust method.

5.1 M - Estimation

After the proposal of least absolute values, the next step in the direction of robust estimation
was made by Huber in 1973, with his M estimator. The basic idea would be to replace from
the minimization cost the sum of the residuals to the square r2

i by ρ(ri). ρ is an even -
symmetric about the y-axis - function with an unique minimum at zero:

min
n∑
i=1

ρ
(ri
σ̂

)
(5.3)

As it can be seen in the cost function, the M estimator is not invariant with respect to a
magnification of the error scale. Therefore, the scale parameter has to be calculated simulta-
neously as:

n∑
i=1

ψ(ri/σ̂)x = 0 (5.4)

n∑
i=1

χ(ri/σ̂) = 0 (5.5)

Finding the simultaneous solution of this system of equations is not trivial, and in practice
one uses an iteration scheme based on reweighted least squares [51], as it is described in
2. In the previous equations, ψ is the derivative of ρ and χ is a symmetric function. The
scale σ̂ is a previously known or estimated parameter. Rousseeuw [52] makes an intensive
discussion on different alternatives that could be used as this scale factor, however the most
commonly used is the Median Absolute Deviation (MAD):

σ̂ ≡MAD = 1.48med (|r−med(r)|) (5.6)

There have been several different proposals for the ρ function. The original ρ function,
also called "Huber function", was monotone and based on the idea of using absolute resid-
uals instead of squared residuals when the residuals are large. This function has a tuning
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parameter c which distinguishes small from large residuals: for residuals smaller than c, the
ordinary LS is applied, while for residuals larger than c the criterion becomes the L1 norm,
as seen in the figure 5.2:

ρ(x) =

{
1
2x

2, if |x| ≤ c,
c
(
|x| − c

2

)
, if |x| > c

=⇒ wi =

{
1, if |ri/σ̂| < c
c σ̂
|ri| , if |ri/σ̂| ≥ c

(5.7)

Huber ρ function
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FIGURE 5.2: Huber ρ function, tuning parameter c = 1.345.

It is noticeable that with this loss function, the weights are always between 0 and 1. A con-
venient property of the Huber function is that its derivative function ψ is monotonic. This
property implies that the Huber function is convex and therefore after the convergence of
the algorithm the global minimum is reached [65]. The functions which were latter proposed
are redescenders which are not convex, so the global minimum is not necessarily attained
after convergence.

Tukey’s bisquare function was another early proposal for the M-estimators [1]. As it
happens with the Huber function, it consists of two parts: one part defines the function for
the small residuals and the other is constant for the large residuals.

ρ(x) =

 c2

6

(
1−

(
1−

(
x
c

)2)3
)
, if |x| ≤ c,

1/6
(
|x| − c

2

)
, if |x| > c

(5.8)

wi =


(

1−
(
ri
σ̂c

)2)2
, if |ri/σ̂| < c

0, if |ri/σ̂| ≥ c
(5.9)

For residuals with absolute values larger than c there is no further increase of the loss, so
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the influence of the residuals is said to be bounded. For this property, Tukey’s function is la-
belled as hard redescending function. The tuning parameter c are used to adjust the efficiency
of the resulting estimators for specific distribution [20]. The bisquare function is normally
applied in M-estimation with a value c = 4.685 and also often used in S-estimation with a
parameter c = 1.548.
Finally, it is presented another ψ-function for robust estimation, proposed by Welsh and re-
ceiving his name [20]. Being also redescender, Welsh function does not directly suppress the
large residuals, as Tukey’s function does, but instead it heavily downweights observations
with large residuals using a negative exponential function, as can be seen in the figures for
the respective ρ functions in 5.3 and 5.4. Contrary to the other two functions previously
presented, Welsh does not consist of two parts:

ρ(x) =
c2

6

[
1− exp

(
−
(x
c

)2
)]

(5.10)

wi = exp
(
−
( ri
cσ̂

)2
)

(5.11)
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FIGURE 5.3: Tukey
ρ bisquare function,

c = 4.685.
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FIGURE 5.4: Welsh ρ func-
tion, c = 2.11.

The tuning constant c for the Welsh function is normally set to 2.11 for M-estimation and to
0.577 for the S-estimator, which will be presented later in this section.

Despite being statistically more efficient than L1 for models which assume the inclusion
of Gaussian noise, the M-estimators presents a breakdown point ε∗ = 0, as it is not possible
to include leverage of the measurements, which means it is not possible to augment the
method to include the a priori measurement quality information such as the GNSS range
measurement quality indicators.

5.2 GM - Estimation

When talking about measurements leverage, one refers to the prior knowledge about that
one may have regarding the reliability of a measurement. In the area of application of this
work, fusion of satellite and inertial positioning systems, the most usual way to leverage the
observations is either based on the elevation of the satellite or on the carrier-to-noise ratio
(C/N0). C/N0 is a measure of the signal strength and represents current signal power con-
ditions. Despite not being a proper tool for outlier detection, the stronger a received signal
has been proved to reduce the mean error of the estimated position in satellite navigation.
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Due to the lack of measurements’ leverage in the M-estimators, Mallows [35] proposed
the generalised M estimators (GM-estimators). For that, he replaced equation 5.4 with:

n∑
i=0

w(ri)ψ

(
ri

σ̂w(ri)

)
ri = 0 (5.12)

The leverage of the observations are based on their reliability number [28], a parameter
which combines the prior knowledge of the measurement uncertainty with its influence on
the geometry matrix of the solution G as:

T = R−1 −G
(
GTRG

)−1
GT (5.13)

where R = diag
[
σ2

1, . . . , σ
2
n

]
corresponds to the covariance matrix of the measurements.

The matrix T is denoted as cofactor matrix for various authors [32, 27], and it is used to
determine the reliability number of each measurement:

reliabilityi ≡ gi =
(√

T R
)
ii

(5.14)

where the indexing (·)ii stands for the values of the diagonal matrix. The reliability number
is only valid for GM-estimators when the observations are uncorrelated [27]. The weighting
function that this method uses in the iteratively reweighted LS becomes:

wi =

{
gi, if |ri|/σ̂gi ≤ c
gi c σ̂/|ri|, if |ri|/σ̂gi > c

(5.15)

Despite incorporating measurements leverage, GM estimator yields a breakdown point ε∗ =
1/(p + 1), which is still not the highest possible. For our application, with 4 unknowns
to be estimated, this method is theoretically supposed to deal with a maximum of 20% of
contaminated data.

5.3 Least Median of Squares

Historically, most of the estimators proposed for robust regression consisted of replacing the
square of the residuals from the original LS by another cost function. In 1984, Rousseeuw
[51] proposed replacing the summation sign by a median, which can be considered as a
robust statistic itself. The least median of squares (LMS) is represented as:

min med r2
i (5.16)

This estimator achieves a breakdown point ε∗ = 0.50. As a clear drawback, this method has
a very low efficiency. This technique is based on the construction of subsets of p parameters
from the n observations, and the use of the LS to obtain a solution from each of the subsets.
Then, the estimated solutions are judged by observing how much they fit to the observations
that were not used to get the aforementioned solutions, getting a total amount of n − p
residuals assigned to each of the subsets. The final estimated solution is that one whose
median is the minimum among all the possible subsets.
Of course, the determination of

(
n
p

)
solution requires an intensive computation power. For

that reason, in [53] it is proposed to randomly select which subsets to use. In order to es-
timate the minimum number of randomly selected subsets that can represent the whole
amount of possible combinations, a as the probability that all selected observations in a sub-
set are inliers which equals to the ratiow between the number of inliers and the total amount
of observations. Of course, this information is unknown, and it is a tuning parameter of the
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LMS implementation. The minimum number of subsets k is found as:

k =
log(1− a)

log (1− wn)
(5.17)

An important advantage presented in LMS is that the leverage of the measurements is
possible, by applying a weighted LS as shown in equation 3.14, where the weight matrix
W = Rk = diag

[
σ2
k,1, . . . , σ

2
k,p

]
is used to compute the solution for each subset.

In order to overpass the lack of efficiency of the LMS due to its convergence n−1/3,
Rousseeuw also proposed the Least Trimmed Squares (LTS), which has a convergence of
n−1/2. It is based on the minimization of the sum of the first quartile h (or a bigger portion,
up to h = n/2) of the residuals to the square:

min
h∑
i=1

(
r2
)
i:n

(5.18)

where
(
r2
)

1:n
≤ · · · ≤

(
r2
)
n:n

are the ordered squared residuals. The main disadvantage
of the LTS compared to the LMS is that the objective function requires sorting the residu-
als, which takes O(n log n) operations compared to only O(n) operations required for the
median [51].

5.4 S - Estimation

The S estimation, proposed by Rousseeuw and Yohai [50], is based on residual scale. It is
derived from a scale statistic in an implicit way:

min σ(r1, . . . , rn) (5.19)

This method uses the residual standard deviation to overcome the weaknesses of median
[60].

Algorithm 3 S-estimator algorithm

1: Compute an initial solution x with a LS
2: Estimate the scale of the residuals as

σ̂i =

{
1.48med (|ri −med(ri)|) , iteration = 1,√

1
nK

∑n
i=1wir

2
i , iteration > 1

(5.20)

with K = 0.20.
3: Calculate wi

wi =



(

1−
(
ri
cσ̂i

)2
)2

, if |ri/σ̂i| ≤ c

0, if |ri/σ̂i| > c

, iteration = 1,

ρ(ri/σ̂i)σ̂
2
i /r

2
i , iteration > 1

(5.21)

4: Calculate a new solution x with a weighted LS using the weights wi from the previous
step

5: Repeat till convergence is reached
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As it can be seen in algorithm 3, in step 3 we use a ρ function, normally Tukey’s bisquare
presented previously and with a c = 1.548 parameter. This method is computationally much
more efficient than the other high breakdown point methods, as it skips the estimation of
the solution for the different randomly-selected subsets. As a drawback, this method has
not the maximum breakdown point ε∗ = 0.5 as LMS or LTS. Instead, it is given by:

ε∗ =
(n

2
− p+ 2

)
/n (5.22)

In next Fig. 5.5, it is shown how the breakdown point evolves with the number of mea-
surements for the application (with a minimum number of 5 measurements and with p = 4,
as described before). In a typical scenario, there is an average of 10 to 12 visible satellites, the
breakdown point of the S-estimator is relatively high (∼ 33%). However, this method has a
problem in common with the M-estimator which is that it is not possible to include leverage
for the observations. To overcome this problem, the Generalised S estimator was presented
in [6]. This algorithm shares the same procedure than the regular S-estimator, with the ex-
ception that the ρ function and the initial weights are obtained using the reliability number
of the measurements, in the same manner as in the GM estimation.

Breakdown point of the S-estimator

5 10 15 20

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

number of observations

ǫ
∗

FIGURE 5.5: Evolution of the breakdown point of the S-estimator with the
number of observations n.

5.5 Danish method

The Danish method was proposed by Krarup [30] and is purely heuristic with no rigorous
statistical theory. Nonetheless, it became popular for some geodetic applications and has
also received the attention from other areas, according to [31]. The method works by car-
rying out a least squares adjustment using the a priori weight matrix. Then the process is
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repeated iteratively altering the weight matrix [27], as:

σ2
i = σ2

i,0

{
1, if w̄i/σ̂ ≤ c
exp (w̄i/σ̂c) , if w̄i/σ̂ > c

(5.23)

where σ2
i is the a priori variance of the measured pseudorange (from the carrier-to-noise or

elevation of the satellite model) and w̄i is the absolute normalized residual using the cofactor
matrix of the measurement presented in equation 5.13:

w̄i =

∣∣∣∣ ri√
Tii

∣∣∣∣ (5.24)

The estimated σ2
i from 5.23 is set as the covariance matrix for the measurements, and can be

integrated as the weight matrix to perform a weighted LS adjustment

W = P−1 = diag
[
σ2

1, . . . , σ
2
n

]
(5.25)

The process continues until convergence is achieved. This way, outliers are given a low
weight (due to the negative exponential function) and the size of the residuals represents
the magnitude of the outlier. As discussed before, this method is not based on any formal
statistic although it presents some likelihood to the GM-estimator in the way the weights are
estimated. Although some authors [31] claim that the Danish method has a high breakdown
point, this value is not specified.

5.6 RANdom SAmple Consensus

RANdom Sample Consensus (RANSAC), proposed initially by Fischler [10], is a robust
method to estimate the parameters of a certain model starting from a set of data contam-
inated by large amounts of outliers [71]. Widely used for computer vision and image pro-
cessing applications to smooth and interpret data, this algorithm also attracted the attention
of several authors for GNSS positioning [5, 56].

In a similar manner as LMS or LTS, RANSAC generates subsets with the minimal num-
ber p of observations to estimate solutions. After these solutions are generated, RANSAC
proceeds to enlarge the number of observations for those subsets. To achieve this, the resid-
uals corresponding to the non-used measurements are compared to a threshold: if a residual
is below that threshold, it is labelled as an inlier for the corresponding subset, otherwise it
is discarded. There have been different approaches to define the inlier test:

• In [5], the threshold corresponds to the abscissa value from the standard normal dis-
tribution with a (1− α) probability, where α is defined as the false alarm probability:

if |ri| ≤ n1−α, observationi ⇐= inlier (5.26)

• In [56], the authors propose the use of a multiple b (normally between 1 and 2.5) of the
expected residual standard deviation σri . Thus, the variance of the residual is given
by the sum of the variances of the position estimations and the pseudoranges as:

σri =

√
gi
(
GTkWkGk

)−1
gTi + σ2

i , (5.27)

if |ri| ≤ bσri , observationi ⇐= inlier (5.28)
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where gi is the row corresponding to the geometry matrix of the ith observation, Gk is
the geometry matrix of the kth subset and σi is the expected variance of the pseudor-
ange of the ith observation. This way, the degree of discrepancy depends on both the
expected noise deviation and the geometry of the subset.

Unlike LMS and LTS, the criterion used in RANSAC to select the best subset is not the
minimization of any loss function, but the maximization of the number of inliers used in the
final solution. Doing so, the best subset is the one whose solution fits to the largest amount
of observations. Once one subset is selected as the best candidate, the final solution must be
recalculated using all the observations considered as inliers within a classical LS adjustment.
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Chapter6
Experimental Setup

This study was supported by the department of Nautical Systems, which is part of the Insti-
tute of Communication and Navigation of the German Aerospace Center (DLR) [7]. Thus,
the algorithms studied in the previous Chapters were evaluated with respect to the chal-
lenges of maritime applications, such as inland waterways. Nevertheless, these algorithms
are applicable to several positioning and navigation applications: automotive, pedestrian,
aerospace, etc. Of course, depending on which auxiliary sensors are available.

With the aim of performing an automatic detection and mitigation of errors in satel-
lite signals, the proposed algorithms are tested in two different scenarios. This chapter is
devoted to describe the hardware setup for the vessels, as well as the challenges of each
scenario. The following scenarios were selected for performance evaluation and testing:

Maritime scenario: Port of Rostock. This scenario is characterized by a very good avail-
ability and quality of the satellite signals, with an absence of large position errors due
to the lack of multipath or NLOS effects affecting the satellite signals. This allows to
have an accurate positioning, so the signals are artificially contaminated with random
noise to study the performance of the robust techniques in well controlled conditions.

Inland Waterway scenario: Moselle River. This scenario covers a challenging track of a
vessel on an inland waterway. This measurement campaign took place in the city
of Koblenz, concretely on the inland waterway constituted by the Moselle River. Dur-
ing the test, the vessel had to pass three bridges twice, on her way out of and back in
to the harbour. In combination with the high structures surrounding the shores of the
river, these bridges lead to severe multipath effects in the satellite messages. For those
reasons, this scenario results specially convenient to test the performance of the robust
schemes.

6.1 Maritime Scenario: Port of Rostock

With multiple liner services, the seaport of Rostock is a core for international cargo traffic
in the Baltic Sea, with over 60, 000 trailers and almost 2 billion tons cargo exchanged only
in the last year [49]. This measurement campaign took place on the 01/09/2014 with the
multi-purpose research and diving vessel BALTIC TAUCHER II (whose dimensions are 29
m length, beam 6.7m, draught 2.8 m and 146 tons of gross tonnage). The measurement
campaign started with the vessel moored at its home port and lasted until the vessel left the
Port of Rostock and entered the Baltic Sea, as can be seen in Fig. 6.1.

The sensor setup for the BALTIC TAUCHER II consisted of three dual frequency GPS
antennas and receivers (Javad Delta), a tactical FOG, MEMS IMU, a Doppler Velocity Log
(DVL) and a gyrocompass. The vessel and the location of the sensors is shown in figure 6.3.
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FIGURE 6.1: Trajectory of the BALTIC TAUCHER II (approx. 15 minutes)
recorded during the measurement campaign in Rostock.

During the evaluated time, only soft wind and minor waves were observed, so the motion of
the vessel is not affected by atmospheric phenomenons. Out of the three antennas, the data
received from the one in the center of the ship was used during the test of the algorithms.
The DVL sensor, located on the bottom of the vessel, emits sound waves which are reflected
at the bottom of the sea, and based on the Doppler effect, allows to estimate the velocity for
the axis x and y of the body frame. There are several advantages to the use of this sensor,
as it is self-contained and directly measures the velocity of the target. On the other hand,
its accuracy is slowed down when the sea is at rough conditions, as well as for deep seas or
oceans. In that case, the velocity of the current of the water is measured instead. Its working
principle is illustrated in Fig. 6.2. The device sends out a 3-beam "ping" that measures the
resulting response in terms of frequency shift (Doppler shift), which can then be translated
as the velocity of the ground with respect to the transmitter. The velocity (for the 1D case) is
obtained from:

fd =
2ftv cos(θ)

c
(6.1)

where fd is the Doppler frequency shift, ft is the transmitted frequency, θ is the angle of
incidence with the ground, c is the speed of sound in the water and v is the velocity of the
target.

In order to have an accurate ground truth as reference for the vessel trajectory, the tech-
nique Real Time Kinematics (RTK) positioning solution is used. RTK uses the carrier phase
measurements and the transmission of corrections from a close base station and can provide
accuracy of centimetre magnitude [45]. In this applicatino, the RTK solution has been ob-
tained using the open source GNSS-processing software RTKLIB [62]. Note that this method
can only be applied in the vicinity of a base station, but that requirement is fulfilled in the
Port of Rostock.
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Working principle of the DVL

FIGURE 6.2: Working principle of the DVL: three beams are sent from to bot-
tom of the vessel at a frequency fd and reflect back from the ground of the sea

at a frequency ft.

FIGURE 6.3: BALTIC TAUCHER II vessel. Red circles represent the position of
the GPS antennas, while the yellow rectangle stands for the IMU placement.

Image from [11].
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In consequence to the perfect weather conditions and open sky, there is no motivation
to test the robust methods in this scenario. However, due to such ideal conditions and the
pseudoranges of the satellite being almost error-free1, this scenario can be used as a text
example to check the performance of the robust techniques against artificially added noise
to the measurements. In order to do so, random noise is systematically added, following
a normal standard distribution of different magnitudes to a given number of satellites: be-
tween one and three satellites will be affected. As most of the robust regression methods are
proposed and tested for linear regression problems, this experiment will be used to evalu-
ate the actual performance of different schemes for an actual GNSS positioning. Then, this
evaluation will be cross-checked on the second scenario, where the radio signals from the
satellites will be affected by actual multipath or NLOS effects.

6.2 Inland Waterway Scenario: Moselle River

The performance of the developed methods has also been evaluated using real observa-
tions from the measurement campaign conducted on 25th March 2014 (DOY 084, UTC 13:00-
14.00) near Koblenz (Germany) on the Moselle river. The demonstration area covers several
challenging scenarios for inland water navigation, as can be seen in Fig. 6.4. With approxi-
mately 11,500 ship passages in 2010, the Moselle river can be considered as one of the busiest
waterways in Germany. Sailing downstream, a lock bounds the demonstration area 3km be-
fore the confluence with Rhine river [17]. After the lock, three bridges of different height and
width span the river in a relatively short distance (’B’ and ’C’ in Fig. 6.4) of only 2km making
a reliable and continuous positioning using pure GNSS information rather challenging. The
first bridge starting from the West is a 4-lane car bridge ”Europabruecke” with a width of 40
meters and clearance height of 13.9 meters. The next bridge is the railway bridge, which is
25 meters wide with a relatively low clearance of only 10.2 meters and oval clearance profile.
The last one is the ’Balduinbruecke’ with a width of 10 meters and a height of 12.1 meters
and, therefore, is relatively small in comparison with the other two. The vessel travelled
on an 8-shaped trajectory (total duration 1 hour) with several passes under the bridges and
the lock (’A’ in Fig 3) in order to ensure that the GNSS signals are strongly affected by the
shadowing from bridges and buildings [17].

The sensor system onboard the vessel ”MS Bingen” (see Fig 6.6) consisted of three geode-
tic GNSS antennas and receivers as well as a commercial FOG IMU. The setup of three GNSS
antennas allows the system to determine the attitude of the vessels using the methods of
GNSS compassing, where the baseline observations (max 3x) are used to constrain the atti-
tude drift (this is only used in hybrid IMU/GNSS Kalman filter). The FOG IMU is used to
bridge possible GNSS outages when used within a KF-based IMU/GNSS fusion, although
true GNSS outages have not been observed as almost always at least four satellites have
been visible. This is, probably, a result of the fact that the bridges can be still considered
as relatively narrow objects and, thus the strength of some signals was not dropping be-
low the acquisition threshold of the receiver. The availability of a higher performance IMU
also allows to test a performance of an integrated IMU/GNSS solution, where the explicit
dynamics assumptions of non-inertial KF are replaced by accurate tracking of the vessel mo-
tion using strapdown inertial mechanization. For the position performance analysis below
only the data from the main GNSS antenna have been used (antenna in the center of the ves-
sel), although some of the discussed robust methods can be easily scaled up to work with
multiple antenna. The measurement rates are 2Hz for the GNSS receivers and 200Hz for the
FOG IMU. Additionally, a Maritime Ground Based Augmentation System (MGBAS) station
provided GPS code and phase corrections with 2 Hz update data for L1 and L2 frequen-
cies. This data is employed to estimate an accurate post processed RTK. The ionosphere

1Maybe with the exception of some minor issues related to shadowing of the signals due to the mast.



6.
E

X
P

E
R

IM
E

N
TA

L

SE
T

U
P

6.
E

X
P

E
R

IM
E

N
TA

L

SE
T

U
P

6.
E

X
P

E
R

IM
E

N
TA

L

SE
T

U
P

6.
E

X
P

E
R

IM
E

N
TA

L

SE
T

U
P

6.
E

X
P

E
R

IM
E

N
TA

L

SE
T

U
P

6.2. Inland Waterway Scenario: Moselle River 55

𝐀 

𝐁 

𝐂 
𝐃 

𝐄 

FIGURE 6.4: Measurement area on the river Moselle near Koblenz (Germany).
Reference path (black line) and several challenging segments including the
lock (A), and 3-bridge segments (B) and (C). Total trajectory duration - 1 hour.

propagation delay corrections have been applied using classical Klobuchar model and the
corresponding troposphere delay corrections in order to provide the results representative
of user equipment without ground-based correction information.

FIGURE 6.5: Research vessel ”MS Bingen” used in the measurement cam-
paign. The setup includes 3x GNSS antennas, IMU, IALA beacon GPS, IMU
(not shown) and GPS compass. The total station reflector was used to produce

the reference path.

In order to track accurately the position of the vessel independently from the GNSS in-
formation, two geodetic total stations have been placed on the shores of the river (see ’D’
and ’E’ in Fig. 6.4). As the total stations combine the use of angle and distance measure-
ments in order to determine only the horizontal position, the vertical error accuracy is not
addressed. The coordinates of the tracked object are given relative to a known reference
point and are determined using trigonometry and triangulation as long as a direct LOS is
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maintained between the two points. With the use of two total stations the availability of the
reference trajectory is ensured even in the problematic areas where GNSS failed. After the
reference 1Hz position information is obtained, the post-processing and adjustment of the
measurements ensure an accuracy better than 2cm for the presented evaluation path. Note,
that although the phase information is available for accurate position calculation, evaluation
of the robust methods for phase-based GNSS positioning was out of the scope of this work.
The RTK velocity solution was used as velocity reference, as from the total stations reference
we could only extract a 2D velocity approximation.

6.2.1 Variance model for pseudorange observations

As was discussed previously, the weighted least squares adjustment is a well known and
often used technique in satellite-based navigation. There are different variance models to
leverage the quality of the observed pseudoranges. In this study, the performance of three
of these models is compared. The method with the best performance will be applied as the
weighting scheme for the rest of the work.

1. Elevation-based measurement model. It has been proven that the possible errors for the
observed pseudoranges increase with low elevation satellites [67]. As the navigation
message covers a longer distance through the ionospheric layer, it is deeply affected.
On top of that, the signals are more likely to get reflected compared to the signal com-
ing from a satellite with a high elevation. For this approach, two models are presented:

• Classical approach (Simple El in Fig. 6.8), the variance of the ith measurement is
inversely proportional to the sine of its elevation angle θ:

σ2
i = 1/ sin2(θi) (6.2)

• Variance model using elevation angle (Groves El in Fig. 6.8), suggested by Groves
in [16]:

σi = a+ b · exp (−θi/c) (6.3)

where a = 0.13, b = 0.56 and c = 0.175.

2. Carrier-to-noise ratio based measurement model. Carrier-to-noise ratio C/N0 is a measure
of signal strength and represents current signal power conditions independent of re-
ceiver implementation [31]. The model adopted is given by:

σ2
i = a+ b · 10−

C/N0−c
10 (6.4)

where the parameters are chosen according to the environment and the user equip-
ment. In this study, the parameters have been found as a = 0.60, b = 50.64 and
c = 33.84, which roughly fit to the receiver correlator noise baseline in a previous
work [33].

In figure 6.7 we can see the skyplot of the satellites in line of sight during the one hour
of measurement campaign in Moselle River. As expected, the signals from low elevation
satellites have weak signal power and therefore low value for the C/N0 values. On the
other hand, the signals from satellites with a high elevation angle have a high value for the
C/N0 as well.

The three adaptive noise models were applied to a regular Single Point Positioning (SPP)
using a Weighted Least Squares adjustment, as explained in Eq. 3.14. In Fig. 6.8 the cumu-
lative distribution function (CDF) of the horizontal position error (HPE) of the SPP and a
comparison of the previously presented methods is shown. All three models dramatically
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FIGURE 6.6: Experimental data for pseudorange noise model and model fit
results. Image from [33]

Skyplot of the satellites
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FIGURE 6.7: Skyplot for the Moselle River test scenario with the color encod-
ing of the associated C/N0 value.
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reduce the mean horizontal error by at least one meter, compared to the non-weighted LS
of the "classical" SPP. However, it is important to note that the largest position errors are
still present and none of the variance models show any kind of improvement in this regard.
Groves made a discussion on this in [22], claiming that the variance models are not appro-
priate to mitigate the large errors due to outlying observations. With respect to C/N0, NLOS
signals (those radio signals which are not directly received by the receiver but only via re-
flections) can be nearly as strong as the directly received signals, but also quite weak, which
implies that the C/N0 values are not fully representative of the quality of the received pseu-
dorange. In case of the elevation angle based models, there are some maximum errors which
are even much larger than the regular SPP. This is due to the interaction of the signals with
the bridges. Under these structures, high elevation satellites still have higher C/N0 than
low elevation satellites, but their signals are highly contaminated by NLOS effects. On the
other hand, low elevation angle satellites have lower strength but do not get to the receiver
as NLOS signals.

As can be seen from Fig. 6.8, the variance model based in C/N0 is the best performing
among the variance models presented. Therefore, it will be the one used for further exper-
iments in the next Chapter 7. The models based on the elevation angle of the satellites will
not be considered any longer.

10
−0.01

10
0

Cumulative Distribution Function for 2D Position Errors

 

 

Classical SPP
CN0 AN Model SPP

1/sin2(θ) AN Model SPP
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[%
]

            Classical    CN0    Simple El  Groves El 
 Mean:      2.891    1.473        1.7         1.684

 RMSE:     4.531    2.838      4.145        3.521

 Max:     50.697    49.32     91.794        59.23

FIGURE 6.8: Cumulative Distribution Function (CDF) of the horizontal posi-
tion error, as well as some statistics on the performance of the models.
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Chapter7
Results on Satellite Positioning

In this chapter, it is presented a comparison on the performance of the robust techniques pre-
viously presented in 5. As discussed before, the developed schemes are tested with satellite
signals with induced artificial in the Port of Rostock and real severe multipath effects for the
measurement campaign in Koblenz.

7.1 Port of Rostock

This experiment takes place in the port of Rostock. Given the lack of errors in the satellite
signals, the SPP reaches a mean position error of less than 2 meters (compared with a post
processed RTK solution), and a maximum error of just 16 meters. For this, we can consider
this scenario as ideal in terms of quality of the signals.

As the scope of the presented work is the development of robust methods to detect out-
lying errors for satellite-based navigation, this scenario is used as benchmark for the robust
methods performance. For that, it is added random noise to the pseudoranges observed to
study the position solutions of the said techniques against the regular SPP.

In order to achieve this, Three satellites available throughput the whole measurement
campaign are selected. Then, random noise following a standard normal distribution is
added to the pseudoranges observed in those satellites to be contaminated. Moreover, dif-
ferent magnitudes of the errors are tested, in order to check the sensitivity of the different
methods against this contaminated data. In order to be representative, a Monte Carlo sim-
ulation is executed, repeating the proposed experiments a total of 100 times. Each of the
simulations consist of the combination of 6 experiments: one, two and three satellites con-
taminated and two magnitudes for the errors for each of them. The noise amplitude is 8
and 20 σ, where σ is the expected error of the pseudorange under regular conditions and be
considered to be 2 meters. This means, error between 16 to 40 meters is added. In Fig. 7.1, it
can be seen the estimated position from the SPP, having three contaminated satellites with
errors of 40 meters, which is the worst case scenario among the proposed experiments.

Before studying the results of the Monte Carlo simulation, the asymptotic efficiency of
the methods is tested by checking the performance without the addition of any kind of
noise to the observed pseudoranges. Table 7.1 summarizes the performance and gathers the
statistics on the results obtained.

The asymptotic efficiency refers to the likelihood of a method to the classical LS adjust-
ment under Gaussian conditions of the errors. While M estimator has a high efficiency, as
its output is very similar to the regular SPP, LMS is much worse performing, with a mean
position error more than 50 centimetres higher than SPP. This is the well known problem of
LMS, as already described in the seminal article [51], which is having a very low asymptotic
efficiency.
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Port of Rostock Scenario with Induced Pseudorange Errors

 

 

Ground truth

SPP

FIGURE 7.1: Trajectory reference and the estimated position from regular SPP
within the experiment, where a noise of 40 meters was simultaneously added

to three of the LOS satellites.

Results without contamination

Method Mean [m] RMS[m] 95% CDF [m]

SPP 1.72 2.234 4.83
M 1.72 2.20 4.66

GM 1.78 2.20 4.65
S 1.78 2.26 4.55

LMS 2.31 3.01 6.36

TABLE 7.1: Statistics on the performance of different robust methods without
the addition of noise to the measurements.
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Experiment #1: One single satellite is contaminated

8 · σ 20 · σ
Method Mean [m] RMS[m] 95% CDF [m] Mean [m] RMS [m] 95% CDF [m]

SPP 7.05 8.28 15.49 14.29 16.69 30.84
M 6.35 7.72 14.91 11.83 14.76 29.32

GM 5.58 6.75 13.00 9.43 11.96 24.40
S 6.30 7.68 14.84 11.70 14.65 29.19

LMS 5.30 6.53 12.77 8.37 11.14 23.59

TABLE 7.2: Statistics on the performance of different robust methods when
single satellite is contaminated with random noise of different magnitude.

The results from contaminating one single satellite during the whole measurement cam-
paign are shown in table 7.2. It is observed how the mean error of the regular SPP went
from less than 2 meters to slightly higher than 7, just by contaminating one single satellite.
In principle, this is the case scenario for which the robust methods should exhibit theoreti-
cally great performance as their breakdown point is enough to detect and mitigate one single
faulty measurement (with the exception of the M estimator, whose breakdown point ε∗ = 0).
However, the table shows how none of the methods is able to perform a complete exclusion
of this faulty measurement, and despite all of them showing a better performance, they do
not reach the accuracy of about 2 meters of mean position error that could be reached in the
absence of outliers. The explanation lies in the fact that solving the positioning problem is
not a linear regression problem, in which the influence of the outliers and their exclusion
is very clear. Instead, this problem is represented by a non-linear system of equations com-
posed by 4 unknowns, with a much higher complexity than the toy problems presented by
the classical authors in order to check the performance of the robust schemes. Furthermore,
the error is not added as a constant, but as random noise, so all the errors cannot be expected
to be eliminated.

Experiment #2: Two satellites are contaminated

8 · σ 20 · σ
Method Mean [m] RMS[m] 95% CDF [m] Mean [m] RMS [m] 95% CDF [m]

SPP 11.98 14.70 28.85 29.18 36.23 71.63
M 11.58 14.59 29.13 27.82 35.94 72.66

GM 8.64 10.93 22.10 17.63 24.11 51.87
S 11.53 14.56 29.09 27.62 35.75 72.35

LMS 6.87 9.22 19.61 11.68 18.42 40.81

TABLE 7.3: Statistics on the performance of different robust methods when
two satellites are contaminated with random noise of different magnitude.

In this second experiment, it becomes more evident how much better the performance of
the LMS is, in comparison with the rest of the methods. Also, the generalised M estimator,
GM estimator, has a notable performance, scaling down the mean error in the position by
half, for the case of contamination of large magnitude 20 · σ. On the other hand, the per-
formance of the M and S estimators is not satisfying at all, as the improvement is marginal
against the regular SPP.
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Experiment #3: Three satellites are contaminated

8 · σ 20 · σ
Method Mean [m] RMS[m] 95% CDF [m] Mean [m] RMS [m] 95% CDF [m]

SPP 12.50 15.09 29.30 30.62 37.14 71.61
M 11.77 14.79 29.65 28.34 36.35 72.82

GM 9.22 11.74 23.92 19.51 26.82 57.80
S 11.73 14.76 29.64 28.19 36.24 72.32

LMS 7.84 10.61 22.62 16.09 24.38 54.69

TABLE 7.4: Statistics on the performance of different robust methods when
three satellites are contaminated with random noise of different magnitude.

Finally, in the third scenario there are three satellites which present artificially induced
errors in their pseudorange observations. Obviously, one expects the estimated solution for
the regular SPP to be extremely poor, as there are multiple errors of very large magnitude.
While one could expect some methods with a high breakdown point to completely deal
with these kind of outliers, even with the simulated outliers it can be observed that this is
not feasible given that the character of the positioning problem is much more complex than
the framework of linear regression in which all robust methods were postulated. Another
two remarkable facts which might be related to the poor performance of methods such as
M or S estimators is that all the robust schemes are designed under the assumption that the
number of measurements n is very large and that the amount of unknowns parameters p is
very small, or at least very small compared to n. Next figure 7.2, shows a boxplot with the
statistics of the tested methods.

As it can be seen, the mean error for the position solution is improved by LMS in almost
15 meters against classical SPP. On top of that, one can see how the 3rd quartile for the LMS
error is still smaller than the mean error position of SPP. After checking the performance of
the four robust methods tested for this scenario, the results are summarized as follows:

• M estimator. Despite having the same breakdown point ε∗ = 0 as the classical LS, the
cost function is still more resilient than the classical sum of squared residuals in LS.
However, it can be seen how using artificially contaminated data with large outliers,
the performance is very similar to the one in SPP.

• GM estimator. This method showed a great performance within all the experiments,
proving that under simulated conditions, it can deal with high percentage of contam-
inated data of different orders of magnitude.

• S estimator. Despite having a high breakdown point and the highest among the schemes
based on an IRLS procedure, the S estimator has shown to have a very poor perfor-
mance in this simulation. As it happened with the M estimator, the improvement is
just marginal.

• LMS estimator. This method has proven to have an outstanding performance under
conditions of large contamination for multiple satellites. However, it is well known
that the weakest spot of this method is its low asymptotic efficiency, which means that
under regular conditions, the overall performance could decrease.

This Monte Carlo simulation was used as a tool to check the performance of the methods
with artificially induced errors, as well as cross checking if the results matched with the the-
oretical characteristics of each of the methods. With the exception of the poor performance
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Boxplot with the statistics for the 3rd scenario

FIGURE 7.2: Results for the third experiment, in which there are a total of three
contaminated satellites with a magnitude of the error of 20 ·σ, the equivalents

of random errors of 40 meters in average.

of the S estimator, the results of this simulation agree with the characteristics of the methods
presented in Chapter 5. Nevertheless, the outliers in this experiments are induced, which
seems to be a common practice in the community [5, 56, 27]. In the next section, it is ex-
plored the performance of the methods in a real challenging scenario, in which the satellite
signals are heavily affected by multipath and NLOS effects.

7.2 Moselle River

As described in the previous chapter, the waterway of the Moselle River presents several
challenges for the satellite navigation. The three bridges create a severe disruption of the
radio signals, as under these structures the satellites are not in LOS. Accurate positioning
problem increases its difficulty, as the receiver gets a mixture of direct clean LOS signals,
multipath contaminated and NLOS signals due to reflection and diffraction of the signals
on the water or on the surrounding constructions.

7.2.1 Robust Methods without Variance Models

On first place, in Fig. 7.3 we observe that the position solution from non-weighted SPP
against the reference from the total stations which followed the exact position of the vessel.
As it can be seen, the estimated position suffers from jumps not only in the lock and under
the bridges, but also in the vicinity of those, with horizontal position errors (HPE) being as
high as 50 meters.

With the exception of the vicinity of the bridges, the satellite positioning performance
can be considered to be acceptable, with less that 3 meters error. Under limited visibility
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Estimated trajectory using regular SPP

FIGURE 7.3: Trajectory reference and the estimated position for the non-
weighted SPP during one hour of measurement campaign in the Moselle

River.

conditions, where the captain needs to trust the output of the positioning systems his boat
is equipped with, a failure of 50 meters in the river may lead to a collision with the pillars of
a bridge or even with the shore of the river, under conditions of low visibility.

In figure 7.4, it is shown the number of visible satellites over time. As there were always
at least five satellites, the position solution from a regular SPP solver was always available.
In the same figure, one can see how the position error rapidly increases in the areas marked
as "B" and "C" (see figure 6.4 to remember the scenario already presented in the previous
Chapter 6), having several peaks of more than 40 meters. HDOP is a parameter which gives,
based on the geometry of the satellites taking on the solution, an idea on the quality of the
solution. This is not a valid indicator, as during the time interval between 1000 and 2000
seconds, the performance of the SPP is supposed to be worse than around 2500 seconds,
when the vessel passes under the bridge. The sudden changes in the HDOP are related to a
new satellite being in LOS or another being out of sight for the receiver.

Within the context of this work, the main goal is not to decrease the mean error for the
estimated position, but to avoid very large position errors as a consequence of faulty satellite
signals. In this section, it is shown the results from the most promising robust methods
presented in 5. Firstly, table 7.5 summarizes the performance of all the methods based on
the statistics of the error.

Despite all the robust methods improving the position estimated compared with reg-
ular SPP, there are some distinctions among them. As a disclaimer, the discussion on the
results of the robust methods cannot be taken as direct claims regarding the efficiency or the
performance of the algorithms as this is a particular mathematical problem (GNSS position-
ing), as one scenario is not representative enough ,the measurement campaign lasts for just
one hour, and the errors in the satellite signals and thus in the performance of the robust
methods is associated to a particular geometry of the satellites in LOS.

• M estimator. Despite having a breakdown point ε∗ = 0, one can see than the mean error
is reduced by almost 40 centimetres. As well as, the rest of the statistics are improved
and they are able to compete with the rest of the robust schemes. Nonetheless, within



7.
R

E
SU

LT
S

O
N

SA
T

E
L

L
IT

E

P
O

SI
T

IO
N

IN
G

7.
R

E
SU

LT
S

O
N

SA
T

E
L

L
IT

E

P
O

SI
T

IO
N

IN
G

7.
R

E
SU

LT
S

O
N

SA
T

E
L

L
IT

E

P
O

SI
T

IO
N

IN
G

7.
R

E
SU

LT
S

O
N

SA
T

E
L

L
IT

E

P
O

SI
T

IO
N

IN
G

7.
R

E
SU

LT
S

O
N

SA
T

E
L

L
IT

E

P
O

SI
T

IO
N

IN
G

7.2. Moselle River 65

Satellite availability and HPE over time

6

8

10

12

N
u
m
b
er

of
sa
te
ll
it
es

0 500 1000 1500 2000 2500 3000 3500
0

10

20

30

40

50

Time [s]

H
P
E
[m

]

 

 

HPE
HDOP

1

2

3

H
D
O
P

A B C

FIGURE 7.4: Satellite availability plot during the scenario (black line), corre-
sponding HDOP as a reference of the uncertainty for the horizontal position
estimation (green line) and the horizontal position error (HPE) for classical

non-weighted SPP (blue line).

Statics on the Robust Methods performance

Method Mean [m] RMS [m] 95% CDF [m] Max [m]

SPP 2.89 4.53 5.30 50.70
M 2.52 3.54 4.30 36.77
S 2.38 3.38 4.19 34.04

GM 2.30 3.23 4.36 34.98
LMS 2.41 3.38 4.86 34.90
LTS 2.52 3.50 4.95 34.90

Danish 2.45 3.59 6.48 40.28
RAIM 2.48 3.40 3.91 45.40

RANSAC 2.57 3.52 4.61 34.91

TABLE 7.5: Statistics on the performance of the robust methods without using
variance models for the pseudorange measurements. Green colour indicates
a significant improvement against SPP, while red colour is used to remark a

worse result compared to SPP.
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this method it would not even be possible to use the variance models for the observa-
tions, which penalizes this method and would exclude it from further discussions.

• S estimator. The scale estimator shows an excellent performance, being the 95% CDF
and maximum HPE the best among the other robust schemes. This method, which
is performed as an Iteratively Reweighted LS (as S and GM estimators), presents also
the advantage of being computationally less demanding and, in other words, being
computed faster than methods which require subset selection (LMS, LTS, etc.).

Recalculation of the measurements’ weights in S-estimation
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FIGURE 7.5: Change of the weights over iterations within a single epoch of
S-estimator position solver.

In Fig. 7.5, it is shown an example of the weights recalculation of the measurements.
This example has been selected for one of the challenging trajectory segments, where
the regular SPP solution results in a HPE of 32 meters, while the S-estimator presents
a HPE of approximately 2 meters. One can clearly see that the S-estimator sets the
weights of two measurements to zeros, while the rest six measurements are slightly
re-weighted while computing the final positioning solution.

• GM estimator. This method has a theoretical breakdown point ε∗ = 1/(p+1) and shows
a performance very similar to that of S estimator, in the sense that is computation-
ally not as demanding as LMS or LTS and still has excellent statistics. Furthermore,
it reaches the lowest value for the mean and root mean square (RMS), beating the
classical SPP estimation by 60 centimetres and 1.30 metres respectively. The weights
assigned are based on a redescender function ρ (defined in section 5) which takes into
account not only the residuals of the measurements but also their influence in the ge-
ometry matrix. This method is also appealing as it allows to leverage measurements,
unlike the S estimator.

• Least Median of Squares (LMS). This method is claimed to be low asymptotic efficient,
which means that in the absence of outliers or under regular conditions, it might differ
from the least squares adjustment, which is optimal under the assumption of Gaussian
noise. Nevertheless, the mean and RMS of the HPE reflect that there are unexpectedly
large errors in regular conditions. As mentioned previously, all subset-selection based
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methods present the drawback of the computation power required, as one must esti-
mate a solution for each of the possible subsets, or at least for a representative amount
of them (given by the equation 5.17). This means that, despite being the ones with
the highest breakdown point among all the different robust schemes, they might be
scalable with the future of the GNSS positioning. Currently, multiconstellation-based
positioning system is already fully operative (GLONASS and GPS are already avail-
able worldwide and the European Space Agency (ESA) has the launch of new satellites
for the Galileo among the objetives for the next years). This would mean having more
than 30 satellites in LOS, and thus one would need to compute the solution for k =

(
n
p

)
different subsets (with p = 4 + a, where a is the number of constellations different to
GPS added to the solution, as the clock offset of the receiver would be different for
each of them 1).

• Receiver Autonomous Integrity Monitoring (RAIM). This technique has been the standard
tool to detect failures on the GNSS positioning in aerospace and other advanced ap-
plications. However, the failure detection and isolation performed with this method
is occasionally limited as it was primarily proposed to handle only single failures on
the signals. In this work, it is checked that the Chi-squares test might not suffice in
scenarios where there are multiple simultaneous signals deeply affected by multipath
effects, or at least not as good as other robust methods.

In figure 7.6, it is shown the CDF for the HPE for three different robust schemes. It
includes only the best performing methods among their categories: best subset selection
(S estimator), iteratively reweighted least squares (LMS) and RAIM as example of classical
integrity monitoring. One can see that the 95% CDF is reached for the robust methods with
a smaller value than for the regular SPP. Regarding the largest values due to faulty signals
affected by multipath, generally under the bridge, are overpassed much better for the three
alternatives to classical SPP.

As well as for estimating the solution position, the robust schemes can also the applied
to the velocity estimation. The velocity calculation is also based on a LS adjustment, which
implies that large error can come into the solution as a consequence of faulty measurements
on the Doppler shift from the satellites. Nonetheless, this error is not as heavily affected
by multipath and NLOS of sight effects as it is for pseudorange observations. Unlike the
position calculation, the system of equations for velocity estimation is linear (further details
on these equations were given in the Methods section of this work 3), so the method is not
iterative. All the iterations coming from the IRLS methods, such as M, GM or S estimator,
are solely to exclude or down-weigh the influence of the measurements.

One can see that the errors are not as easily detected as for the case of position estimation.
In general, all methods have a performance very similar to the regular LS for velocity esti-
mation, with just marginal improvements. For velocity calculation, the low efficiency of the
LMS becomes even more remarkable, getting a considerably much worse performance. The
most probable reason for this unexpected behaviour is that after selecting the best subset
among the subsets with the minimum number of measurements, the incorporation into the
final solution of additional measurements is not achieved, and thus the solution only comes
from the minimal amount of subsets (using low amount of measurements under good condi-
tions results in a severe disrupt of the solution, as can be seen in the table 7.6). The procedure
to label new measurements are inliers is as next: those observations whose residuals pass
a test based on the results from the best subset will be included in the subset and will take
part on the estimation of the final solution. The test is done as follows:

r2
i ≤ a σ̂2, ith observation←− inlier

1In principle, Galileo time would be synchronized to the GPS time, so Galileo constellation would not in-
crease the number of unknowns to estimate.
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FIGURE 7.6: Cumulative distribution of HPE for SPP several robust estimation
schemes (all using non-weighted measurements).

Statistics for Velocity Estimation

Method Mean [m/s] RMS [m/s] 95% CDF [m/s] Max [m/s]

SPP 0.052 0.19 0.22 3.71
M 0.051 0.19 0.22 3.60

GM 0.052 0.18 0.22 3.44
S 0.051 0.18 0.22 3.52

LMS 0.074 0.39 0.26 7.57

TABLE 7.6: Performance results of the snapshot velocity calculation for robust
methods.
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where a is the parameter to control how relaxed is the test. The parameter a = 2.5 is set to be
the same for both position and velocity estimation, just to make it fair. However we can see
how this might be the main reason why LMS is performing much worse than other robust
methods and even than regular LS for velocity estimation.

The analysis continues showing the segment of the trajectory during the time in which
the vessel is moving down river, going the first two bridges. It is observed a clear improve-
ment in comparison with regular SPP. However, there are still some jumps in the position
navigation, as the rate of faulty pseudorange measurements is too high. This implies that
there might not be possible way to compute a better estimation for the position using single
frequency radio signals. In order to overpass these difficulties, it would be necessary to use
phase measurements, augment the system with the corrections in the position of the ground
stations (only in areas in which this technical support is available) or finally make of algo-
rithms with memory for the state and uncertainty of the system (as a reminder, all SPP are
memoryless: they use only the current information coming from the satellite navigation).

Details on the estimated trajectory with robust methods

 

 

Ground truth

SPP

RAIM

LMS

S-est

FIGURE 7.7: Positioning performance of the SPP, RAIM and some of the ro-
bust estimation schemes, without using the variance model for weighting the

quality of the pseudoranges.

As a consequence of looking forward for further improvements to be done within the
framework of robust algorithms, we explored whether the error in the position solution are
correlated or not among the different estimators. If so, we could claim that there is not a
better solution supported by robust statistics. Otherwise, we could think that the estimators
have complementary properties, and it would be possible to create a decision matrix which
allows to choose among their estimated positions for the target, with a criterion based on
the likelihood between them or the estimated uncertainty of the solution. As it can be seen
in Fig. 7.8, during the time immediately previous to pass under the first bridge down river,
while LMS solution has some spare bad estimations (from 3020 to 3080 seconds), probably
due to the low asymptotic efficiency of the solution while S estimato provides the solution
with the lowest error. On the other hand, we see how during a time gap of about 10 seconds
(∼ 3120 seconds into the simulation), the solution estimated by the S estimator is equivalent
to the one from regular SPP with an error of more than 15 m, while RAIM and LMS are able
to mitigate the errors by excluding some faulty satellites. Being able to distinguish which is
the best among the robust schemes drive to an excellent position solution, with practically
no outlying position estimations. The main problem here is that the robust methods often
do not have any solution quality indicator (e.g. compared to KF covariance or integrity
ifnromation from RAIM) and therefore one needs to develop a methodology on how actually
to choose between the methods.
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Study on the performance correlation among robust techniques
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FIGURE 7.8: Detail on the HPE corresponding to the vicinity to the first bridge
for regular SPP and some of the robust estimators (without using the variance

model for the pseudoranges).

7.2.2 Robust Methods using Variance Models

In this section the robust methods will include the variance model explained in 6.2.1, and
it was shown why the carrier-to-noise density C/N0 model will be used to leverage the
pseudorange observations. In Fig. 7.9, we can observe the values for C/N0 of all satellites
during the whole hour of measurement campaign. These measurements are interpreted in
a way that, the higher the value of C/N0 is, the more reliable the signal for that satellite is
considered to be. One could confirm this by looking at the figure during the times in which
the vessel goes under the bridges, having sudden changes in the strength of the signal and
thus, a lower value of C/N0.

However, as already stated by some authors [16], [22], the variance models are very good
in order to achieve a much better estimation of the mean position error but C/N0 is not a
good indicator of NLOS or multipath effects, which are expected to be exactly the reasons
for the largest errors, as can be seen in table 7.7.

The bad performance of the robust methods when using variance models for the pseu-
dorange can be attributed to give naturally more weights to those measurements coming
from stronger radio signals, when these are the ones which suffer larger errors related to
multipath and NLOS. Nonotheless, having a good visibility and open sky conditions, the
use of variance models bring a lot of benefits.

As brief summary on the performance of the robust methods applied to GNSS position-
ing:

• The presented schemes result convenient for dealing with faulty measurements, dras-
tically reducing the impact of the outliers on the final position estimation.

• Subset based methods like LMS or LTS are computationally much more demanding
than the methods following a IRLS procedure. On top of that, their low asymptotic ef-
ficiency becomes an important factor, as their performance is heavily degraded under
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C/N0 values of the satellites
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FIGURE 7.9: Satellite visibility during the test scenario. The line color and
width encode the GNSS signal quality in terms of C/N0 (the wider the line,

the lower the C/N0 values).

Statistics on the Robust Methods using Variance Model

Method Mean [m] RMS[m] 95% CDF Max[m]

SPP 1.47 2.84 2.31 49.3
GM 1.69 2.84 3.33 48.9
GS 1.95 3.01 4.22 46.2

LMS 1.64 2.97 3.20 45.6
LTS 1.60 2.95 3.00 45.6

Danish 1.78 3.35 4.92 49.3
RAIM 1.62 3.30 2.71 83.90

RANSAC 1.48 2.89 2.29 50.9

TABLE 7.7: Performance results of the robust positioning methods: weighted
approaches.
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regular Gaussian conditions.

• Traditional RAIM, used as standard in GNSS navigation to perform fault mitigation
of the signals, is not as effective as the robust methods under challenging scenarios in
which there are multiple simultaneous failures.

• Despite being very appropriate to reduce the average mean error, the use of variance
models affects the performance of the robust methods negatively.
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Chapter8
Results on GPS/IMU Navigation

This chapter is devoted to discuss the results on the navigation fusing inertial and satellite
information. The core of the required hardware for this system consists of an IMU (3-axis
accelerometer and gyroscope) and a GNSS receiver. The inertial navigation systems use on-
board sensors which are immune to jamming and can track both fast and subtle motion mod-
els, as well as to bridge short GNSS outages and smooth the noise of the navigation solution.
The information from the IMU and the GNSS can be integrated synergistically, obtaining the
short term performance of the IMU and long term stability of the GNSS within the hybrid
system. To assess the performance of the proposed schemes in integrated navigation sys-
tems, the output of the robust regression estimators is fused with the data from onboard
IMU within an Unscented Kalman Filter (UKF) using quaternion attitude parametrization.

8.1 Filter Description

We propose two different schemes for the Kalman filter: tightly and loosely coupled ar-
chitectures. While in the tightly coupled filter the measurement model is fed directly with
the reading from the satellites (pseudoranges and Doppler shift), in the loosely coupled the
measurement model uses the solution for position, velocity and the baselines of three GPS
antennas (for the attitude solution) coming from an external solver. The discrepancies be-
tween them are very clear:

• The tightly coupled architecture can make use of the information from the satellites
even when the number of satellites is below 4, which is the minimum amount of mea-
surements necessary to obtain the position (and hence the attitude) and velocity so-
lution. This means that during a GNSS outage, we can still impose some constraints
on the natural drift of the inertial navigation, as long as there is at least one satellite
observation. On the other hand, the loosely coupled architecture needs an external
snapshot solver to provide the measurement model inputs and, therefore, the mea-
surements from four or more satellites have to be available.

• The complexity of the measurement model in the tightly coupled architecture is much
higher than the one in the loosely coupled, as the inclusion of the raw measurements
from the satellite make the measurement model equations way more complicated.
Also, the state and covariance matrix of the tightly coupled filter is bigger than the
one in the loosely coupled one, as it needs to include the clock offset and clock offset
rate of the receiver in the state.

• The higher complexity of the measurement model could drive to convergence issues
[47], and result in some numerical issues, especially for higher dimensional problems
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with full noise augmentation (process and measurement noises to be considered as a
part of the state).

State for the Loosely Coupled Architecture UKF

State Covariance Variable Symbol Coordinate System
1:4 1:3 Attitude Quaternion q From B-frame to ECEF
5:7 4:6 Velocity v ECEF
8:10 7:9 Position p ECEF

11:13 10:12 Gyroscope Offset bω B-frame
14:16 13:15 Accelerometer Offset ba B-frame

TABLE 8.1: Full-state UKF: loosely-coupled INS/GNSS integration.

State for the Tightly Coupled Architecture UKF

State Covariance Variable Symbol Coordinate System
1:4 1:3 Attitude Quaternion q From B-frame to ECEF
5:7 4:6 Velocity v ECEF
8:10 7:9 Position p ECEF

11:13 10:12 Gyroscope Offset bω B-frame
14:16 13:15 Accelerometer Offset ba B-frame

17 16 Clock offset cδt -
18 17 Clock rate cδ̇t -

TABLE 8.2: Full-state UKF: tightly-coupled IMU/GNSS integration.

The process models of both architectures follow a classical strapdown mechanization,
summarized in the Fig. 8.1. In the case of the tightly coupled architecture, the process model
is augmented to include the update the clock offset and clock offset rate of the receiver. All
the equations for the process and measurement models were explained in the third chapter
on this work, in the inertial 4 and satellite navigation sections, respectively. Apart from these
equations, for higher performance systems it is necessary to include lever arm compensation
for the position and the velocity. This is important as position solution from the GNSS
measurements is related to the centre of the antenna, while in the inertial mechanization the
position is formulated for the IMU centre.

8.2 Port of Rostock

As we commented previously, the satellite visibility during the measurement campaign in
the Port of Rostock were excellent, in terms of absence of multipath and NLOS effects. This
implies that the overall improvement of the Kalman Filter over regular satellite-based nav-
igation is just marginal: the mean position error is reduced less than one meter and the
maximum error is reduced from 16 to 8 meters.

Due to the lack of "inconvenients" or challenges within this scenario, we designed a new
experiment consisting on the induction of a GNSS outage. This is an artificial experiment
as, even in case of jamming or spoofing of the signals, the satellite navigation messages
do not suddenly disappear simultaneously, or at least they get heavily damaged before the
visibility is lost. Nevertheless, this experiment shows how is the performance of the Kalman
filter, and how fast the position solution drifts within time due to the triple integration of
the sensors biases and inherent errors.
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Scheme for the process model update

FIGURE 8.1: Details on the integration of the inertial sensors for the update of
the state during the process model of the loosely and tightly coupled (only the
clock offset and clock offset rate of the receiver are missing) UKF. Image from

[48].

Additionally to the IMUs and the three antennas receivers, the Baltic Taucher is equipped
with an additional sensors, the Doppler Velocity Log (DVL), which will be used in the mea-
surement process to correct the velocity in the x and y axis. There are clear advantages on
the use of this sensor, as it is self-contained and directly measures the velocity of the target.
On the other hand, its reliability is slowed down for rough conditions of the sea, as well as
for deep seas or oceans, as in that case the velocity of the current of the water is measured
instead. However, it results really helpful in case of GNSS outages, as it allows the filter to
drift linearly in time, instead of cubically in time due to the control of the velocity estima-
tion. Next figure 8.2 illustrates the great difference, in terms of position drift, between the
use ir not of the DVL sensor.

As we can see in Fig. 8.2, the estimated position from the Kalman filter can drift very
rapidly in the absence of external reference. This is due to the triple integration of the sen-
sors’ biases and inherent noises, which completely destroy the position solution even in a
very short period of time. On the other hand, we can see how beneficial it results the use
of the DVL sensor (from ∼ 650 to ∼ 16 meters maximum position drift). As it constraints
the error on the velocity the position error no longer grows cubically within time, but only
linearly.

As mentioned in the experimental setup chapter 4, the "Baltic Taucher II" is equipped
with two different gyroscopes: one is an expensive high performing FOG, while the second
one is a relatively inexpensive MEMS. In Fig. 8.3, it is shown a performance comparison
between the Kalman filter using the FOG and the MEMS gyroscopes, as well as the DVL
sensor presented previously. The goal of this experiment is quantify how much of an impact
the selection and the price of the hardware can influence the performance of the Kalman
Filter.

In principle, both loosely and tightly coupled architecture presents almost an identical
performance given the lack of position correction for the GPS. This is something to be ex-
pected, as the process models are almost identical with the exception of tightly coupled
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GNSS outage during 5 minutes: DVL vs No DVL
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FIGURE 8.2: This figure illustrates the HPE of the different KF architecture,
as well as the different sensor setup during an artificial GNSS outage of five

minutes.

Comparison FOG vs MEMS during GNSS outage
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FIGURE 8.3: This figure illustrates the HPE of the different KF architecture,
as well as the different sensor setup during an artificial GNSS outage of five

minutes.
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having its state slightly augmented to include clock offset and clock offset rate. Regarding
the differences in performance between the KF using FOG or MEMS, we can see that the
drift is very similar, and even more, the KF using the MEMS has around one meter less of
position drift. This means that our Kalman Filter design could be implemented in vessel
without adding the constraint of investing a large amount of money on a high performance
IMU, as the difference in the performance of the hardware does not play such an impor-
tant role for the final position estimation. However, this claim is only valid while having
the velocity corrections from the DVL available. Without DVL, the GNSS outage is solely
based on inertial integration and there the quality of the inertial sensor starts playing a more
significant role.

8.3 Moselle River

Within this scenario it is explored the multiple advantages on the use of Kalman filtering for
navigation. Due to the natural smoothing made in a well designed KF, the abrupt "jumps"
that we obtain having regular SPP, and even with the robust methods, are avoided or com-
pensated in the solution provided by the Kalman filter.

In this section it is compared the performance offered by three different configuration of
our Unscented Kalman filter:

1. Tightly coupled UKF + GPS signals + baselines for the three antennas.

2. Loosely coupled UKF + position and velocity from regular SPP and baselines for the
three antennas.

3. Loosely coupled UKF + position and velocity from the S-estimator and baselines for
the three antennas.

For the KF approaches the measurement noises are set as follows: σPR = 2m, σRR =
0.2m/s and the clock rate process noise σcδ̇t = 0.1m/s2 with equivalent solution covariances
calculated for the associated loosely-coupled strategies. The performance results of both
RBE strategies are shown in Tables 8.3 and 8.4. In both tables LC- stands for the loosely-
coupled approach and TC stands for tightly-coupled architecture. Finally, LC-S and LC-GS
stands for the loosely-coupled approach where the outputs of the robust S- or GS-estimator
are fed into the KF as the measurements. Moreover, in Fig. 8.4, it is shown the CDF with the
HPE of the different non-weighted KF.

Non-weighted UKF performance

Method Mean [m] RMS [m] 95% CDF Max [m]

SPP 2.89 4.53 5.30 50.70
TC UKF 3.03 3.82 6.25 18.33
LC UKF 2.98 3.70 6.25 17.02

LC-GS UKF 2.50 2.87 5.39 9.47

TABLE 8.3: Performance results of the robust positioning methods using KF
approaches: non-weighted approaches.

Although both weighted and non-weighted approaches we observe no mean HPE im-
provement except of the robust approach for the non-weighted strategy, the maximum HPEs
are significantly improved when compared to memoryless snapshot algorithms. In all the
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Weighted UKF performance

Method Mean [m] RMS [m] 95% CDF Max [m]

SPP 1.47 2.84 2.31 49.30
TC UKF 3.02 3.83 6.25 18.31
LC UKF 2.99 3.70 6.17 17.02

LC-GS UKF 2.52 2.87 5.43 9.42

TABLE 8.4: Performance results of the robust positioning methods using KF
approaches: weighted approaches.
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FIGURE 8.4: Cumulative distribution of HPE for SPP different implementa-
tions of Kalman filters.
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cases a significant improvement in the maximum HPE value can be attributed to the generic
RBE structure, where one relies not only on the available measurements, but also on the
a priori assumed or, in the case of strapdown inertial mechanization, actually measured
dynamics for the target. Note that almost no change can be seen for LC-GS UKF when com-
pared to non-robust UKF schemes which is consistent with the performance of the robust
weighted schemes in Table 7.7.

The positioning performance of the RBE methods during the bridge passage is shown
in Fig. 8.5. As expected, due to inertial mechanization used in these approaches, the es-
timation results are far less sensitive to single GNSS positioning failures. Still, for strong
GNSS position failures the trajectory is slightly deformed, although the deviation from the
reference path is significantly smaller when compared to snapshot approaches and could be
even further improved by fine tuning of the related filter parameters.

Detail on the estimated trajectory from different KF

 

 

Ground truth

SPP

TC UKF

LC UKF

LC-S UKF

FIGURE 8.5: Positioning estimation of SPP and three configurations for UKF
corresponding to the period in which the vessel passes under two bridges.
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Chapter9
Conclusions and Future Work

The work has assessed an ability of the robust estimation schemes to improve the GNSS
and combined IMU/GNSS positioning for challenging inland water scenarios with multiple
GNSS outliers. The work had clearly demonstrated the superior performance of robust
schemes for snapshot GNSS positioning and provided an extension of the methods forC/N0

based weighting schemes. The proposed methods have been systematically evaluated both
in terms of mean and maximum horizontal position errors and compared to those of modern
subset consistency evaluation methods as well as RAIM-like techniques. An extension of the
methods for snapshot velocity solution has been also suggested and several representative
methods have been evaluated. An advantage of the proposed techniques for integrated
navigation system has been demonstrated by designing a corresponding IMU/GNSS UKF.

As demonstrated in this work, the robust estimation constitutes an appropriate frame-
work in order to reduce the largest position errors in navigation. Despite the proposed
schemes are not able to completely handle the presence of several simultaneous faulty mea-
surements, still having spare gross errors for the position solution, there is a clear improve-
ment against classical SPP. Moreover, by integrating the robust techniques within a Kalman
filter which fuses satellite and inertial-based navigation, this study has proven that the nav-
igation solution is not only very accurate but also barely sensitive to the effect of multipath
and NLOS effects on the GNSS signals.

While traditional RAIM methods are able to provide an upper bound of the position
errors considering a given remaining integrity risk by means of so called protection levels,
the robust methods are still lacking the equivalent solution integrity concept. Therefore, a
new conceptual framework is needed for the GNSS integrity or quality control, when ro-
bust estimation is applied. Further work is planned on extension of the methods for MMM
(multi-constellation, multi-frequency, multi-antenna). The latter extension is important as
due to increased number of visible satellites, the probability of multiple simultaneous fail-
ures is also automatically increased. Applicability of the discussed techniques for phase
measurements is also important for higher performance applications [69]. Also, further
work is required on extending the methods to tightly-coupled KF using Robust KF or similar
approaches and a more systematic analysis is definitely necessary including different appli-
cation scenarios such as urban navigation, etc. Finally, the complementary characteristics
of the robust methods can be exploited by having several of these robust methods running
in parallel to provide a PVT solution. A decision matrix would then select the best solution
among the different schemes to feed a KF, which is also receiving the information from the
rest of the sensors: IMU, GNSS compass or other sensors (such as DVL, radar information
or map of the environment). Kalman filter output would be the best Position Navigation,
Timing and Integrity. Fig. 9.1 illustrates this system proposal as part of the future work.
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Proposed System for robust PVT

Danish based SPP

GM based SPP

GS based SPP

LMS based SPP

LTS based SPP

RAIM based SPP

RANSAC based SPP

D
e
ci
si
o
n

M
a
tr
ix

PVT

PVT

PVT

PVT

PVT

PVT + Integrity

PVT

Standard Point Positioning Solvers

Best

SPP

GNSS 1

GNSS 2

GNSS 3

Loosely Coupled

Kalman Filter

IMU

Angular Rate
Acceleration

GNSS Compass

Attitude

Other Sensors

Best

PNTI

FIGURE 9.1: The SPP solver receive the GNSS signals from multiple constel-
lation to obtain a PVT solution. The decision matrix is in charge to select the
best solution, which is then fed to the KF. KF fuses the information of multi-
ple sensors, apart from receiving the best solution among the robust methods,
and gets the best solution for Positioning, Navigation, Timing and Integrity.
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AppendixA
Quaternions and Orientation
Representation

A quaternion is a four dimensional hyper-complex number that is often used to represent
the orientation of a rigid body or an associated coordinate frame in a 3D space. Quater-
nions were introduced in 1843 by Hamilton as a result of the search for higher dimensional
generalization of the complex numbers. Soon after this, it was proven that quaternions can
represent rotations and orientations in three dimensions and they are currently applied in a
wide variety of areas such as computer graphics, robotics, navigation, molecular dynamics,
etc.

Differently from Euler Angles, the quaternions are not subject to the phenomenon called
"gimbal lock", which is an effect preventing the Euler angles to be used when the pitch angle
approaches ±90◦. Yet another alternative attitude parametrization in form of rotation ma-
trices results in a difficult re-normalization procedure and computational inefficiency (rota-
tion matrix has 9 non-trivial terms). Unfortunately, the quaternions have different algebraic
properties from conventional 4D vectors and have to be carefully considered when adopted
for filter design.

A.1 Quaternion Algebra

We will use i, j, and k to represent the standard orthonormal basis for 3 dimensional space
IR3:

i = (1, 0, 0) (A.1)
j = (0, 1, 0) (A.2)
k = (0, 0, 1) (A.3)

which have the following properties:

ij = k = −ji (A.4)
jk = i = −kj (A.5)
ki = j = −ik (A.6)

i2 = j2 = k2 = ijk ≡ −1 (A.7)
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A quaternion is represented is a 4-tuple of real numbers, q ∈ IR4. It is formed by a scalar q0

and a vector part ~q ∈ IR3 as:

q = (q0, q1, q2, q3) = q0 + ~q = q0 + iq1 + jq2 + kq3 (A.8)

Next, we will present the basic quaternion arithmetic operations:

Addition The sum or difference of two quaternion q, p is another quaternion:

q ± p = (q0 + p0) + i (q1 + p1) + j (q2 + p2) + k (q3 + p3) (A.9)

Conjugate
q∗ = [ q0, −~q ] (A.10)

Norm
|q| = N(q) =

√
q20 + q21 + q22 + q23 (A.11)

Inverse
q−1 =

q∗

|q|2
= q∗ (A.12)

Identity When involving multiplication is [1, (0, 0, 0)], and when involving addition/subtraction
[0, (0, 0, 0)]

Multiplication The quaternion product is not commutative, i.e., q⊗ p 6= p⊗ q, except in the
case that vector parts of the quaternion are parallel ~q × ~p = 0

p⊗ q =


q0 −q1 −q2 −q3

q1 q0 −q3 q2

q2 q3 q0 −q1

q3 −q2 q1 q0

 ·

p0

p1

p2

p3

 (A.13)

expressed with a different formulation:

p⊗ q =

[
q0 −~q T
~q q0 I3×3 − b~q×c

] [
p0

~p

]
(A.14)

with b~q×c as the skew-symmetric matrix operator, defined as:

b~q×c =

 0 −q3 q2

q3 0 −q1

−q2 q1 0

 (A.15)

A.2 Quaternion Differential Equations

Being qt the orientation quaternion at time t, and qt+∆t the orientation quaternion at the next
time sample t+ ∆t. The relation between said quaternions is given by:

qt+∆t = δq ⊗ qt (A.16)

where δq defines the rotation performed from consecutive time frames t to t+ ∆t. In case δq
defines a very small angle, we can use the small angle approximation as next:

δt =

[
cos (δθ/2)

~u sin (δθ/2)

]
≈

[
1

δθ
2

]
(A.17)
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Diving the angle of the rotation by the time elapsed ∆t in the limit, we get the angular rate:

ω = lim
∆t→0

δθ

∆t
(A.18)

The derivative of the quaternion is given by:

q̇ = lim
∆t→0

qt+∆t − qt
∆t

= lim
∆t→0

δq ⊗ qt − qt
∆t

(A.19)

Making use of the expression A.14, we can formulate the numerator of the previous limit as:

δq ⊗ qt − qt =

[
1 −1

2δθ
T

1
2δθ I3×3 + b1

2δθ×c

] [
q0

~q

]
−
[
q0

~q

]
(A.20)

δq ⊗ qt − qt =
1

2

[
0 −δθT

∆θ bδθ×c

] [
q0

~q

]
(A.21)

The limit definition of the derivative then becomes:

q̇ = lim
∆t→0

1

∆t

(
1

2

[
0 −δθT

∆θ bδθ×c

] [
q0

~q

])
, where ω =

δθ

∆t
(A.22)

q̇ =
1

2

[
0 −ωT
ω bω×c

] [
q0

~q

]
, (A.23)

to finally obtain the expression:

q̇ =
1

2
Ω (ω) q(t) (A.24)

with Ω (ω) as the skew-symmetric matrix:

Ω (ω) =


0 ωz −ωy ωx
−ωz 0 ωx ωy
ωy −ωx 0 ωz
−ωx −ωy −ωz 0

 (A.25)

Quaternion integration

In a similar fashion, the integration of a quaternion requires solving the first order differen-
tial equation A.24:

q̇(t) =
1

2
Ω (ω) q(t) (A.26)

And the general solution to the above equation is given by:

q(t) = Θ(t, tk) q(tk) (A.27)

The governing equation for Θ(tk, tk) is found by differentiation and substitution:

q̇(t) = Θ̇(t, tk)q(t) (A.28)
1

2
Ω (ω) q(t) = Θ̇(t, tk)q(t) (A.29)

1

2
Ω (ω) Θ(t, tk)q(t) = Θ̇(t, tk)q(tk) (A.30)

(A.31)
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Eliminating the term q(tk), we can express Θ̇(t, tk) as:

Θ̇(t, tk) =
1

2
Ω (ω) Θ(t, tk) (A.32)

with the initial condition Θ(t, tk) = I3×3. If we assume the angular rate ω to be invariant
during the integration time ∆t = tk+1 − tk, then the matrix Ω does not depend on time as
well.

Θ(tk+1, tk) = Θ(∆t) = exp

(
1

2
Ω(ω)∆t

)
(A.33)

This matrix exponential can be rewritten using Taylor series expansion 1 in order to get the
next expression:

q(tk+1) =

 cos
(
|ω|
2 ∆t

)
ω
|ω| · sin

(
|ω|
2 ∆t

)⊗ q(tk) (A.34)

The above expression can cause numerical instability for very small values of the angular
rate ω, as its norm |ω| appears as denominator. This integration method is known as the
Zeroth Order Quaternion Integration, due to the assumption of ω(t) = ω. In [64], we can find
also the First Order Quaternion Integrator, in which ω is assumed to change linearly within
time.

A.3 Quaternion Relationship to Rotations

In the 3-dimensional space, any rotation or sequence of rotations from the coordinate frame
A to another B can be expressed as a single rotation θ about the axis ~u. Unit quaternion can
expressed said rotation as next:

qBA =

 cos
(
θ
2

)
~u sin

(
θ
2

)
 (A.35)

In order to be valid, a orientation quaternion has to have a unity norm. Either way, there
would be an infinite number of quaternions expressing the same rotation (by multiplying
the quaternion by a scalar). However, as multiplying a quaternion by −1 we still have a
valid unit quaternion, a common assumption is having a positive value as scalar part of
the quaternion in order to avoid ambiguity. Note that if the rotation axis and the angle
are defined in the opposite frame (B instead of A), the quaternion has to be replaced by its
conjugate, meaning:

qBA =
(
qAB
)∗

(A.36)

It is possible to change the coordinate system of a rotation using the conjugation operation
of a quaternion:

q ⊗ p⊗ q = q ⊗ (p0 + ~p)⊗ q−1 = q ⊗ p0 ⊗ q−1 + q ⊗ ~p⊗ q−1 (A.37)

p0 q ⊗ q−1 + q ⊗ ~p⊗ q−1 = p0 + q ⊗ ~p⊗ q−1 (A.38)

Notive that, while the scalar part remains unchanged, the vector part is rotated. This
way, the angle of the quaternion has not changed but the axis has been rotated. This property
has been widely exploited in navigation systems: sensors attached to the target provide their
measurements into the body frame, while the user is interested in having said measurements
in the inertial frame. For example, let ~a b be the acceleration provided by the accelerometer

1This expasion is shown and further explained in [64]



A
.

Q
U

A
T

E
R

N
IO

N
S

A
N

D
O

R
IE

N
TA

T
IO

N

R
E

P
R

E
SE

N
TA

T
IO

N

A
.

Q
U

A
T

E
R

N
IO

N
S

A
N

D
O

R
IE

N
TA

T
IO

N

R
E

P
R

E
SE

N
TA

T
IO

N

A
.

Q
U

A
T

E
R

N
IO

N
S

A
N

D
O

R
IE

N
TA

T
IO

N

R
E

P
R

E
SE

N
TA

T
IO

N

A
.

Q
U

A
T

E
R

N
IO

N
S

A
N

D
O

R
IE

N
TA

T
IO

N

R
E

P
R

E
SE

N
TA

T
IO

N

A
.

Q
U

A
T

E
R

N
IO

N
S

A
N

D
O

R
IE

N
TA

T
IO

N

R
E

P
R

E
SE

N
TA

T
IO

N

A
.

Q
U

A
T

E
R

N
IO

N
S

A
N

D
O

R
IE

N
TA

T
IO

N

R
E

P
R

E
SE

N
TA

T
IO

N

A
.

Q
U

A
T

E
R

N
IO

N
S

A
N

D
O

R
IE

N
TA

T
IO

N

R
E

P
R

E
SE

N
TA

T
IO

N

A.3. Quaternion Relationship to Rotations 87

in the body frame:

~a b =

axay
az

 (A.39)

The corresponding vector with the acceleration in the inertial frame ~a i is estimated as next:[
0
~a i

]
= q ⊗

[
0
~a b

]
⊗ q−1 (A.40)

It is widely well known the procedure to rotate one vector from one frame to another by
using the rotation matrix:

~v i = Rib(q) ~v
b (A.41)

In [46] it has been shown the relationship between quaternion and rotation matrix:

Rib(q) =
(
q2

0 − ~q T ~q
)
I3×3 + 2

(
~q ~q T − q0b~q×c

)
(A.42)
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