LCOE reduction potential of parabolic trough and solar tower CSP technology until 2025

<u>S. Dieckmann</u>, J. Dersch, S. Giuliano, M. Puppe, E. Lüpfert, K. Hennecke, R. Pitz-Paal (German Aerospace Center, DLR)

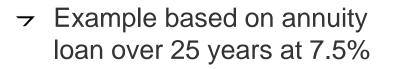
Knowledge for Tomorrow

M. Taylor, P. Ralon (International Renewable Energy Agency, IRENA)

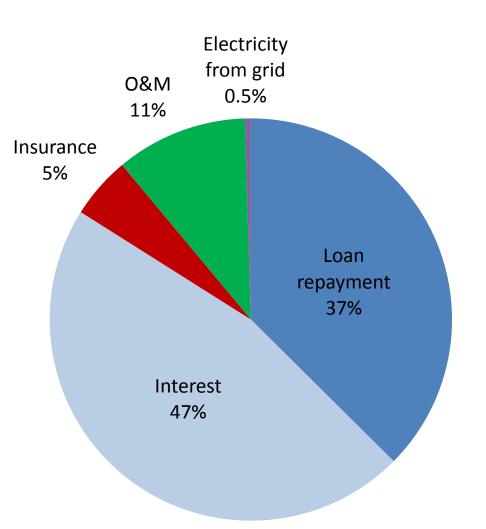
SolarPACES Conference Abu Dhabi October 11-14, 2016

Content

- 1. Introduction
- 2. System Overview 2015 vs. 2025
- 3. Cost Analysis
 - 1. Parabolic Trough Field
 - 2. Solar Tower System
 - 3. Thermal Energy Storage
 - 4. Power Block
- 4. Results
- 5. Conclusion

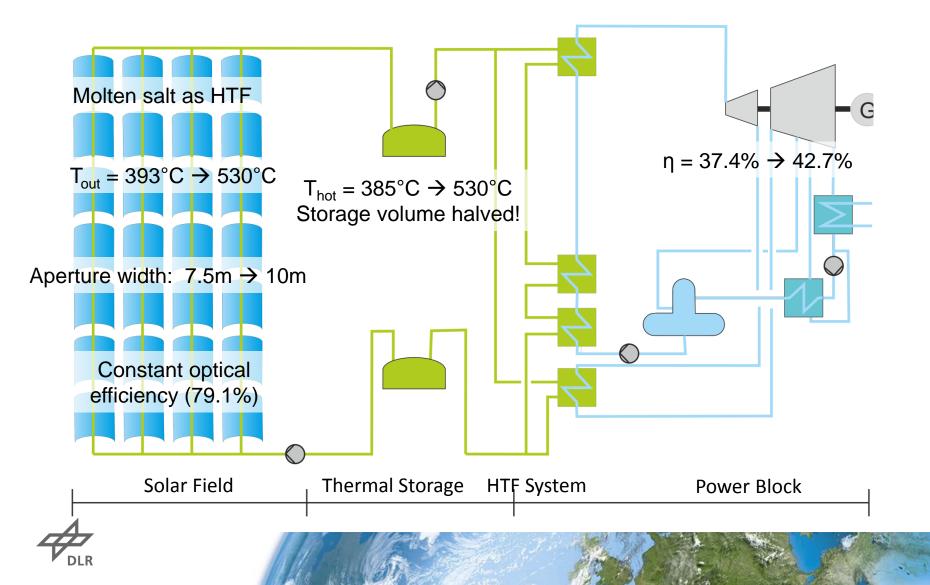


Source: noorouarzazate.com

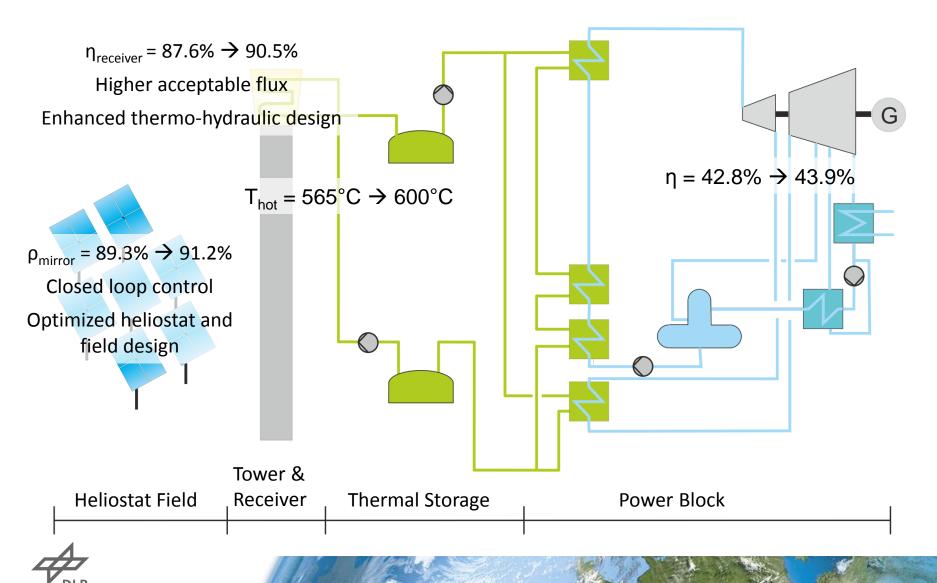


1. Introduction – Contributing Cost Factors for LCOE

- → Main Impact factors:
 - → Investment cost (CAPEX)
 - → Financing conditions
- → LCOE estimation is mainly CAPEX estimation


1. Introduction – Methodology and Boundary Conditions

- Technology-based bottom-up approach relying on inhouse expertise as well as external data sources
- Contrasted with published Power Purchase Agreements (NOOR II + III)
- → Ouarzazate, Morocco, DNI: 2017 / 2558 / 2935 kWh/(m²·a)
- Currency: US-\$₂₀₁₅
- CSP capacity growth to about 20GW in 2025


	Parabolic Trough	Solar Tower
Nominal Electric Net Output	160 MW	150 MW
Thermal Storage Capacity	7.5 h	9 h

2. System Overview – Parabolic Trough 2015 \rightarrow 2025

2. System Overview – Solar Tower 2015 → 2025

3.1 Cost and Performance – Parabolic Trough Field

	2015	2025
Collector	UltimateTrough™	Future Trough
Turnkey Cost*	231 \$/m²	177 \$/m²

*: includes site preparation, collectors, piping, cabling, HTF, HTF system, assembly & construction

- \rightarrow Total cost reduction: 23%
- Cost reduction equally distributed over sub-components
- → 25% less collectors, foundations, pylons, drives and receivers
- → Collector structure: -14 \$/m²
 - (Sub-)supplier standards and standardized designs
 - Automatization in manufacturing
- → HTF cost: -18\$/m²

Source: sbp.de

3.2 Cost and Performance – Solar Tower System

	2015	2025
Heliostat	Stellio™	Future Heliostat
Heliostat Field Cost*	143 \$/m²	103 \$/m²
Tower Cost	90,000 \$/m	72,000 \$/m
Receiver Cost	125 \$/kW _{th}	100 \$/kW _{th}

*: includes site preparation, heliostat field, cabling, assembly & construction

- → Total heliostat cost reduction: -28%
- → Mirrors: -9 \$/m²
 - → Reach parabolic trough mirror cost
- → Drives: -11 \$/m²
 - → Replace costly slewing drives
 - → Closed loop control
- Structure & foundations: 10 \$/m²
 - Bigger market volume, standardized designs
 - Idustrialized assembly procedures

- → Total receiver cost reduction: -20%
 - Improved material concepts
 - Optimized absorber surface utilization
 - ✓ Higher average solar flux

Source: sbp.de

3.3 Cost and Performance – Thermal Storage

	Parabolic Trough		Solar	Tower	
	2015	2025	2015	2025	
Cost	42	26	26	22	\$/kWh
Hot tank temperature	385	530	565	600	°C

- → Both technologies:
 - → Adapted storage materials
 - Innovative storage concepts (e.g. Singletank thermocline storage)
- → Tower Storage Costs: -4 \$/kWh (-17%)
- → Trough Storage Costs: -16 \$/kWh (-38%)
 - → -12.5 \$/kWh for storage medium
 - halved storage fluid mass thanks to higher temperature
 - \rightarrow -3 \$/kWh for HXs and pumps

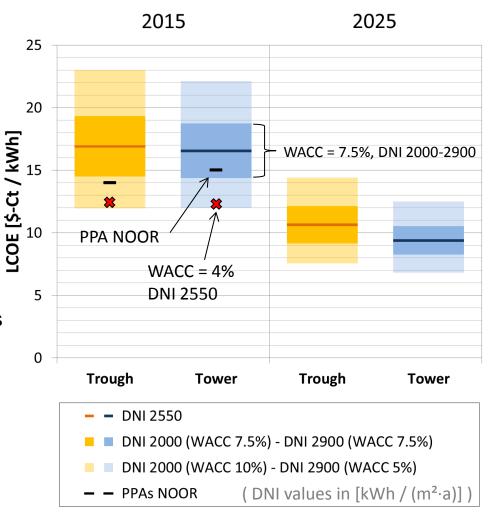
Source: www.renewableenergyfocus.com

3.4 Cost and Performance – Power Block

	Parabolic Trough		Solar	Tower	
	2015	2025	2015	2025	
Cost	1220	1100	1270	1100	\$/kW
Live Steam Temperature	383	520	555	590	°C
Thermal Efficiency	38.4	42.7	42.8	43.9	%

- Minor cost reduction potential
- → Dry cooling predominant
- Efficiency gain thanks to increased live steam temperatures

Source: The Energy Blog – energy.org.za


3. Cost and Performance – Overview and Indirect Cost

	Unit		2015		Cost va [%		20	25
		Troug	h_ Joy	wer	Trough	Tower	Trough	Tower
Direct EPC costs	Mio. \$	675	59	98)	-24	-23	508	459
Engineering, management, add. EPC services	% on direct EPC		5	1			2	2
Profit margin and contingencies	% on direct EPC	(10	1	9			6	ō
Indirect EPC cost	Mio. \$	101	14	44	-60	-74	41	37
Project development	% on dir.+indir. EPC		10				Z	1
Land cost	\$ / m² land		1					l
Infrastructure	Mio. \$		6				6	5
Additional owner's cost	% on dir.+indir. EPC		3				-	2
Owner's cost	Mio. \$	112	+	1 3 –	61	-60	44	46
CAPEX	Mio. \$	888	8	54	-33	-37	593	541
OPEX	% of CAPEX	2.2	 2	.3			2.1	1.9

4. Results – Plant Output and LCOE

Parabolic Trough	2015	2025
Annual el. output	576 GWh	625 GWh
Overall efficiency	15.1%	17.0%
Solar Tower	2015	2025
Solar Tower Annual el. output	2015 598 GWh	2025 644 GWh

- ✓ Until 2025 LCOEs decrease to
 - → 10 \$-ct/kWh for medium DNI levels
 - → 7 \$-ct/kWh for high DNI levels and favourable financing conditions
- → PPAs ≈ LCOE + 1...1.5 \$-ct/kWh
- Assuming 4% WACC, LCOE values match well to published PPAs from NOOR

5. Conclusion

- → CAPEX: 5600 → 3600 \$/kW (-35%) for both technologies (7.5/9h storage)
- LCOEs can reach 7 \$-ct/kWh (high DNI, favourable financing)
- → Major cost drivers Trough:
 - → Molten salt as HTF
 - → Trough collector CAPEX
- Major cost drivers Tower
 - Steep learning curve, reduction of contingencies, overcoming of teething troubles
 - → Heliostat field CAPEX
- Financing conditions are a massive cost driver:
 - → For each 1%-point WACC reduction LCOEs decrease by 1.1 \$-ct/kWh
- → IRENA publication (2016): "The power to change Solar and Wind Cost Reduction Potential to 2025"

MANY THANKS

to all contributing partners, co-authors and colleagues!

THANK YOU for your attention!

Contact:

Simon Dieckmann DLR – Line Focus Systems

Simon.Dieckmann@dlr.de

Knowledge for Tomorrow

