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Abstract—Over the last decade, context has become a key
source of information for tracking problems. Context inference
allows refining sensor modeling and target dynamics as well as
the creation of motion constraints according to the physical and
operational conditions of the scenario. This work presents two
example applications: indoor and inland waterway navigation
where the context information is employed to reduce the uncer-
tainty of the tracking and enhance the navigation solution. For
indoor positioning a cascaded Extended Kalman Filter (EKF)
and Particle Filter (PF) architecture is proposed. The system uses
stance phase detection and the available floor map to construct
the measurement models for the KF and motion constraints
for the PF respectively. For navigating in inland waterways it
is shown how to benefit from context information fusion by
inferring the operating condition of the Global Navigation Satel-
lite System (GNSS). In this scenario, context based criteria are
derived for the selection of the best position estimation amongst
several positioning solvers running in parallel. This work presents
the basics for context fusion in tracking applications, illustrating
the theory with two application examples. The preliminary results
already demonstrate a performance improvement compared to
state-of-the-art approaches.
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I. INTRODUCTION

During the last decade, context-aided data fusion systems
have became widely adopted within several applications. The
paradigm of enhancing the sensor fusion processes with
available context information has become specially popular
in domains such as ground target tracking, maritime surveil-
lance and location-based services (LBS) and many others.
The behavior of the targets and the characteristics of data
sources are conditioned by the environment (like terrain type
or weather conditions), logical procedures and even by their
interaction with other entities. Thus, context is considered as
a key ingredient to improve the overall tracking performance,
adapting the functions and models to the actual needs of the
application.

This work aims to overpass the limitations of navigation
due to noisy sensors or the presence of non-Gaussian errors
by integrating contextual information within the Bayesian
estimation framework. For this purpose two relevant exam-
ple applications are presented: pedestrian indoor localization
and inland waterway navigation. In both cases, the context

knowledge is formalized with static or dynamic variables, and
it is integrated in the non-linear Extended Kalman Filter (EKF)
and Particle Filter (PF) estimation algorithms.

For indoor navigation, an accurate and reliable location
information is considered to be one of the fundamental compo-
nents of ubiquitous computing and future LBS. Moreover, for
professionals such as firemen or soldiers, being self-aware of
their location can be a decisive factor in emergency response
stages [1]. The provision of an accurate and reliable position
information for pedestrians in indoor scenarios still constitutes
a challenge for the research community, especially when the
availability of the infrastructure such as WLAN cannot be
guaranteed. In this work, the lack of a position reference
is addressed by inferring knowledge from the environment
information (in a form of map), which is used to improve
the performance of classical inertial indoor navigation with
foot-mounted sensors using a cascaded EKF-PF approach.

Inland waterway navigation is yet another example of an
application which can be enhanced using context information.
The European Commission has stated that the carriage of
goods through inland waterways is the most climate-friendly
and energy-efficient approach, heartening companies to use
this mean of transport in their operations [2]. Inland wa-
terway applications include scenarios where pure satellite-
based navigation becomes far more challenging compared to
classical maritime applications with open sky conditions. This
work proposes an architecture in order to exploit the context
information, providing a robust position estimation even in
case of poor quality of satellite signals.

The rest of the paper is organized as follows. Section
2 provides an overview of the state-of-the-art of context-
based information integration, presenting the main strategy
pursued when fusing situation awareness information. Section
3 briefly describes the main sources from which context can be
exploited in tracking applications. In Sections 4 and 5 the two
example applications are presented: indoor localization and
inland waterway navigation, including both the description of
the methods and the discussion of the results. Finally, Section
5 gives a summary and provides an outlook to future work.



II. RELATED WORK

The vast bibliography on context-aided fusion can be orga-
nized from a functional point of view, as suggested in [3]:

A. Sensor Characterization

An intuitive example of an application in which the sensor
performance strongly depends on the geographic context is the
maritime radar. In multi-target tracking, the radar is typically
used to discriminate between possible targets, as well as to
separate the areas of poor coverage and to minimize the
detection of false targets. Another common approach is to
give a higher weight to sensors that are well-adapted to the
actual context and to minimize the impact of those which
are not. For instance, in Global Navigation Satellite System
(GNSS) the measured carrier to noise density ratio is often
used as a quality indicator: the stronger the received signal,
the smaller the expected ranging error of this signal. Although
some of the error sources cannot be discriminated by trivial
signal strength analysis (such as non-line-of-sight (NLOS) or
multipath effects), this or similar signal quality information
can be extremely helpful in improving the accuracy of the
position solution [4].

B. Target Prediction

Tracking algorithms may include the known traffic config-
uration (roads, channels, airways, etc) to improve the predic-
tion model used within the estimation process. Automotive
navigation systems typically fuse the information from noisy
sensors with map matching to accurately compute the location
of a vehicle on a road [5]. Similarly, in maritime domain
the vessel route information can be used to constrain the
assigned channels accordingly to the drought category and
water depth [6]. For ground tracking, the Interacting Multiple
Model (IMM) has been widely employed [7]. The general idea
of IMM is to combine the estimated target states of a bank
of filters, each conditioned on different dynamic models, by
assigning weights with respect to their current fit to the data.
Other algorithmic approaches to exploit context can include
the modifications of PFs, where the samples of the target state
are restricted and thus are drawn exclusively from the subspace
generated by the geographic file [8].

C. Data Association

Context can also be used in the data association process
to decide how many targets are in the scene and within the
observation association. Joint Probability Data Association
(JPDA) filters have been extended to use context in the form of
external probabilities within the association process. In [9] the
authors have identified different probabilistic data association
methods, while the work in [10] has explored data association
techniques for a multi-target tracking problems.

D. Track/Algorithm Management

Finally, the track management may also exploit the context
to improve the fusion process in accordance to the situation.
For instance, feedback strategies such as commands flowing

from contextual situation level to the data fusion node can
yield improvement in adverse conditions, such as high traffic
or heavy clutter scenarios with small probability of target
detection. Other options may include the automatic tuning or
the selection of algorithms (multi-algorithm fusion) based on
external input [11].

III. CONTEXT EXPLOITATION

As mentioned above, the context can be considered as one
of the essential components in the process of information
fusion, aiding the refinement of the observations or confining
the fusion process itself. Regarding the type of information
used as context, several cases can be distinguished such as
geographic data fields (e.g. geographic information system
(GIS) or bathymetry records), motion constraints represented
as roads or surface restrictions and dynamic context variables
or domain closed-world knowledge.

A. Physical Context

Physical context represents one of the most direct uses of
context in tracking applications. It is quite usual to represent
the geographic data in the format of GIS files with terrain
elevation or maritime information (coastline, bathymetry, etc).
The same information has been also applied in the field of
navigation [12] with terrain-aided positioning. Maps are usu-
ally represented as sets of waypoints and junctions to describe
the road layout. The possibility of constraining the estimation
process has been approached by different researchers both
in ground and maritime domains [13]. As walls and other
structures naturally restrict the motion of pedestrians, some
authors [14], [15] employed the known floor maps to build
motion models for the indoor navigation.

B. Logical Context

Target dynamics can also depend on the tactical or pro-
cedural information. For instance, motion on the road sub-
ject to velocity limits could often result in almost constant
distances between the vehicles [16]. The same same applies
to vessels, which mainly follow the known sailing plan and
established shipping routes. Context can be made available by
different means such as static data files, data services, human
observers, inference processes, etc. Therefore, the context is
not necessarily static information but it may appear as context
variables that can influence the value of problem variables.
The context should be collected and updated to be usable by
the fusion processes and conveniently preprocessed to keep an
updated and consistent repository of the relevant contextual
information. Thus, the fusion should include an adaptation
logic taking these contextual inputs into account in order to
trigger the appropriate adaptation mechanisms (parameters,
algorithms, control flow, etc). An in-depth analysis of the
relevant strategies for logical context exploitation is proposed
in [17].



IV. PEDESTRIAN INDOOR NAVIGATION

We will start the discussion on practical approaches for
context information fusion by presenting a challenging prob-
lem of indoor positioning. A common approach for pedestrian
tracking is to employ a so-called Pedestrian Dead Reckoning
(PDR) which measures the change in position/heading. This
increment is then added to the previous pose to estimate
the current location of the target [18]. The acceleration and
angular rate from an Inertial Measurement Unit (IMU, 3-axis
accelerometer and 3-axis gyroscope, often supported by 3-
axis magnetometer for heading stabilization) are integrated to
estimate the attitude, velocity and position change of the user.
The most commonly used basis for navigation is the Bayesian
estimation framework as it incorporates all the available infor-
mation (uncertainties, noise statistics, kinematic constraints)
in a statistically consistent way. Due to the nonlinear nature
of the inertial-based navigation, for this work an EKF was
adopted. The EKF, together with the Unscented Kalman Filter
(UKF), can be considered as one of the most popular non-
linear modifications of the classical KF and are often used in
navigation and tracking applications.

Fig. 1. The proposed cascaded architecture with inertial-based EKF and PF
based on the map information and the extracted step length and incremental
heading from the EKF.

Unfortunately, applying constraints to the estimated state
within a classical KF is a non-trivial task [19]. In contrast,
PF has been widely adopted for navigation applications due
to its suitability to incorporate the constraints in an intuitive
way. For the given application a cascaded KF-PF architecture
is proposed, where the data from inertial EKF is fused with the
map-induced motion constraints within the PF. The proposed
system employs an IMU mounted on the shoe, with the inertial
sensor data provided at a high sampling frequency (100 Hz).
The EKF fuses the sensor data to estimate the pose of the
foot, while the stance phase detector is used to determine the
steps based on the accelerometer and gyroscope signals using
experimentally obtained thresholds. Whenever a new step is
detected, the step length and the heading change from the EKF
are extracted and fed to the second stage PF. The latter uses
the floor map information to enforce the motion constraints on
the particles. In Fig. 1 the architecture of the proposed system
is provided.

Fig. 2. A sketch of the process model for the prediction step in the EKF.

The state of the proposed EKF is defined as follows:

xk =
[
qTk vTk pTk bTw,k b

T
a,k

]T
(1)

where qk ∈ R4 represents the attitude (unit) quaternion,
vk, pk ∈ R3 are respectively the velocity and the position,
and bω,k, ba,k ∈ R3 represent the biases of the gyroscope
and the accelerometer. Fig. 2 illustrates the process model
which is basically a form of the classical strapdown inertial
mechanization with several simplifications done to account for
the poor performance of low-cost MEMS inertial sensors.

Due to the triple integration of noisy sensor measurements,
in the absence of an external positioning reference, the clas-
sical inertial mechanization result in a position error growing
cubically in time. In order to limit the position error growth
to be only linear in time, a so-called ZUPT (Zero Velocity
Update) [20] is applied as measurement model. Whenever the
beginning of the midstance phase of a step is detected, the
measurement model is triggered. ZUPT assumes that during
the stance phase the velocity of the foot is zero, the corre-
sponding angular rate is dominated by the gyroscope offset and
the measured acceleration is due solely by a superposition of
the Earth gravity and the accelerometer offset. Thus, the IMU
bias corrections can be computed even without modeling the
angular rate and the acceleration as part of the state vector.

The ZUPT mechanism itself is a distinct example of the
context information fusion. It exploits the a priori knowledge
that the sensor is placed on the shoe (foot) and, therefore, it is
expected to be in the stance phase on a relatively regular basis.
In this case, the context information allows the creation and
application of so-called pseudo-measurement models without
corresponding sensor hardware.

The PF is a Monte Carlo method which solves the filtering
problems using a random state (hypothesis) sampling. The
probability distribution function of the state is represented by
Ns particles and their associated weights

{
xi, wi

}Ns

i=0
. The

particles are propagated based on the displacement and the
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Fig. 3. User walking around an office following an 8-shaped trajectory and then returning to the initial position. The pink square and the pink star represent
the initial position and the final estimated position respectively of the cascaded EKF-PF. The dashed gray line is the approximate original trajectory followed
by the pedestrian, the red line represents the estimated trajectory by the EKF, and the blue line is the output of the cascaded EKF-PF localization system.

Fig. 4. An example of how the values of the weights wi
wall,k are determined.

Fig. 5. The floor-map with the estimated mean position and the heading
constraints (left) and the corresponding polar chart with the most likely
directions (right).

incremental heading provided by the associated EKF. The
Gaussian noise with the corresponding statistic to that in
the EKF data is added both to the step length and heading
change estimation to avoid particle depletion effects. Finally,
the map information is exploited by weighting all the particles
based on wall/obstacle detection and their direction of motion.
The weighting factor for every particle is presented as a
combination of two criteria:

wi
k = wi

wall,k · wi
ϕ,k (2)

with wi
wall,k accounting for the particle having crossed any

wall or obstacle. It is set to 0 if the path followed by the ith

particle violated any map constraint or to 1 otherwise (see Fig.
4). The weight wi

ϕ reflects the likelihood of a particle moving
in the direction of its heading. To compute this likelihood,
a circle with radius r = 3 meters around the previously
estimated mean position (centroid) is considered. Then, for
every angular segment γ = 9◦ of the circle, the minimum
distance between the center and the wall is calculated. The
larger the distance (r being the upper bound), the higher the
weight assigned to a particle heading in that direction. The
method eliminates less probable motion directions as it is
assumed to be less likely for the user to approach the walls.
Fig. 5 provides a rough sketch of the idea of this approach.
Finally, a classical resampling step is performed with the final
estimate calculated as a weighted sum of the particles.

The performance of the proposed system was evaluated by
carrying out several experiments, in which a pedestrian walked
in an indoor scenario equipped with a commercial well-
calibrated IMU (XSens MTw) mounted on his foot. For the
demonstration of the systems’s performance, the user is asked
to walk around an office following an 8-shaped trajectory and
then to return to the initial position (see Fig. 3). Although the
generic EKF approach already performs reasonably well and
preserves the general shape of the trajectory (the estimated
trajectory by the EKF is slightly rotated as the initial heading
was not accurate), the estimated position would eventually drift
if no reference information was provided. For the cascaded
EKF-PF architecture, the estimated path not only becomes
more accurate, avoiding the violation of any map constraints,
but also results in a stable position over longer time. Note
that the results are presented for a pure inertial approach
and the associated map constraints are the only source of the
complementary information for this indoor positioning system.
For further information about the presented system as well as
additional experiments, please refer to [21].



V. INLAND WATERWAY NAVIGATION

In the previous section we explored some potential ways
to incorporate physical and logical context to the pedestrian
indoor navigation application. Next, a novel technique to
benefit from the environment perception in inland waterway
navigation is presented. For target tracking a non-inertial
constant velocity model KF is used. In the correction step,
the KF is fed with the position solution from a code-based
snapshot algorithm (strategy commonly denoted as loosely-
coupled architecture). In this application, the knowledge of
the GNSS operational condition, the map boundaries and the
characterization of the vessel dynamics constitute the context
information. This data is fused to constitute a measure of the
quality for the position solution while using different solvers.
The architecture for the proposed system is illustrated in Fig.
6.

Despite being the main source of information for navigation
in maritime applications, the performance of the GNSS can
be easily disturbed due to space weather events, jamming
or multipath effects. The classical code-based positioning
problem consists of solving a nonlinear Least Squares (LS)
problem. Although widely adopted, the LS is known for
lacking robustness as a single measurement outlier could
introduce large errors in the position estimation. To cope with
this problem, there have been several proposals to perform
Fault Detection and Exclusion (FDE). For instance, in avia-
tion the Receiver Autonomous Integrity Monitoring (RAIM)
algorithms constitute the standard for FDE. Unlike aviation, in
inland waterway navigation open-sky conditions barely occurs
and the single fault assumption of classical RAIM limits the
performance of these algorithms in scenarios with multiple
possible faults.

Recently, several algorithms belonging to the statistical
robust estimation framework have been proposed as an al-
ternative to RAIM-based techniques. Among the different
methods, Least Median of Squares (LMS) and GM estimator
can be named as the most promising applied for positioning.
So far there has been no clear statement on which of the
robust positioning approaches can be considered as the best
performing method. This can be, at least to some extent,
attributed to the fact that the robust schemes often present
complementary characteristics in terms of their Gaussian effi-
ciency (i.e., similarity to classical LS under optimal Gaussian
noise conditions) and the breakdown point (i.e. the smallest
percentage of contaminated data that can cause the estimator
to take on arbitrarily large aberrant values [22]), and, therefore,
their ranking in performance could strongly depend on details
of the application.

This work demonstrates how the context information can be
exploited by constructing attributes which are subsequently
used as the criteria within a multi-criteria decision making
(MCDM) framework. While running several positioning algo-
rithms in parallel, it is feasible to choose the best performing
method out of the set based on how this particular solution
matches the information induced from the context. For this

Fig. 6. Proposed architecture for enhancing navigation with context-based
information. Different snapshot positioning solvers estimate a position solution
in parallel and the best fitting solution is passed to the correction step of the
loosely-coupled KF.

application, the MCDM problem is expressed as the maxi-
mization of the following product:

max Si =

J∏
j=1

wij (3)

where Si represents each of the eligible solvers: classical LS,
LMS, GM estimator or RAIM. Here, wij corresponds to the
values of each of the J attributes for the ith positioning solver.
Three attributes were derived:

• Regular/abnormal operational condition. The residuals of
the measurements employed in the LS estimation can be
studied within a χ2-test with n − 4 degrees of freedom
(where n is the number of satellites available) to detect
whether the assumption of normally distributed data is
valid. LS is optimal under Gaussian conditions, while the
other solvers are more appropriate under abnormal con-
ditions when one or more outliers are present. Therefore,
for regular operating conditions a weight of 1 is assigned
to the LS output and 0 to the remaining solvers and vice
versa in case a global inconsistency in LS solution is
detected.

• Violation of boundaries. From the a priori knowledge of
the scenario topography, as well as of the dimensions
of the tracked vessel, one can deduce whether there
is a violation of the boundaries (map). If the position
estimated by a solver implies crossing a physical obstacle,
the aforementioned solver is given a zero value for this
attribute. For instance, if the position solution of a method
indicated that the target would cross the pillars of a
bridge, then the weight for that method would be set to
0, as it is providing false information.
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Fig. 7. Measurement track on the river Moselle near Koblenz (Germany). Reference path (black line) and several challenging segments including the lock (A),
and 3-bridge segments (B) and (C). (D) and (E) indicate the places where the total stations were installed in order to obtain an accurate horizontal position
reference of the vessel’s path. Total trajectory duration - 1 hour. Image produced using Google Maps API.

• Innovation test. The residuals of the KF, meaning the
difference between the predicted position and the esti-
mated solution from the positioning solvers, are taken as
the corresponding integrity indicators. The failure of the
innovation test indicates that the corresponding position-
ing technique was heavily influenced by the contaminated
satellite signals, and consequently, its solution can be
rejected (weight equals to 0). On the other hand, the
method whose solution passes the test has a weight equal
to the inverse of the Bhattacharyya distance (a measure of
the similarity between the two probability distributions).

As mentioned earlier, the position solution of the method
maximizing the product of Eq. 3 is fed as an observation for
the correction step of the KF. Hence, context-aided information
has been used in this application as a way to weight the
quality of the position solvers, choosing the most appropriate
algorithm depending on its consistency with other information
available.

To show the benefit of the proposed scheme, three different
KF based implementations will be compared in the following:

• KF-LS. It uses the position estimated by a regular LS
as observation, independently of any other information
provided by the context or alternative solvers.

• KF-LS∗. It employs solely the position solution from
a regular LS. Unlike KF-LS, the context-information is
applied as a mechanism to discard observations when they
are not reliable (in case of the boundaries violation or not
passing the innovation tests).

• KF-MCDM. The context information is fully exploited
using the MCDM formulation stated before.

The performance evaluation of the presented system is
conducted using real data from a measurement campaign that
was carried out on the Moselle river in Koblenz (Germany).
The river is considered as one of the busiest inland water-
ways in Germany and it represents a distinct challenge for

the satellite-based navigation due to the presence of high
structures, bridges, etc. The three bridges and the waterway
lock constitute an environment in which the GNSS signals
get strongly contaminated with multipath and NLOS effects.
In this experiment, the research vessel ”MS Bingen” was
employed, equipped with three GNSS antennas, Javad Delta
receivers and a reflector cylinder (used in conjunction with two
total stations to accurately track the reference trajectory). For
one hour, the vessel performed an 8-shaped trajectory, with
several passes under the bridges and the waterway lock, as
shown in Fig. 7.

Despite providing an accurate positioning for the most part
of the trajectory, the classical code-based LS dramatically fails
in the vicinity of the bridges. The horizontal position errors
exceed 50 meters due to the lack of robustness against the
errors that are present in the satellite signals. Even though the
robust schemes reduce the maximum position error by more
than 15 meters in comparison to the classical LS technique,
the errors under the bridges are still large enough to consider
the position solution as not reliable. The presented strategy
allows the exploitation of the context-induced information as
a mean of distinguishing the operating conditions and selecting
the most suitable GNSS positioning solver for every situation.

The Table I shows the obtained error statistic and provides
a solid proof of the benefits brought by the use of the
context-based information. For completeness of the study, the
individual performance of each of the code-based GPS L1
positioning solvers is also provided in Table I.

The position solutions from the snapshot methods and the
KF-based implementations are compared against the position
reference coming from two optical total stations. As we can
see in the first half of the table, the Horizontal Position Error
(HPE) of the robust methods and RAIM is highly reduced
compared to that of the regular LS. However, it is difficult
to point out which is the best performing method overall,



Fig. 8. Positioning performance of the regular LS and the different KF implementations: KF-MCDM and KF-LS. Background figure from Google Earth.

TABLE I
PERFORMANCE COMPARISON OF THE CODE-BASED POSITIONING

SOLVERS AND THE KALMAN FILTER IMPLEMENTATIONS

Method Mean RMS Max
HPE [m] HPE [m] HPE [m]

LS 2.9 4.5 50.7
LMS 2.4 3.4 34.9
GM 2.3 3.2 35

RAIM 2.3 3.0 45.4

KF-LS 3.0 3.8 17.8
KF-LS∗ 2.8 3.3 13.0

KF-MCDM 2.5 2.9 10.4

especially because the error characteristics of the methods can
be often considered as complementary.

Concerning the performance of the KF, although no im-
provement is obtained in terms of mean HPE, the maximum
position errors are significantly lowered when compared to
the memoryless (snapshot) positioning algorithms. One could
assume that this reduction is mostly related to the smoothing
behavior of classical KF due to process dynamics assumptions.
However, by exploiting the context-induced information in the
KF-MCDM the maximum HPE could be improved by another
7m compared to the standard KF-LS approach. Furthermore,
the use of different positioning solvers in MCDM becomes
fully justified and highly beneficial as it brings an improve-
ment of more than 30 cm and 2 m in the mean and maximum
position errors respectively (when compared to the KF-LS∗

approach).
Note that the suggested MCDM architecture also allows

rejection of all position solvers if they do not satisfy the
three criteria. Moreover, the consistency of KF is ensured by

imposing a maximum five second period during which none
of the GNSS solvers is used as measurement update. If during
this time none of the methods was selected, the innovation test
condition is disabled in order to bound the position error drift
within the KF.

The differences between the KF-LS and the KF-MCDM
are also illustrated in Fig. 8. In the vicinity of the bridge the
position estimated by the LS algorithm is strongly affected
by NLOS or multipath effects. The knowledge that the GNSS
receiver is probably operating under abnormal conditions is
inferred from the consistency of actual measurements and
the KF-MCDM is able to use the position solutions of the
snapshot solvers (such as RAIM or LMS) which are more
robust against the outliers. While the regular KF follows the
incorrect position reference of the classical LS solver, the
suggested KF-MCDM approach can also detect that there
is, probably, no reliable position solver at all and is able to
completely ignore the GNSS-based reference while relying on
the assumed motion model for shorter time.

VI. SUMMARY AND OUTLOOK

The work presents the basic concept of fusing context-
aided information in tracking applications while providing an
overview of the most frequently applied techniques. The main
goal of this work is to demonstrate the improvement gained by
integrating contextual information within classical navigation
techniques for two challenging scenarios. The knowledge
inferred from the environment is treated as if it was an
additional sensor, becoming a powerful tool to improve the
overall performance of the navigation solution. Two example
applications are presented and the potential benefits of the
context information fusion are manifested.

For indoor navigation, a cascaded architecture is suggested,
where the EKF performing classical strapdown mechanization
is used together with a PF. Firstly, the fact that the IMU



is mounted on the foot of the user allows the construction
of a ZUPT measurement models for the EKF. These models
are used to reset the estimated drift whenever a new step is
detected. Then, a PF uses the estimation from the EKF and
the floor map information to impose motion constraints via an
adjustment of the weights of the particles. The performance
of the system is evaluated using real measurements recorded
with an user walking through a typical office building.

For the inland waterway navigation example, the context
information is extracted to create a set of attributes to rate the
quality of different positioning solvers running in parallel. The
knowledge from the environment is inferred in several ways.
First, the consistency of the residuals of LS solution allows
the algorithm to asses whether regular or abnormal operating
conditions are present. Second, the map of the scenario can be
exploited to detect whether the estimated position is violating
the boundaries of the river or pillars of the bridges. Finally, the
prediction of the state from the KF is compared to the position
solution from the solvers using the position innovation test.
This test allows the KF to reject the position measurement
if the mismatch between the predicted and the measured
positions is too large. The experimental results provided in
the second example clearly demonstrate how the inclusion of
the context information can improve the performance of the
navigation system under unfavorable GNSS conditions.

Further work is planned in formulating the indoor posi-
tioning problem using more efficient Rao-Blackwellized PF
as well as in handling the context for multi-modal distribu-
tions. In the case of the inland waterway navigation, it is
planned to extend the framework for multi-antenna and multi-
constellation systems as well as to include GIS data such as
bathymetric data.
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[3] J. Gómez Romero, J. Garcı́a, M. Á. Patricio Guisado, J. M. Molina, and
J. Llinas, “High-level information fusion in visual sensor networks,”
2012.

[4] Z. Jiang and P. D. Groves, “Gnss nlos and multipath error mitigation
using advanced multi-constellation consistency checking with height
aiding,” 2012.

[5] J. Krumm, J. Letchner, and E. Horvitz, “Map matching with travel time
constraints,” in SAE world congress, 2007, pp. 16–19.

[6] G. Battistello, M. Ulmke, F. Papi, M. Podt, and Y. Boers, “Assessment
of vessel route information use in Bayesian non-linear filtering,” in
Information Fusion (FUSION), 2012 15th International Conference on.
IEEE, 2012, pp. 447–454.

[7] Y. Cheng and T. Singh, “Efficient particle filtering for road-constrained
target tracking,” Aerospace and Electronic Systems, IEEE Transactions
on, vol. 43, no. 4, pp. 1454–1469, 2007.

[8] M. Roth, F. Gustafsson, and U. Orguner, “On-road trajectory generation
from GPS data: a particle filtering/smoothing application,” in Informa-
tion Fusion (FUSION), 2012 15th International Conference on. IEEE,
2012, pp. 779–786.

[9] M. Mertens and M. Ulmke, “Ground moving target tracking with context
information and a refined sensor model,” in Information Fusion, 2008
11th International Conference on. IEEE, 2008, pp. 1–8.

[10] E. Maggio and A. Cavallaro, “Learning scene context for multiple object
tracking,” Image Processing, IEEE Transactions on, vol. 18, no. 8, pp.
1873–1884, 2009.

[11] H. Fargetton and J.-G. Siedler, “Control of multi sensor system based
on anomaly mapping and expert system,” Sensor Data Fusion: Trends,
Solutions, Applications, IEEE, 2011.

[12] F. Gustafsson, U. Orguner, T. B. Schön, P. Skoglar, and R. Karlsson,
“Navigation and tracking of road-bound vehicles using map support,” in
Handbook of Intelligent Vehicles. Springer, 2012, pp. 397–434.

[13] A. Benavoli, L. Chisci, A. Farina, L. Timmoneri, and G. Zappa,
“Knowledge-based system for multi-target tracking in a littoral envi-
ronment,” Aerospace and Electronic Systems, IEEE Transactions on,
vol. 42, no. 3, pp. 1100–1119, 2006.

[14] P. Robertson, M. Garcia Puyol, and M. Angermann, “Collaborative
pedestrian mapping of buildings using inertial sensors and footslam,” in
Proceedings of the 24th International Technical Meeting of The Satellite
Division of the Institute of Navigation (ION GNSS 2011), 2011, pp.
1366–1377.

[15] S. Kaiser, M. Khider, and P. Robertson, “A human motion model
based on maps for navigation systems,” EURASIP Journal on Wireless
Communications and Networking, vol. 2011, no. 1, pp. 1–14, 2011.

[16] E. Pollard, B. Pannetier, and M. Rombaut, “Convoy detection processing
by using the hybrid algorithm (gmcphd/vs-immc-mht) and dynamic
bayesian networks,” in Information Fusion, 2009. FUSION’09. 12th
International Conference on. IEEE, 2009, pp. 907–914.

[17] L. Snidaro, J. Garcı́a, and J. Llinas, “Context-based information fusion:
a survey and discussion,” Information Fusion, vol. 25, pp. 16–31, 2015.

[18] P. D. Groves, Principles of GNSS, inertial, and multisensor integrated
navigation systems. Artech house, 2013.

[19] D. Simon, “Kalman filtering with state constraints: a survey of linear
and nonlinear algorithms,” IET Control Theory & Applications, vol. 4,
no. 8, pp. 1303–1318, 2010.

[20] E. Foxlin, “Pedestrian tracking with shoe-mounted inertial sensors,”
Computer Graphics and Applications, IEEE, vol. 25, no. 6, pp. 38–46,
2005.

[21] D. Arias Medina, M. Schwaab, D. Plaia, M. Romanovas, M. Traechtler,
and Y. Manoli, “A foot-mounted pedestrian localization system with map
motion constraints,” in 12th IEEE Workshop on Positioning, Navigation
and Communications (WPNC’15), 2015.

[22] O. H. Christophe Croux, Peter J. Rousseeuw, “Generalized S-
estimators,” Journal of the American Statistical Association,
vol. 89, no. 428, pp. 1271–1281, 1994. [Online]. Available:
http://www.jstor.org/stable/2290990


