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Abstract

Modern synthetic aperture radar satellites (e.g., TerraSAR-X/TanDEM-X and CosmoSky-

Med) provides meter resolution data which when processed using advanced interferomet-

ric techniques, such as SAR tomography (or TomoSAR), enables generation of 3-D (or

even 4-D) point clouds with point density of around 1 million points/km2. Taking into

consideration special characteristics associated to these point clouds e.g., low position-

ing accuracy (in the order of 1m), high number of outliers, gaps in the data and rich

facade information (due to the side looking geometry), the thesis aims to explore for the

first time the potential of explicitly modelling the individual roof surfaces to reconstruct

3-D prismatic building models from space. The developed approach is completely data-

driven and except for vertical facades assumption, it does not impose any constraint on

the shape of building footprint (or to its constituent roof segments) i.e., any arbitrarily

shaped building could be reconstructed in 3-D with several roof layers. The workflow is

modular and consists of following main modules:

Preprocessing and normalized DSM generation (Extraction of building regions): First a

conventionally used ground filtering procedure is adopted to extract ground points from

which a digital terrain model (DTM) is generated. Then among non-ground points,

first the data gaps are filled using the contextual facade information and later digital

surface model (DSM) is generated via nearest neighbor interpolation. Subtraction of the

generated DSM with the DTM then gives us the normalized DSM (nDSM) containing

the building regions/pixels which is further smoothed using BM3D (Block-matching and

3-D filtering) filtering method.

Segmentation of building roofs : In this module, first a gradient map is generated based

on height jumps in the nDSM. Watershed segmentation is then adopted to oversegment
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the nDSM into different regions. Subsequently, height constrained merging is employed

to refine (i.e., to reduce) the retrieved number of roof segments by taking into account

the height difference of two adjacent roof segments.

Reconstruction: Coarse outline of an individual roof segment is then reconstructed using

alpha shapes algorithm. Due to varying and lower point density of TomoSAR points,

alpha shapes however only define the coarse outline of an individual building which is

usually rough and therefore needs to be refined/smoothed (or generalized). To this end,

taking into account the average roof polygon complexity (APC), a regularization scheme

based on either model fitting (i.e., minimum bounding ellipse/rectangle) or quadtree is

adopted to simplify the roof polygons obtained around each segmented (or distinct)

roof segment. The simplified roof polygons are then tested for zig-zag line removal

using Visvalingam -Whyatt algorithm. Finally, height is associated to each regularized

roof segment to obtain the 3-D prismatic model of individual buildings. The proposed

approach is illustrated and validated over scenes containing two large buildings in the

city of Las Vegas using TomoSAR point clouds generated from a stack of 25 images using

Tomo-GENESIS software developed at German Aerospace Center (DLR).

Apart from the above mentioned processing scheme, a complimentary workflow that

works directly over unstructured TomoSAR point clouds (i.e., without rasterization to

DSM) has also been developed as part of this thesis. The workflow adopts a typical

processing chain as employed using conventional airborne laser scanning point clouds

and is comprised of RANSAC based recursive plane fitting and computation of adjacent

planar intersections. In addition to this, preliminary ideas towards possible future im-

provements, e.g., joint exploitation of amplitude/intensity together with the 3-D spatial

information of each point, aiming to increase the accuracy of reconstructed models from

TomoSAR point clouds are also introduced and discussed in this thesis.
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1 Introduction

1.1 Motivation

Reconstruction of 3D building models in urban areas has been a hot topic in remote

sensing, photogrammetry, compute vision for more than two decades [Gruen et al., 2012]

[Rottensteiner et al., 2012]. Numerous research papers have been published in this con-

text that provide different reconstruction methods using variety of different data sources.

[Kaartinen et al., 2012].

3D city models are used widely for urban planning [Verma et al., 2006], change detection

[Rau and Lin, 2011], in commercial and public sector simulations for environmental re-

search [Brenner, 2001] [Rau and Lin, 2011], telecommunication or solar potential analy-

sis [Brenner, 2001], location based services [Wang, 2013][Brenner, 2005], 3D Geographic

Information Systems (GIS) for navigation, driver assistance systems, virtual tourism,

and many others [Zhou and Neumann, 2010].

Until a few years ago, large-scaled 3D city models were entirely measured manually

[Brenner, 2005], since the reconstruction algorithms could not automatically produce

enough detailed building models. The expectations for 3D building models are increasing

along with the quality of input data[Haala and Kada, 2010], and the requirements for

keeping city models up to date exist since the 3D spatial data is experiencing a high

change rate as 2D maps [Brenner, 2001]. Continuing research is driven by the demand

for accurate, automatically produced, and detailed 3D city models [Wang, 2013], also by

the interest of using data with better quality, or from new sensors or advanced processing

techniques, and by the urge to follow new ideas.
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1 Introduction

The data sources for reconstructing 3D building models are typically optical images

(airborne or spaceborne), airborne LiDAR point clouds, terrestrial LiDAR point clouds

and close range images. For airborne and terrestrial data, the relatively closer distance

of collection guarantees certain details and accuracy. In contrast, satellite images tend

to lose these details but allow reconstruction on large/global scale. Satellite images are

suitable for reconstruction in large scaled area. Very High Resolution(VHR) satellite im-

agery nowadays also offers sub-meter resolution. However optical images are “passive”,

that the energy measured is naturally available, thus the measurements are influenced

by illumination condition. While LiDAR system is “active”, meaning that the sensor

emits radiation toward targets, then detects and measures the reflected radiation from

targets.

Synthetic aperture radar (SAR) is a side-looking radar instrument. It is also an “ac-

tive” sensor. Comparing to optical images, SAR data is independent from day time due

to the active emission of signals. Moreover, SAR data is almost independent of weather

conditions because of the use of microwaves in radar signals, which is a major advan-

tage comparing to sensors in the visible or infrared spectrum. Very high resolution

(VHR) SAR sensors such as TerraSAR-X [Pitz and Miller, 2010] or COSMO-SkyMed

[Lombardo, 2004] provide SAR data with spatial resolution up to 1 m, making it pos-

sible to extract and reconstruct man-made objects. Figure 1.1 shows an example of

amplitude image of TerraSAR-X Data in spotlight mode, the spatial resolution is 1.1m

in azimuth and 0.6m in range. As can be seen, buildings and urban structures are clearly

visible.

Figure 1.2 shows the imaging geometry of a SAR sensor in a plane defined orthogonally to

the azimuth direction. The axis perpendicular to azimuth and range is referred as cross-

range direction or elevation. Conventional SAR imagery provides a projection of the

3D object reflection to the 2D azimuth-range plane. Due to the side-looking geometry,

this projection introduces typical foreshortening, layover and shadowing problems which

complicates the interpretation of SAR images(??).

SAR tomography (TomoSAR) is a method to solve this problem by exploiting stack

of multiple SAR images acquired from slightly different looking angles. It reconstructs

2



1.1 Motivation

Figure 1.1 TerraSAR-X amplitude image at las Vegas, USA. Resolution: 1.1m*0.6m

(azimuth and range)

Figure 1.2 Different signal contributions in a VHR SAR image [Zhu and Bamler, 2010].

the reflectivity of the scattering objects along the elevation direction as well as the 3D po-

sition of the scatterers. The motions associated with each scatterer can also be retrieved

by extending TomoSAR to differential TomoSAR (D-TomoSAR). Figure1.4 shows To-

moSAR point clouds generated by DLR’s Tomo-GENESIS system [Zhu et al., 2013]

.
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1 Introduction

(a) foreshortening (BC mapped to B′C′),

layover(AB mapped to A′B′)

(b) shadowing

Figure 1.3 Three major geometrical effects in buildings [Auer et al., 2011b]

Modern synthetic aperture radar satellites (e.g., TerraSAR-X/TanDEM-X and CosmoSky-

Med) provides meter resolution data which when processed using state-of-the-art To-

moSAR methods enables generation of 3-D point clouds with point density of around 1

million points/km2.

In the context of object reconstruction using TomoSAR point clouds, the difficulties are

caused by the following characteristics:

1. Accuracy: 3D positioning accuracy of TomoSAR point clouds reconstructed from

spaceborne data is in the order of 1m. The location error of TomoSAR points

in elevation is higher than in range and azimuth, typically in one or two or-

ders of magnitude. Ghost scatterers appear as outliers in TomoSAR point clouds

[Auer et al., 2011a] that are far away from a realistic 3D position;

2. Points distribution: there are large variations of point density in TomoSAR point

clouds. Data gaps exist in TomoSAR point clouds are of influence for objects

reconstruction. The side-looking SAR geometry enables rich facade points in To-

moSAR point clouds. Temporarily incoherent objects, e.g. vegetation, water body,

are not contained in TomoSAR point clouds.

Despite of these considerations, object reconstruction from these TomoSAR point clouds

4



1.1 Motivation

Figure 1.4 TomoSAR point clouds over las Vegas, USA, generated by DLR’s Tomo-

GENESIS system

(a) Facades from TomoSAR point clouds over

las Vegas [Shahzad and Zhu, 2015b]

(b) Building footprints from TomoSAR point over

las Vegas [Shahzad and Zhu, 2015a]

Figure 1.5 Previous building reconstruction results from TomoSAR point clouds

can greatly support the reconstruction of dynamic city models that could potentially be

used to monitor and visualize the dynamics (i.e., long-term deformation in the mm-

and cm-range, e.g. subsidence/uplift caused by earthquakes, bad construction, seasonal

5



1 Introduction

changes etc.) of urban infrastructures in very high level of details.

3-D object modeling/reconstruction from TomoSAR data is still a new field and has not

been explored much. Preliminary investigations towards object modeling/reconstruction

using spaceborne TomoSAR point clouds have been demonstrated in [Shahzad and Zhu, 2015b]

[Zhu and Shahzad, 2014], while TomoSAR point clouds generated over urban areas using

airborne SAR data sites have been explored in [D’Hondt et al., 2012]. Although these

approaches aim at 3-D building reconstruction but they are limited in handling building

with several roof surfaces.

This work is motivated by chances and needs of using TomoSAR point clouds to recon-

struct multi-roof buildings.

1.2 Scope and Objectives

Taking into consideration special characteristics associated to these point clouds e.g.,

low positioning accuracy (in the order of 1m), high number of outliers, gaps in the

data and rich facade information (due to the side looking geometry), the thesis aims to

explore for the first time the potential of explicitly modelling the individual roof surfaces

to reconstruct 3-D prismatic building models from space. The developed approach is

completely data-driven and except for vertical facades assumption, it does not impose

any constraint on the shape of building footprint (or to its constituent roof segments)

i.e., any arbitrarily shaped building could be reconstructed in 3-D with several roof

layers.

The goals of this work are as follows:

Goals: explore the possibility of reconstructing multi-roof buildings using TomoSAR

point clouds.

Procedure: a general building reconstruction procedure from TomoSAR point clouds

shall be proposed and implemented. The building models should be LOD1 models, with

right topological relationships between adajcent roof surfaces. The roof surfaces should

be connected by step edges or connected to ground surface.
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1.3 Overview of the Contents

Test and evaluation: The proposed workflow shall be tested and evaluated use different

data sites.

Discussion and future work: The proposed workflow and the results shall be dis-

cussed. Possible future improvements shall be rised.

1.3 Overview of the Contents

In chapter 2, brief introduction of the necessary background information on the To-

moSAR technique, the definition of 3D building models, and the assumptions made

about the building shape for the reconstruction procedure are presented.

Different approaches for building reconstruction from point clouds, especially from Li-

DAR data, are presented in chapter 3. The focus is on finding solutions for the se-

quential tasks of data-driven building reconstruction, from point clouds, or interpolated

DSM.

In chapter 4, two data-driven workflows are proposed, one is based on segmentation of in-

terpolated DSM, while the second directly works 3-D points is directly working on point

clouds. After comparing the two workflows, decision is made to use DSM based work-

flow. Proposed solutions for presegmentation processing, segmentation, regularization

are presented in detail.

The designed workflow is then tested and evaluated for two data sets in chapter 5.

In chapter 6, the proposed workflow is discussed, and potential improvements for the

proposed segmentation and reconstruction methods are derived. Possible future improve-

ments are also discussed, with preliminary experiments on extracting building masks and

facades from SAR amplitude image, and match shapes in the building point clouds.

The proposed workflow, its performance and main characteristics are summarized in

chapter 7, and the thesis is concluded by a brief statement on the research field of 3D

building reconstruction from spaceborne TomoSAR point clouds.
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2 Background Theory

2.1 SAR Tomography

The first concept for 3D imaging of volume scatterers using SAR tomography (To-

moSAR) is presented in [Reigber and Moreira, 2000]. The basic principle is shown in

Figure 2.1. A stack of SAR images is exploited in order to recover the reflectivity func-

tion in elevation direction. Red spots: orbits forming the synthetic aperture in elevation

direction S. The enlarged red spot marks the master orbit. Yellow spots: scatterers

to be detected. Azimuth direction: x. Range direction: r. SAR data captured in

multi-baselines(red spots), the corresponding orbit positions of the SAR sensor form a

synthetic aperture in elevation directions. The spatial baseline between orbit positions

is required for providing angular information in the cross-range plane. Thereby, the

elevation coordinates of two scatterers(yellow points), can be estimated with respect to

a master (enlarged red spot). Thus, the layover problem can be resolved for each SAR

image pixel.

For one image pixel, each SAR acquisition provides a spectrum sample of the reflectivity

function in elevation.

gn =

∫
∆S

γ(s)exp(−j2πξns)ds, n = 1, ..., N (2.1)

where gn is the signal measured for an image pixel during pass n, ∆S is the extent of the

imaged object in elevation, γ(s) is the reflectivity function representing the distribution

of backscattered intensities in elevation s, and ξn is the spatial frequency in elevation

depending on the sensor position with respect to the master.

9



2 Background Theory

Figure 2.1 Synthetic aperture in elevation direction.[Auer et al., 2011b]

The basic aim of SAR tomography is to invert the equation to derive the intensity and

position of signal responses in elevation. Different inversion methods are reported in the

literature and may be grouped in parametric models and non-parametric models. In

theory, parametric models, e.g. non-linear least square adjustment (NLS), provide the

best solution. However, the definition of functional models requires a priori knowledge

about the number of scatterer responses integrated into each resolution cell. By using

penalized likelihood criteria, the maxima of γ(s) was found in [Zhu et al., 2008].

In case of non-parametric models, limitations in tomographic processing occur due to the

short length of the synthetic aperture in elevation as well as due to the low number and

irregular distribution of samples. Compressive sensing has proven to be reasonable for

overcoming these limits [Zhu and Bamler, 2010]. Moreover, tomographic methods have

been extended to 4D-space including the velocity of scatterers [Zhu and Bamler, 2010].

Hence, the topography of urban areas can be provided in case of moving objects and

object deformation can be monitored.

10



2.2 3D Building Model: Definitions and Assumptions

Figure 2.2 Level of Detail of 3D building model. [Biljecki et al., 2014]

2.2 3D Building Model: Definitions and Assumptions

3D building models are vector models, which are polygonal meshes representing the

building with a significantly reduced number of data points than the original point

clouds [Wang, 2013].

2.2.1 Level of detail

When speaking of building models, the first thing to clarify is how detailed the models

should be. Reconstructed building models have different level of detail (LOD), differ

from simple prismatic model (LOD1) with flat roof surfaces to detailed model with

overhangs or balconies (LOD3), even with the interior of buildings (LOD4) (Figure 2.2).

The LOD should fit user’s requirements and acceptance criteria of 3D building models,

as well as the quality of used data.

Though building models and reconstruction methods differ, for most authors who use

high resolution images or LiDAR data, their definition agrees to the definition of LOD2 of

the official OGC standard City Geography Markup Language (CityGML)[Gröger et al., 2008],

an information model intending a standardized “representation, storage, and exchange

of virtual 3D city and landscape models” [Krüger and Kolbe, 2012]. LOD2 includes

detailed roof structures without roof overhangs, balconies, and consider buildings with

footprint no smaller that 4*4 m2. In this work, considering the accuracy of input data,

we aim at reconstruct LOD1 models.

11



2 Background Theory

2.2.2 General Assumptions

Buildings are commonly assumed to be composed of planar shapes and the facades

are vertical [Dorninger and Pfeifer, 2008] [Kada and Wichmann, 2012]. Roof segments

are connected by intersection edges or vertical step edges to each other or to ground;

overhangs and small building parts such as small dormers and chimneys are neglected.

Some authors assume that all roof segments to be connected by step edges to each

other [Poullis and You, 2009]. Rectilinear assumption is also accepeted by many authors

that, the main directions of roof segments are constant with the main direction of the

building. The building’s outer boundary is often assumed to be a polygon consisting

only of perpendicular and parallel edges [Haala et al., 1998] [Maas and Vosselman, 1999]

[Matei et al., 2008] [Rau and Lin, 2011].

12



3 State of the Art

This chapter covers the relevant methods for reconstruction of 3D building models from

TomoSAR data, mainly the methods dealing with LiDAR point clouds. First, the focus

of 3D building reconstruction is clarified. Then the categories of the existing methods

are briefly presented, i.e., 1) data driven or model driven methods, based on the start

point of the workflow, and 2) point clouds based or DSM segmentation based methods,

main data structure of the workflow. A literature survey is then given on building

reconstruction approaches, in aforementioned categories.

3.1 Focus of 3D Building Reconstruction

Building models contain roofs (the uppermost part), facades (walls), and footprints.

Building reconstruction workflows largely depend on nature of used data, particularly

angle of view, i.e., on which side the data is collected. Methods emphasize roof re-

construction usually have data source collected from top view, which have much more

information on roofs, e.g., ariel images, satellite images, airborne LiDAR data. While

terrestrial data collection gives more information on facades, from pedestrian viewpoints,

thus need more facade reconstruction. Oblique images provide information on both roofs

and facades, while are typically used in providing elevation data and facade texturing.

TomoSAR point clouds gives rich facade information due to side-looking geometry, while

multi-view is needed to obtain the full structure of individual buildings.

Roofs are the focus in 3D building model reconstruction. “Differentiated roof structures

and thematically differentiated surfaces” [Gröger et al., 2008] are the characters that

distinguish LOD2 building model from LOD1 blocks model.

13



3 State of the Art

Footprints are usually assumed available or can be automatically extracted beforehand.

As most research aiming at reconstruct LOD2 building models, which means no roof

overhangs and balconies, footprints are considered as outline of the building from top

view and often are not modeled separately but take outline of roofs or taken from 2D

ground plans [Haala et al., 1998] [Durupt and Taillandier, 2006] [Schwalbe et al., 2005]

[Kada and McKinley, 2009].

Vertical facade is a common assumption in 3D building reconstruction. So that authors

dealing with LOD2 building model reconstruction usually focus on roof structures rather

than reconstructing facades, and their 3D building shapes are generated by extruding

the reconstructed roof shapes.

The methods presented mainly focuses on roof reconstruction. Facades reconstruction

from terrestrial data collection for more detailed models and facade reconstruction from

TomoSAR point clouds are presented.

3.2 Categories of existing methods

In general, based on the start point, building reconstruction approaches can be classified

to two major categories: Data driven or non-parametric approach and Model driven or

parametric approach. While based on the data structure to be segmented, the existing

approaches can be classified into two types: point clouds based, and DSM(Digital Surface

Model) based.

3.2.1 Data driven or Model driven

Data driven approach starts from data, thus are more flexible and suitable for differ-

ent datasets in modeling complex roof shapes than model driven approache, thus data

driven approaches are very popular in recent research [Rottensteiner and Briese, 2002]

[Wang, 2013]. Building models from data driven methods fit most accurately the input

data and are therefore suited for applications where the focus is put on accuracy and

knowledge about small roof parts, such as for simulations or augmented reality. How-
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3.2 Categories of existing methods

ever, Point density varies in one dataset, thus details to be reconstructed vary, and how

to bridge gap from features found in the laser data to final building models is the main

problem. Thus data driven approaches require a high regularization effort.

Model driven approach selects best fitting parametric models from a prepared library

of models and estimated the corresponding model parameters according to the best fit

to the LiDAR data. They are usually too generalized to be able to reconstruct complex

building shapes and cannot flexibly represent any roof shape. Since a great number of

buildings in rural and suburban areas are rather simple and can be approximated by

rectangular footprints and parameterized standard roof shapes [Haala and Kada, 2010],

many approaches decompose the building point clouds into different parts and fit a

model to each part [Tarsha-Kurdi et al., 2008]. Those models are then connected and

corrected. The procedure is robust, effective and fast, and has small minimal regular-

ization effort.

3.2.2 Point clouds based or DSM based segmentation

The first task in building reconstruction is to separate buildings from other objects in the

whole data (presegmentation). Then the data is segmented to surfaces. Some authors

directly work on point clouds, while some authors use interpolated grided Digital Surface

Models (DSM) for building reconstruction.

Point clouds based

Most authors work directly on point clouds. The surfaces are usually extracted by

plane fitting or rsgion growing technique. Then topological relations are build and the

extracted surfaces are regularized. In model driven approach, the point clouds first are

decomposed to small parts, to fit the basic shapes in library.

DSM based

Another widely followed approach is to reconstruct roofs by DSM simplification. The

idea is, that the buildings are contained in highly detailed, meshed digital surface mod-

els (DSM) and that they only need to be simplified to the right abstraction level and
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extracted if necessary [Haala and Kada, 2010], while above reconstruction approaches

described, which construct building models from scratch to best fit the given elevation

data.

3.3 Presegmentation

Presegmentation typically classifies the point cloud into building points and other points,

mainly terrain and vegetation in LiDAR point clouds. If 2D building footprints are avail-

able beforehand, building point clouds can be directly extracted [Rau and Lin, 2011]. A

popular way is ground filtering method, in which a Digital Terrain Model (DTM) is pro-

duced by morphological filter operations [Morgan and Tempfli, 2000] [Zhang et al., 2003]

[Pingel et al., 2013], then a height threshold is set on the DTM. Another approach is

to fit planes to points clouds, and clustering points. The largest cluster is assumed to

be ground [Verma et al., 2006]. [Lafarge and Mallet, 2012] defineed expectation values

for buildings, vegetation, ground and clutter by combining different covariance-based

measures and height information by energy optimization. [Dorninger and Pfeifer, 2008]

extracted all planar regions of the scene using region growing method in feature space

and group the extracted points to buildings with a mean-shift algorithm.

3.4 Building roofs reconstruction

Building roofs are reconstruction from elevation data which can originate from various

sources like LiDAR or image matching [Haala and Kada, 2010]. A typical process that

reconstruction of building roofs is based on a segmentation process of the elevation

data.
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3.4 Building roofs reconstruction

3.4.1 Data driven approach

3.4.1.1 Point cloud based approach

Region based methods and plane fitting methods are two main segmentation methods.

Plane fitting methods fit surface planes to the point clouds. Region based methods

group points according to their proximity in feature space. Region-based segmentation

requires subsequent surface fitting processes.

1. Region based methods: Region-growing methods are used widely in segmenta-

tion. It start from a seed, based on some predefined criteria, each unclassified neigh-

bor to the region’s points is added to the region [Rottensteiner and Briese, 2002]

[Elberink and Vosselman, 2009] [Verma et al., 2006] [Dorninger and Pfeifer, 2008].

Region growing criteria decide whether a point should be added to a region or not

from predefined thresholds on similarities. The most used criterion is the point’s lo-

cal plane parameters to the average region’s plane parameters. [Verma et al., 2006].

Region growing seeds can be determined by choosing randomly from the point

clouds. [Alharthy and Bethel, 2002] choose a seed that located at centric within a

roof segment. [Awrangjeb and Fraser, 2014] select the midpoints of the building

boundary’s edges as seed. Others estimate flatness using a covariance based local

curvature measure, or according to the local neighborhood’s RMSE from the local

plane [Alharthy and Bethel, 2002].

2. Plane fitting methods: Planes can be fitted to a point clouds by maximiz-

ing the number of inliers, i.e. points whose orthogonal distances to the esti-

mated surface are below a certain threshold. RANSAC and Hough Transform

are popular method for plane fitting [Sohn et al., 2008] [Tarsha-Kurdi et al., 2008]

[Ameri and Fritsch, 2000] [Brenner, 2000] [Vosselman et al., 2001] [Sohn et al., 2008]

[Vosselman et al., 2004].

RANSAC (RANdom SAmple Consensus) is an iterative model fitting procedure

where in each iteration, a model is created from a randomly selecting a necessary

number of samples from the data set. It maximizes the inliers and considers outliers
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as noise. RANSAC tries many planes and then returns to the one that include

maximum points as inliers. The quality of the random model is determined by

counting the number inlier points using a distance threshold. In case the quality

measure is better than in the previous iteration, the model is kept as the currently

best estimate.

Hough Transform is a feature extraction technique in digital image processing.

The classic Hough Transform transforms euclidean space coordinates of points

to curves in hough space, and the transformed curves of points on same line in

euclidean space intersect at one point in hough space . The more curves passing

through the intersct point, the longer the original line segment is. 3D Hough Trans-

form is an extension of classic Hough Transform, and has been used for the detec-

tion of planes [Vosselman et al., 2001] [Sohn et al., 2008] [Vosselman et al., 2004].

After segmentation, boundaries of roofs need to be traced and regularized. Con-

nected boundary line segments can be determined from a triangulation of the

segment points. Edges which belong to only one triangle are defined as boundary

edges [Maas and Vosselman, 1999][Matei et al., 2008]. Zhou and Neumann [2008]

define boundaries by tracing the closest LiDAR points to those edges. Rotten-

steiner [2003] define separation boundary lines between adjacent segments from

the Delaunay triangulation: Differently segmented points connected by triangu-

lation edges are boundary points, and the corresponding Voronoi edges form the

boundary. Dorninger and Pfeifer [2008], Kada and Wichmann [2012] and Sam-

path and Shan [2007] use a modified convex hull approach called alpha shapes,

in which each next boundary vertix is determined only from the local neighbor-

hood of the previous vertex. If the local neighborhood is determined by a fixed

radius, alpha shapes produce only satisfactory results if the point density is regu-

lar. Therefore, Sampath and Shan [2007] define the neighborhood with a rectangle

whose extents and orientation depend on the along-track and across-track LiDAR

sampling characterisitics. [Wang and Shan, 2009] identify unconnected boundary

points by creating the convex hull of each point’s local neighborhood. If the point

is a vertex of this convex hull, it is chosen as a building boundary vertex. Lafarge
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and Mallet [2012] determine each boundary point based on its distance to the line

fitted through its neighborhood.

Boundary tracing delivers irregularly shaped polygons with a many polygon ver-

tices. Regularization procedures simplify polygons by reducing vertices number.

The Douglas-Peucker algorithm is often used for regularization. Line segments are

regularized by connecting the farthest vertices in the irregular polygon, such that

the distances of all skipped polygon points from the new line are below a threshold

[Sampath and Shan, 2007][ Sohn et al., 2012].

3.4.1.2 DSM based approach

Most of related researches focuses on the detection of building roof patches. Usually

ground filtering methods are used to separate ground points and above ground points,

then and the normalized DSM (nDSM) is obtained by subtracting the Digital Elevation

Model (DEM) from the DSM. Based on the nDSM, buildings are detected according to

the surface normals, elevation textures or shape structures.

[Rottensteiner and Briese, 2003] extracted roof races using seed regions and region grow-

ing in a regularized DSM. [Forlani et al., 2006] first use region growing on DSM to obtain

a raw segmentation result, then apply a second segmentation based on gradient orienta-

tion analysis, which defines roof slopes. The two segmentation results are then overlaid

to obtain the final roof segments. [Galvanin and Poz, 2012] construct DSM by rasteriz-

ing the LiDAR data. They first detect the non-ground DSM grids, recognize the object

outlines, and then detect the building roof boundaries using the Markov random field

approach. [Chen et al., 2014] used multiscale DSM grids instead of same sized DSM

grids. In the large-scale grid, building seed regions are obtained, while in the small-scale

grid, to detect the detailed features of building roofs with complicated top structures,

a high-resolution depth image is generated by an iterative morphological interpolation

using gradually increasing scales, and then segmented. Based on the building seed re-

gions, detailed roof features are detected for each building and 3-D building roof models

are then reconstructed according to the elevation of these features.
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3.4.2 Model driven approach

Model driven approach has a library of models, usually too generalized to be able to

reconstruct complex building shapes. If the library contains too many complex models,

the flexibility and algorithm efficiency will be reduced. Thus most model driven recon-

struction approaches decompose the building point clouds into different regions, and

fit building parts with simple parametric models and then connect them to be a whole

building model. Model driven approached usually contain decomposition of point clouds,

building library of parametric models and model selection and parameter fitting.

3.4.2.1 Point cloud based approach

The model library need to contain the most common roof shapes in a parametric descrip-

tion, such as flat roofs, shed roofs, gabled roofs and hipped roofs [Kada and McKinley, 2009]

[Haala and Brenner, 1999][Vosselman et al., 2001]. The library can also contain mod-

els for corners where basic roof shapes connect in a right angle or in a T-shape Kada

and McKinley [Kada and McKinley, 2009]. [You et al., 2003] compose their models from

standard computer graphic shapes such as planes, cubes, polyhedra, cylinders, spheres

and ellipsoids.

The building point clouds can be segmented using roof segmentation methods. Footprint

decomposition is achieved by analyzing the building boundary’s line segments [Kada and

McKinley, 2009, Haala et al., 1998]. You et al. [2003] require a user-input to determine

the footprint regions and to select the appropriate model; only the model parameters

are determined automatically.

Kada and McKinley [2009] select the model by computing the percentage of points

whose local normal is similar to the predefined library model. Verma et al. [2006]

determine model parameters by a RANSAC fitting procedure. For determining footprint

extensions, building orientation and roof type, Maas and Vosselman [1999] compute

height-weighted invariant moments from the point clouds, as well as from rasterized

versions of the parametric models.
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3.4.2.2 DSM based approach

The model driven approaches of DSM based segmentation first decompose the DSM to

simple shaped cells, then for each cell a primitive is fitted. Then reconstruction results

for all the cells are connected and combined to achieve final models.

[Brenner and Haala, 1998] segmented buildings into basic primitives based on the given

ground plan and then fitted these primitives to the DSM data. Footprint decom-

position is achieved by using previously detected step edges [Vosselman et al., 2001].

[Haala et al., 1998] estimate the model parameters by least squares minimization of the

DEM pixel’s vertical distances to the model.

Most of the DSM based approaches are studies in early years, when the quality of

LiDAR data were good enough to apply region growing. In recent year, reconstrucion

of building models from high resolution DSM is under studying [Sirmacek et al., 2012]

[Arefi and Reinartz, 2013] .

[Arefi and Reinartz, 2013] proposed an approach based on the analysis of the 3D points

of DSM from satellite images in a 2D projection plane. Parametric models are generated

through single ridgeline reconstruction and subsequent merging of all ridgelines for a

building. The edge information is extracted from the orthorectified image.

3.4.3 Other approaches

Some methods integrate data driven and model driven approaches. Oude Elberink and

Vosselman proposed a target based graph matching method [Elberink and Vosselman, 2009],

in which neighboring roof segments are represented as vertices connected by edges.

These edges are labeled according to the relations of the segments’ plane normals to

each other. It has a library of target graphs (models), while constructed roof topology

graphs after segmentation and labeling are to be matched. Geometric reconstruction

then follows.

Zhou and Neumann proposed a 2.5D Dual Contouring method [Zhou and Neumann, 2010],

which roots in computer vision background. It first sampling point clouds over a uniform
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2D grid, then create geometry adaptively based on compute hyper-points by minimizing

a 2.5D QEF in each quadtree cell. Then surface polygons and boundary polygons are

generated.

3.5 Building facades reconstruction

In addition to the available footprint and roof shape, facades are the most impor-

tant features that reflect the style and dimension of buildings. Airborne data collec-

tion mainly provides the outline and roof shape of buildings, while building facades

information is limited, usually reconstructed models give planar facades and distinc-

tive roof structures according to level of detail 2 within the OGC standard CityGML

[Krüger and Kolbe, 2012]. Building facades can be modeled separately from terrestrial

data collection or SAR images.

3.5.1 Facade models from TomoSAR

Zhu and Shahzad propose an approach for building facade detection and reconstruction

from TomoSAR point clouds [Zhu and Shahzad, 2014]. First, the building facade re-

gions are extractede by thresholding the Point density map. Then, the extracted points

are segmented to different facades. After orientation analysis inside each segmented

cluster, and 2-step k-means clustering is performed to segment and refine clusters. In

reconstruction, the facade surfaces are decided to be falt or curved by analyzing deriva-

tives of the local orientation angle. Polynomials are used to model the footprints in x-y

plane. First-order and second-order(p =2) polynomials are used to reprsent footprints

of flat facades and curved facades. Then the overall shape of the building footprint is

described by identifying adjacent facade pairs and determining the intersection of their

facade surfaces. Using TomoSAR point cloud, facades reconstruction over large area is

presented[Shahzad and Zhu, 2015b]
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3.5.2 Facade models from terrestrial data collection

Terrestrial data collection usually refers to terrestrial laser data and close range images,

which provide complement dataset for reconstructing more detailed building models.

They are used in applications that require for representing building facades with elements

on them, such as windows and doors.

Many works make use of terrestrial laser points and images together to reconstruct

facades, as laser points cannot texture facades, while image understanding for automatic

facade reconstruction is not so easy[Pu and Vosselman, 2009] [Becker and Haala, 2009]

[Frueh et al., 2005]. If larger areas need to be covered, ground-based mobile mapping

systems with integrated terrestrial laser scanners are used to provide dense 3D point

coverage at facades and the neighboring architecture.
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This chapter presents two data driven workflows that are designed for building recon-

strcution from TomoSAR point clouds. After preprocessing, the first workflow works

over interpolated DSM from point clouds and performs segmentation of distinct flat roof

surfaces. While the second workflow works directly on point clouds and in contrast uti-

lize plane fitting and clustering algorithms to perform segmentation of individual roofs

which are subsequently used in generating 3-D building model.

The two proposed workflows are then compared. The DSM segmentation based workflow

is considered to be more suitable for TomoSAR point clouds data.

4.1 Workflow based on DSM segmention

Inputs of the proposed workflow (Figure 4.1) are TomoSAR point clouds. Building points

are extracted and modified in preprocessing step. Normalized DSM (nDSM) is then

obtained and denoised. Segmentation of nDSM gives roof segments. In reconstruction

step, the outlines of roof boundaries are reconstructed and regularized, then the height

Figure 4.1 Overview of workflow (DSM based)

25



4 Proposed Workflow

Figure 4.2 Overview of preprocessing workflow

is associated with each roof segment to build 3D building polygons.

4.1.1 Preprocessing

In order to obtain better interpolated DSM, before DSM generation, preprocessing is

performed to extract building points, and to modify height of points. Firstly, LG, the

length of smallest grid unit in DSM is defined, and the study area is covered by grids Gs,

so that all points fall in grids according to their X and Y coordinates. Preprocessing

contains three steps: 1) Local height smoothing; 2) Ground filtering; and 3) Contextual

information based height modification.

4.1.1.1 Local Height Smoothing

This step is designed to decrease the influence of facade points and non-surface point in

interpolating DSM, without losing point density.

The step is performed “locally”, in each grid in Gs. For each grid g, all the inside n

points are P (xi, yi, zi), i = 1...n. Take first m highest of P (xi, yi, zi), and compute the
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(a) before, top view (b) side view (c) after, top view (d) side view

Figure 4.3 Local Height Reassigning example (in 1 grid). LG = 3m, Height is color

coded.

mean height of them, mean(zm). zi is then assigned to mean(zm). An example is shown

in Figure 4.3: (a)(b) show all original points in one grid; (c)(d) show points after height

reassigning in the same grid.

4.1.1.2 Ground filtering

Ground filtering is used to separate ground points and above ground points (object

points). The Simple Morphological Filter (SMRF) proposed by [Pingel et al., 2013] is

used.

Mathematical morphology contains operations based on set theory to extract features

from an image [Haralick et al., 1987]. Opening operation is an erosion of the image

followed by a dilation. In the context of point clouds, for a point p(x, y, z), the dilation

of elevation z at (x, y) is defined as [Zhang et al., 2003]:

dp = max
(xp,yp)∈w

(zp). (4.1)

where points (xp, yp, zp) represent p’s neighbors(coordinates) within a window w. The

dilation output is the maximum elevation value in the neighborhood of p. While erosion

of elevation z at (x, y) is defined as [Zhang et al., 2003]:

ep = min
(xp,yp)∈w

(zp). (4.2)
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(a) all points (b) above ground points (c) ground points

Figure 4.4 Ground filtering example (2D view) . Height is color coded.

In SMRF, after defining the grids, a Minimum Surface (ZImin) is generated by inter-

polating the lowest elevation of all points within each grid and inpainting empty grids.

Then, a progressive morphological filter is applied to ZImin, so that ZImin is iteratively

smoothed by an image opening procedure to an opened DEM. At each iteration, all

ZImin pixels whose distance to the opened DEM is larger than an elevation threshold

h are set to the values of the opened DEM. h increases at each iteration, defined as

the value of the maximum slope tolerance parameter multiplied by the product of the

window radius and the grid size. The opening filter’s window size increased at each

iteration, and the procedure stops when the filter is larger than the maximum expected

building size. The DTM is created from an interpolation of all points whose difference

between ZImin and the smoothed surface is smaller than h. The original TomoSAR

points then either belongs to ground or above ground object based on their relationship

to the DTM. Figure 4.4 shows an example of ground filtering results.

4.1.1.3 Contextual information based height modification

One characteristic of TomoSAR point clouds is: rich points on the facades are available

which are facing the sensor (i.e., not occluded). This information is utilized and point

density is computed to extract facade regions which are then utilized as contextual

information to further smooth the height estimates prior to DSM generation. This

step is needed due to relatively low positioning accuracy of TomoSAR points, especially

around facade points.
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(a) PD map, point density is color

codes

(b) Thresholding at PD=16 (c) Facades found after morpho-

logical operations

Figure 4.5 Thresholding point density map at example area

Find Facades using Point Density Map

Point Density means the number of points in a certain sized area, which is simply a

2D histogram of number of Points, when projected to the defined girds. An example is

shown in Figure 4.5(a).

Due to the side-looking SAR geometry, the TomoSAR point clouds on vertical facades has

higher Point density(PD) comparing to non-facade regions, because of the existence of

strong corner reflectors, e.g., window frames on the building facades. Thus, thresholding

the PD map will identify possible pixels representing facades. Morphological operations

are then applied to refine the identified areas. One assumption is the “narrow” facades,

meaning that the ratio of length and width of facade should be large. This assumption

is applied to remove segments.

Thresholding converts the PD map into a binary image. Pixels whose value no smaller

than the defined threshold TPD are set to foreground, while the rest are set to back-

ground. Figure 4.5 shows an example of the extracted facade regions. Figure 4.5(a)

is the PD map of above ground points in the area. Figure 4.5(b) is the thresholding

result. In Figure 4.5(c), facades are found by applying morphological operations and the

“narrow” facades assumption.

Contextual information of facades
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In the desired building models, a basic assumption is that, one building facade connects

two or more roof surfaces, or connect roof surface and footprint, meaning that the height

difference ∆h > Hmin exists between the two sides of the connecting facade. Hmin is the

minimal height difference to separate two roof surfaces. If the roofs are flat, the height

of roof on the higher side equals to the height on top of the connecting facade (Figure

4.6(b)). If ∆h < Hmin, ∆h is too small to be considered (Figure 4.6(c)), the facade

should be neglected, since it is a vertical structure which does not belong to building,

e.g., billboard.

Height modification

In point clouds, for a facade F and its two side zones Z1 and Z2 (Figure 4.6(a)), denote

the higher one as Z1 and the lower one as Z2. ZF is area of F . Points inside Z1, Z2,

ZF are: P1(xi, yi, zi), i = 1...n, P2(xj , yj , zj), j = 1...m, and PF (xf , yf , zf ). The mean

height of all points inside Z1, Z2 are h1 and h2.

The height modification is then performed for the following two cases:

1. ∆h >= Hmin:

1) Take first r highest points inside ZF and compute the mean height hr. For

P1(xi, yi, zi) inside Z1 and PF (xf , yf , zf ) inside ZF , reassigning zi to hr.

2) For P2(xj , yj , zj) inside Z2, take first p lowest points and compute the mean

height mean(zp), reassigning zj to mean(zp).

2. ∆h < Hmin:

Put P1(xi, yi, zi) and P2(xj , yj , zj) together, compute the mean height of all P1(xi, yi, zi)

and P2(xj , yj , zj), hij . Reassigning zi, zj and zf to hij .

By previous steps, most surrounding-facade points are modified, however the problem

arises when there are limited number of roof points which make the comparison an

incorrect estimate. If the building mask of the higher part of the building is available,

the adjacency relationship of building mask and facade can be used as follows:

(1) Create a buffer cell around the facade. Select all points PTfb inside the buffer cell.
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(a) top view of (a) and (b). Z1

and Z2 are F ’s side zones,

ZF is area of F .

(b) F connects R1 and R2.

∆h = h1 − h2

(c) ∆h is too small. F should

be deleted.

Figure 4.6 Contextual information of facades. R1 and R2: roofs. F : facade in between.

(2) In PTfb, select points inside the out contour of building mask, set their heights to

the local maximum value of surrounding points. Set the heights of remain points

in PTfb to the local minimum.

4.1.2 Generation normalized DSM of building area

Subsequent to incorporating contextual facade information to further smooth the height

values, the next step is to interpolate the smoothed point cloud to generate DSM. The

workflow is shown in Figure 4.7.

4.1.2.1 DSM interpolation

First, modified building point clouds and ground point clouds are put together to “Mod-

ified point clouds”, and it is interpolated into DSM. The ground point clouds alone is

used to interpolating DTM. The normalized DSM (nDSM) is obtained by subtracting

DTM from DSM (Figure 4.8).

Building masks is then introduced to bound building areas in the nDSM. In this work,

building masks is obtained by height thresholding of the nDSM.
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Figure 4.7 Workflow of DSM generation

Figure 4.8 The principle for the generation of nDSM. [Atlas, 2014]



4.1 Workflow based on DSM segmention

4.1.2.2 Building masks from point density map

Because of temporarily incoherent objects cannot be reconstructed from multi-pass

spaceborne SAR image stacks, the TomoSAR point clouds on building regions gener-

ally have higher point density(PD) than ground regions, which usually have vegetation

and water bodys inside.

The building masks are extracted from nDSM by thresholding the height, and removing

small segments.

There are data gaps in point clouds. The can be located also by thresholding. Some

data gaps have relatively regular shapes than others, and they are adjacent to facades.

The reason behind is that occlusions are the causes of the facades-adjacent data gaps,

while the coherent imaging nature cased the other type. This knowledge is employed to

modify building masks and generate nDSM at building areas, in following 3 cases:

1. If the data gap is not adjacent to any facade, it should be caused by the coherent

imaging nature. It is to be interpolated by surrounding points;

2. If the data gap is adjacent to “facade inside building masks”, it is caused by

occlusions of the facade. It should be included into building masks, and the height

in nDSM at the data gap should be assigned to the heights of surrounding above-

grounf points.

3. If the data gaps are adjacent to “facades at boundary of building masks”, it is

caused by occlusions of the facade. It should be outside of the building, so the

height in nDSM at the data gap should be assigned to ground value.

The modified building masks are obtained. An example is shown in Figure 4.9.

4.1.2.3 DSM denoising

Prior to extraction and segmentation of different roof surfaces, it is necessary to further

smooth/denoise the generated nDSM. To this end, BM3D is applied.
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(a) PD map, point density is color

codes

(b) Thresholding at PD=5 (c) Initial Building mask after

morphological operations

(d) Complement image of the thresh-

olded image(PD=2)

(e) Data gaps inside Building

mask

(f) Facade thresholding at

PD=16, no “narrow” facade

assumption applied)

(g) Data gaps and facades to-

gether

(h) Only data gaps adjacent to

facades are selected

(i) Final building mask, modi-

fied using selected data gaps

Figure 4.9 Building mask extraction from Point density map at example area
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BM3D (Block-matching and 3D filtering) is a powerful denoising method. It was devel-

oped by Dabov et al.[Dabov et al., 2007]. It is based on the fact that an image has a

locally sparse representation in transform domain. It is realized in 2 steps, basic esti-

mation and final estimation. Each of the two estimations contains 3 parts: Grouping,

Collaborative filtering and Aggregation. The general concepts are: 1). Grouping: for a

given image patch, finding the image patches similar to it and grouping them in a 3D

block; 2) Collaborative filtering: Applying a 3-D transform to the formed group, atten-

uating the noise by shrinkage (Hard thresholding is use in step1 and Wiener filtering

is used in step2) of the transform coefficients, inverting the 3-D transform to produce

estimates of all grouped blocks, and then returning the estimates of the blocks to their

original places. Because the grouped blocks are similar, BM3D can achieve a high level

of sparse representation of the noise-free signal, thus, the noise can be set apart well

from signal by shrinkage; 3). Aggregation: The output image is estimated by weighted

averaging of all achieved block estimates that have overlap.

4.1.3 Segmentation

The resulting denoised nDSM is ready to be segmented. Our strategy is to use watershed

transform to oversegment the nDSM, and applying constrained merging process to get

the final segments.

4.1.3.1 Watershed segmentation

In grey scale mathematical morphology, the watershed transform was originally proposed

by [Digabel and LANTUEJOUL, 1977]. As [Roerdink and Meijster, 2000] stated, the

idea behind it comes from geography: a landscape is immersed in a lake, with holes in

local minima. Catchment basins will fill up with water, starting at local minima. At

points where water coming from different basins would meet, dams are built. When the

water level has reached the highest peak in the landscape, the process is stopped. As a

result, the landscape is partitioned into regions or basins are separated by dams, called

watershed lines.
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4 Proposed Workflow

The gradient map is computed over the nDSM. nDSM contains height information,

while gradient changes stand for height jumps. In our case, the gradient edges are the

watershed lines, while the catchment basins are the homogeneous grey level regions of

this image, i.e., the segments we want. Direct use of the gradient image usually produces

oversegmentation results, due to noise or local irregularities. Thus smaller gradient was

cut off before applying watershed segmentation.

A height difference threshold Hmin, meaning, if local height difference HL is smaller than

Hmin, it will be ignored. Imin is the intensity value in gradient image, corresponding to

Hmin. The local intensity value IL smaller than Imin will be cut off. The left part in the

gradient image denotes for regions where HL >= Hmin.

The exact choice of Hmin can be tricky. Thus we set Hmin to a value smaller than

the demanding height difference Hmax, then performing a constrained merging step on

the oversegmentated result from watershed segmentation. Hmax is the threshold of

maximum merging height, meaning, if two segments has HL bigger than Hmax, the

segments belong to different roofs and will be merged. Segments that lower than ground

are removed before merging.

4.1.3.2 Constrained merging

The merging approach is based on the height difference of adjacent segments and the

average polygon complexity (APC). The purpose is to get minimum amount of segments,

and maximum segments’ regularity.

The segment’s regularity can be indicated by polygon complexity [Brinkhoff et al., 1995],

is proposed in 1995. It is defined as following:

compl(pol) = 0.8 · ampl(pol) · freq(pol) + 0.2 · conv(pol) (4.3)

where

freq(pol) = 16 · (notchesnorm(pol)) − 0.5)4 − 8 · (notchesnorm(pol) − 0.5)2 + 1,

notchesnorm(pol) = notches(pol)/(verties(pol) − 3),
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4.1 Workflow based on DSM segmention

(a) notched and normalised notched

(b) ampl

(c) conv

Figure 4.10 Definitions of polagon complexity [Brinkhoff et al., 1995]

ampl(pol) = (boundary(pol) − boundary(convexhull(pol)))/boundary(pol),

conv(pol) = (area(convexhull(pol)) − area(pol))/(area(convexhull(pol)).

The complexity compl(pol) of polygonal objects, is measured by comparing a polygon

with its convexhull. Notches are the polygon vertices which located inside of polygon’s

convexhull. ampl(pol) measures the amplitude of notches vibration, and measures the

frequency of it. conv(pol) measures the area difference between a polygon and its con-

vexhull.

For a group of segments, we define the average polygon complexity compl(mean) as

the weighted mean of polygon complexity, using area size as weight. compl(mean) is in

the interval[0, 1]. Smaller compl(mean) indicates simpler polygon. As segment’s area

is the weight, and larger simple polygons are our goal, we propose following merging
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4 Proposed Workflow

approach:

(1) Define an area threshold Ta. Segments which are smaller than Ta are denoted as

Ss, and bigger ones denoted as Sb;

(2) Merge Ss to Sm. Maximum merging height Hmas and step size h are defined.

Hierarchically merging n times, n = Hmax/h. In the ith merging, the maximum

height difference is Hi = Hmin + (i − 1) · h. The adjacent matrix of all small

segments Ss is computed, and the adjacent segments with HL < Hi are merged.

After ith merging, Ss is merged into Sm . Segments’ height are computed from

denoised DSM.

(3) Put Sm and Sb together, further merge segments. Repeat merging steps in 2),

with the constrain that comp(mean) is not allowed to increase, unless HL of the

adjacent segments is smaller than Hmin .

(4) For segments whose area size smaller than minimal roof size Ta , merge them to

their nearest largest segment, under constrain of minimum increasing of comp(mean).

4.1.4 Reconstruction

Once the building pixels are segmented into individual roof segments, the next step is

to reconstruct the outline of the distinct segment which are utilized to reconstruct the

overall 3-D prismatic building model.

4.1.4.1 Regularization

Minimal bounding shape type detection

Minimal bounding shape type detection of each segment is performed to select a better

bounding shape from ellipse and rectangle. The area difference between the segment and

its bounding shapes is computed, and the shape with smaller area difference with the

segment is chosen. Figure 4.11(a) shows the minimal ellipse bound(green) and minimal

rectangle bound(red) for a segment(yellow). Area difference of the ellipse with segment is
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4.1 Workflow based on DSM segmention

(a) Minimal ellipse bound(green) and

minimal rectangle bound(red) for one

segment.

(b) Minimal bounding rectangles(red)

and minimal bounding boxed(black)

for 2 segments.

Figure 4.11 Minimal bound detection

smaller than it of the rectangle with the segment, thus ellipse is selected. For segments

which are ellipse bounded, the minimal bounding ellipse is considered as its refined

outline, thus no more regularization is needed.

Orientation computation

For segments which are rectangle bounded, the orientation for each segment is computed

to find rotation angle for the segment before quadtree regularization. Orientation angle

is defined as the smaller angle between image’s x-axis and the major axis or minor

axis of the segment’s minimal bound ellipse. The segment is rotated, so that it’s main

orientations are aligned with the images x− y directions. After quadtree regularization,

they are rotated back.

To keep a building’s the main orientation consistency, the segment’s complexity is com-

puted for every segment using equation 4.3. Segments are separated into two classes:

(a) keep its orientation if the segment’s complexity is smaller than a threshold Tc, with

minimal bounding rectangle; (b) otherwise use image’s x-axis direction as segment’s ori-

entation, with minimal bounding box, all the boxes have same orientation as the image.

In Figure 4.11(b), minimal bounding rectangles(red) and minimal bounding boxed(black)

for 2 segments. Tc=0.05, the blue segment: compl(pol) =0.0482, fit rectangle to it; for

the dark red segment: compl(pol)=0.0774, fit box to it.

Quadtree regularization

Quadtree decomposition is a powerful technique which divides an image into 2D homo-
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4 Proposed Workflow

(a) before refularization (b) qurdtree decomposition (c) after refularization

Figure 4.12 Quartree regularization

geneous regions, as shown in many works as [Samet, 1984]). The decomposition of a

image builds a tree, with each node stands for a 2m × 2m homogeneous block in the

image. In our case, each segment is put in a 2k × 2k image with empty background,

then a quadtree is built by decomposing the image. Now, the root in the quadtree

stands for the whole image, and the leave nodes are the smallest blocks in the image,

which are all located along boundary of the segment in the image, and the locations are

exactly where the to-be-refined small structures are. We take all the small structures

in, as parts of the segment, results in a “dilated” segment, which need to be eroded

later(Figure 4.12).

Quadtree regularization results in simplified polygons that have only corner vertices,

with 2 perpendicular boundary directions. Thus the main directions of segment need to

be aligned to image axis directions. Check segments’ orientation computed in previous

step. For segments whose orientation is not the image’s x-axis, rotate them with their

orientation angles, and rotate back after quadtree regularization. Segments with similar

orientation angles are grouped together and rotated with one angle, to make the scene

more regular.

Overlap cropping

The next step is to overlay all the segments together. Previous two adjacent segments S1

and S2 now are S1n and S2n , with an overlap O. Compute average polygon complexity

for two cases: (a) S1n and S2nO , S2nO=S2n−O, and (b) S1nO and S2n, S1nO=S1n−O.

Overlap O is assigned to the case which gives smaller average polygon complexity. In Fig-
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4.1 Workflow based on DSM segmention

ure 4.13, (a) 2 segments and their overlap(in yellow); (b) first assignment, APC=0.0519;

(c) second assignment, APC=0.0404. The second case is accepted because of the smaller

APC.

(a) (b) (c)

Figure 4.13 Assign overlap to one of the two neighbor segments based on Average Poly-

gon Complexity

Zigzag line removal

Quadtree regularization takes out smaller grids along roof segment’s boundary, leaving all

boundary line segments perpendicular to their neighbors. Sequential short line segments

form a “zigzag” line, which need to be removed. Our approach to detect zigzag lines is

based on the Visvalingam -Whyatt algorithm[Visvalingam and Whyatt, 1993].

First, find “zigzag” which meets two conditions: 1) its effective area A is smaller than

a predefined maximum removable area Amax, and 2) its percentage of effective area

in whole polygon area P is smaller than a predefined maximum removable percentage

Pmax. The effective area of point is the area change of the polygon when adding and

removing this point. Second, if at least 3 of such points are consecutive, a zigzag line is

found.

Keep the two end points on the zigzag line and remove all other points. The zigzag lines

are removed.

4.1.4.2 Modeling

For all roof polygons, corresponding height is introduced from DSM to construct 3D

building polygons.
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4 Proposed Workflow

4.2 Workflow based on point cloud segmentation

4.2.1 Overview of workflow

Inputs of the point clouds (PC) based workflow (Figure 4.14) are TomoSAR point clouds.

For roof segmentation, RANSAC algorithm is employed to obtain plane fitting results.

Density based clustering (DB scan) and height local minimum based clustering are used

to segment point clouds. Boundary polygon segments are created by convex hull col-

lapsing. Boundary polygons are then regularized to building boundaries.

4.2.2 Preprocessing

Same as DSM based workflow, the building points need to be extracted out from To-

moSAR point clouds first. Since plane fitting approach (subsection 4.2.3) is used in

segmentation, instead of using ground filtering approach, the largest fitting plane in the

scene is considered as ground plan and points in it are taken as ground points.

TomoSAR point clouds are noisy compare to LiDAR point clouds, thus, a smoothing

procedure before segmentation is preferable. The procedure is similar to the local height

smoothing (subsubsection 4.1.1.1), with a different neighbourhood definition: a radius R

is predefined, for each point P , and a cylinder centered at P with radius R that extended

vertically is the neibourhood of P .

4.2.3 Plane fitting based Segmentation

Input of segmentation step is building point clouds. The steps are as follows:

1. RANSAC (explained in methodology) plane fitting algorithm is iteratively used to

extract planes which best fit most points in the point clouds;

2. A density based clustering algorithm is used on each plane extracted in 1st step.

Density-based spatial clustering of applications with noise (DBSCAN) is a data

clustering algorithm, given a set of points in some space, it groups together points
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Figure 4.14 Overview of workflow (PC based)



4 Proposed Workflow

Figure 4.15 Preprocessing workflow (PC based)

that are closely packed together (points with many nearby neighbors), marking as

outliers points that lie alone in low-density regions (whose nearest neighbors are

too far away) . This step is used to separate different roof surfaces on the same

RANSAC plane;

3. Height histogram of each cluster is then plotted (occurrence to height). In the

height histogram, the shape of the bins should follow Gaussian distribution, if

there exists only 1 roof plane. Additional peaks in height histogram indicate that

there might be more roof planes exist that contain more points that none roof

planes. To simplify the algorithm, local minimum is computed instead of local

maximum. This has advantage in recognizing sub-clusters in cases like what is

shown in Figure 4.17(b). In this case, the first peak is not a local maximum, thus

might lead problem if we find local maximum. A minimum points threshold is

defined to filter out clusters that have too less points. This step follows DBscan

clustering;

4. After local minimum based clustering, the sub-clusters are examined to see if they
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4.2 Workflow based on point cloud segmentation

need DBscan again. This is realized by comparing the area ratio of the convex

hull and the tightest out polygon areas. The bigger the ratio is, the more complex

the boundary polygon is, the more likely the points in the cluster are distributed

unevenly;

5. Now we look into height histogram again. Since each cluster now only has 1 peak

in its height histogram, if the bins on the sides contain very less points, they are

deleted as noise;

6. After clustering procedure, all 3 kinds of clusters are considered as roof segments;

7. Main directions of the scene are determined from histogram (Fig.4.19) analysis of

the angle between boundary points’ tangential direction and a certain direction,

e.g. y-direction.

Figure 4.17 shows height histogram of two example clusters. In left case, 3 local mini-

mums are shown, indicating the cluster can be further separated by local minimum into

4 sub-clusters. While in right case, 1 local minimum is shown, suggesting the cluster

can be separated into 2.

In Figure 4.20, for two example segments, red polygon is the Convex hull, while blue

polygon is the tightest out boundary polygon. In left case, points in cluster are more

likely distributed unevenly than in the right case.

4.2.4 Reconstruction

4.2.4.1 Boundary extraction and boundary polygon segmentation

Building boundary polygons are created by iteratively collapsing the convexhull of the

segment points.

Then, each boundary polygon is segmented by comparing the direction change and a

predefined threshold at each vertex in the boundary polygon. If the change of direction

is bigger, the polyline is split at this vertex.
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Figure 4.16 Segmentation workflow (PC based)



4.2 Workflow based on point cloud segmentation

(a) (b)

Figure 4.17 Height histogram of example clusters

4.2.4.2 Boundary refinement and regularization

For now, boundary polygon segments are available, as well as the main directions in the

scene. The next step is to refine and regularize boundaries.

For each main direction, a set of line equation can be built to fit boundary polygon

segments. For each boundary polygon segment, a straight line follows one main direction

can be found to be used as best approximation of it. After all fitting lines for boundary

polygon segments are found, intersubsection points between neighbor fitting lines are

computed, further connected, to form building roof boundary.

In the main direction boundary, parallel lines need to be adjusted if the distance between

them are small so that they can be presented as one main direction line. This is down

by following: searching for all parallel boundary segments from the longest Boundary

segment, if distance between them < Td, recomputed fitting line, until all parallel lines

are adjusted.

In Figure 4.20, (a) extracted boundary for 1 cluster; (b) segmented boundary, different

segments in different color; (c) main direction fitting lines to the boundary segments;

(d) refined boundary.
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(a) (b)

Figure 4.18 Convex hull and tightest out boundary polygon

4.2.4.3 Topology correction

1. Merging. If two of the extracted boundary polygons are intersected horizontally,

or one contains the other one, and the vertical height difference between them is

smaller than a threshold Tvd, they should be merged into one polygon. (Figure

4.24 (b))

2. Cropping. For polygon pairs polyi and polyj , who horizontally intersect each other

with vertical height difference bigger than the threshold Tvd, one of them need to

be cropped. This is decided as following: take out all points inside their intersect

part from TomoSAR point clouds, compute the vertical distance between each

point to the two polygons: Dpi and Dpj, then compute total distance of all the

points Di and Dj, by adding up all Dpi, adding up all Dpj. If Di > Dj, crop

polygon i. Otherwise crop polygon j. (Figure 4.24 (c))

4.2.4.4 3D model reconstruction

Again the 2D model is extruded to 3D model by adding height information. An example

is shown in Figure 4.25.
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Figure 4.19 Angle histogram of boundary points)

4.3 Comparison and Decision of the workflow

Both the presented workflow are data driven. Decision to chose which workflow to choose

depends upon several factors e.g., the accuracy of the reconstruction and computational

efficiency.

In presegmentaion stage, more efforts are made in DSM based workflow: 1) ground

filtering, 2) building masks, facades and data gaps extraction from point density map,

3) “non-surface” point height modification. The reasons for not including these steps in

the point clouds based workflow are as follows:

1) for ground filtering: the biggest cluster found after plane fitting is assumed to be

groud;

2) for information from Point density map: without the “non-surface” point height mod-

ification step, facades detection is not necessary. Since building regions are defined by

convex hulls, there is no need to detect building masks and data gaps on building.
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(a) (b)

(c) (d)

Figure 4.20 Refined polygon boundary

3) for points’ height modification: the RANSAC plan fitting procedure can dealing with

outliers.

However, the preprocessing in point based workflow may not be adequate. If the terrain

of tested area is more complex than can be fitted with a plane, ground filtering is still

needed. In some forms of buildings, the convex hull of points can not represent the

real shapes of the buildings, without building masks, facades and data gaps detection.

RANSAC algorithm fits planes to points, at places with rich facades points and very few

roof points, the roof plane will not be fitted, thus the building shape is not closed.
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Figure 4.21 Adjusted boundary polygon: (left) Td=2m, (right) Td=5m

Figure 4.22 Boundary polygon segmentation workflow



Figure 4.23 Boundary regularization

(a) Polygons before topology cor-

rection

(b) Polygons after merging (c) Polygons after cropping. Poly-

gons do not belong to target

building are removerd.

Figure 4.24 Example of topology correction



4.3 Comparison and Decision of the workflow

Figure 4.25 3D polygon model of the example building

In segmentation stage, image processing techniques are adoppted in DSM based work-

flow, while RANSAC plane fitting and clustering techniques are used in point based

workflow. Comparing to DSM based workflow, the points segments are more “indepen-

dent” to each other, as in clustering step, spatial relationships is not considered. While

in DSM based workflow, the spatial adjacency is a hidden constrain.

In reconstruction, as each polygon is regularized separately, lacking of the spatial adja-

cency the topological relationships might be changed if they were right before, which can

not be assured. When three or more planes intersect, how to decide the intersect nodes

becomes more tricky. When the roof polygons are flat, they do not directly intersect

to each other since they are connected by step edges. If the polygons have no overlaps

in x − y plane(top view), it is not possible to locate their intersecting edge, thus right

topological relationships can not be reconstructed.

Computational efficiency is another important fact to consider. Though computational

efficiency is of secondary importance, it still need to be stated that, the data amount

of unstructured TomoSAR point clouds is considerable. When large amount of data are

to be processed, not only computational efficiency, but also the computer performance

should be taken into account.
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Based on these considerations, the DSM based workflow is chosen.
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5 Tests and Evaluation

5.1 Tests of DSM based reconstruction workflow

5.1.1 Input data

TomoSAR point clouds of two large building in las Vegas city are used to test. The test

point clouds are generated from a stack of 25 images using Tomo-GENESIS software

developed at DLR [Zhu et al., 2013]. Figure 5.1 shows the two point clouds in 3D.

5.1.2 Parameters Setting

Through experiments and visual interpretation, the optimal input parameters for seg-

mentation and reconstruction were determined in following table.

Table 5.1 Parameters setting of tested data sites

Parameters data site 1 data site 2

Ground filtering [c, s, w, h] [3, 0.1, 500, 8]
[3, 0.015, 400, 10]

[3, 0.015, 400, 20]

Thresholding SD map [TBM , TF ] [5 , 16] [5, 16]

Modifying “non-surface” points height

[Nmax, Nmax, H, L]
[20, 200, 1.8, 9] [20, 200, 1.5, 8]

Denosing Std. of the noise 3 3

Segmentation [Hmin, Hmax] [0.45, 3] [0.45, 3]

Minimal quadtree grid length 2 2

Removing zigzag line [Amax, Pmax] [15, 0.1] [15, 0.1]

55



(a) Test site 1

(b) Test site 2

Figure 5.1 TomoSAR point clouds on two data sites, height is corlorcoded



5.2 Evaluation

5.1.3 Results

The results of local height reassigning and ground filtering are shown in Figure 5.2 and

Figure 5.3. Based on the hight histogram of above ground points(Figure ??), in data

site 2, the above ground points are further separated using ground filtering. The results

are shown in Figure 5.3(e) and (f).

The Segmentation results before and after constrained merging are show in Figure 5.6.

The regularization results are shown in Figure 5.7. Figure 5.8 show final 3D models

reconstructed.

5.2 Evaluation

The building points are plotted with the reconstructed models in Figure 5.9. The root

mean square (RMS) error of all points from respective planes are computed. The results

are shown in Table 5.3 and Table 5.3.

The overall RMS for datasite 1 is 3.19 m, while for datasite 2 is 3.76 m. For datasite 1,

the large RMSs in segment 2, 7, 10 come from very high local points. While for datasite

2, the large RMSs in segment 11 and 12 come from merging several small segments in

that area. In point cloud, the range of height of points are large. In segmentation step,

those small segments are merged together, and given a mean height.

For object extraction from amplitude image, the result of potential building masks is

better in HMRF algorithm, while the result of potential facades is better in adaptive

thresholding algorithm. However, the interpretation in both algorithms is difficult.
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5 Tests and Evaluation

Roof

index
Roof area(m2)

Number of pts

in roof region

Mean(m) of dis-

tance between pts

and roof

RMS(m) of dis-

tance between pts

and roof

All 214944,75 241624 3,77 3,19

1 1003,5 567 5,62 6,05

2 139,5 76 6,85 7,90

3 5019,75 3823 5,14 6,30

4 571,5 238 2,88 3,53

5 47371,5 47992 2,00 2,99

6 859,5 586 4,44 5,14

7 283,5 233 6,93 12,71

8 1867,5 1855 3,60 5,83

9 24187,5 27004 2,83 4,01

10 571,5 246 8,77 9,50

11 427,5 276 2,45 3,36

12 1147,5 1029 4,31 5,35

13 859,5 898 6,22 6,95

14 859,5 1016 2,53 3,26

15 43627,5 55928 2,02 3,06

16 20254,5 24261 1,69 2,41

17 283,5 382 2,89 3,34

18 139,5 25 3,51 4,46

19 139,5 242 3,63 4,54

20 3019,5 225 5,15 5,77

21 23107,5 31085 1,71 2,36

22 10030,5 12185 1,53 2,23

23 1579,5 1707 2,90 3,74

24 4603,5 4951 1,99 2,73

25 1003,5 768 3,44 4,28

26 139,5 130 4,62 5,79

27 21847,5 23896 2,02 2,84

Table 5.2 Evaluation of data site 1
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5.2 Evaluation

Roof

index
Roof area(m2)

Number of pts

in roof region

Mean(m) of dis-

tance between pts

and roof

RMS(m) of dis-

tance between pts

and roof

All 132635 129569 3,45 3,76

1 8612 3310 2,76 3,95

2 8633 8673 2,11 2,92

3 4233 753 2,80 3,93

4 5505 6321 2,44 3,25

5 18698 23224 2,99 3,82

6 6504 7542 1,78 2,68

7 46573 47098 1,68 2,36

8 7151 6539 1,97 2,54

9 2136 1564 1,95 2,67

10 4142 3281 3,26 5,08

11 4117 1607 8,99 13,19

12 1283 1905 13,07 15,44

13 1177 1296 3,15 3,87

14 7376 8214 1,77 2,44

15 6083 8047 1,34 1,85

16 412 195 3,17 4,16

Table 5.3 Evaluation of data site 2
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(a) Original point clouds (b) Point clouds after local height reassigning

(c) Above ground point clouds (d) Ground point clouds

Figure 5.2 From original point clouds to ground filtering results, test site 1



(a) Original point clouds (b) Point clouds after local height reassigning

(c) Above ground point clouds (d) Ground point clouds

Figure 5.3 From original point clouds to ground filtering results in separate layers, test

site 2



(a) Interpolated DSM (b) Denoised DSM

Figure 5.4 DSM and denoised DSM over building area, test site 1

(a) Interpolated DSM (b) Denoised DSM

Figure 5.5 DSM and denoised DSM over building area, test site 2



(a) datasite1, before (b) datasite1, after

(c) datasite2,before (d) datasite2, after

Figure 5.6 Segmentation results, before and after constrained merging



(a) datasite1 (b) datasite1

(c) datasite2 (d) datasite2

Figure 5.7 Quardtree regularization results and “zig-zag line” removal results



(a) data site 1

(b) data site 2

Figure 5.8 Reconstructed building models



(a) data site 1

(b) data site 2

Figure 5.9 TomoSAR points in building range are plotted with the reconstructed models.

(a) Building polygons with index (b) Point cloud in top view

Figure 5.10 Building roof polygons and original point clouds, data site 1.



(a) Building polygons with index (b) Point cloud in top view

Figure 5.11 Building roof polygons and original point clouds, data site 2.





6 Discussion

6.1 Discussion of the proposed workflow

6.1.1 Discussion of preprocessing

The purpose of the preprocessing is to provide better input data for DSM interpola-

tion.

Building masks are very important since they control the area of buildings in DSM.

Building masks are extracted from Point Density map in the proposed workflow, based

on the assumption that there are more points on building parts than in ground. The

contextual information between building masks, facades and data gaps are analysed and

used to refine extracted building masks. However, the point density assumption is not

always right. When there are few points on roofs, in the thresholding and morphological

operations, the extracted building masks may not be complete.

The parameters setting in height modification is assigned manually. In future, an esti-

mation may need to decide best parameters.

In the tests of the workflow, some of the parameters are not constantly chosen, meaning

more analysis of parameters setting is needed to increase the level of automation of the

proposed workflow.

The proposed workflow needs supervision, especially in morphological operations when

processing Point Density maps. Instead of simply operations such as opening and closing,

more reliable operations “Openging by reconstruction” and “Closing by reconstruction”

are used. However, the quality of morphological operations depends on the shapes of
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objects. Since usually multiple morphological operators are needed to give better results,

the number of operators, the sequence of the morphological operations, the repeating

time of each operator, and the parameter used in each operator are all not fixed. The

effiency of the workflow would be largely increased if this part can be unsupervised with

results no worse than current results.

6.1.2 Discussion of Segmentation

The building DSM is firstly oversegmented using watershed transform. Then constrained

merging is applied to achieve final roof segments. One limit of watershed transform is

that, the gradient contours are not closed, so the first guess of threshold of watershed

segmentation is not easy to choose: too small lead to sever over-segmentation that is

difficult merge, and too large lead to under-segmentation and lose of roof segments.

In the test data sites, the threshold is set to several values and the decision is made

manually. Better solutions are needed in future.

Watershed transform exploits gradient jumps, which correspond to step edges in roof

structure. Besides step edges, another character that distinguishes different connected

roof surfaces is the roof surfaces’ gradient orientation. In the proposed workflow, the

information of gradient orientation is not used yet. The building roofs in test sites are

mainly flat, or tilted with very small slopes, so that the proposed workflow is sufficient.

Future study of the gradient orientation is needed. The original point clouds are noisy,

while after preprocessing and DSM denoising, if the inclination difference of connected

roof surfaces is small, they might not be separable. The minimal separable inclination

angle is of interest.

For now, only several large buildings are separately reconstructed. Small buildings with

multi-roof structures are hard to reconstruct. The minimal size or the scale of multi-roof

building that can be reconstructed is not yet explored.
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6.2 Discussion of more general questions

6.1.3 Discussion of Reconstruction

In reconstruction step, minimal bounding ellipse selects roof segments that fit the shape,

thus simplified regularization for these segments. The “ellipse” here is actually a shape

model, and the advantage of “minimal regularization effort” in model driven approach is

clearly shown. More simple shape models can be added, such as semi-circle. Moreover,

combinations of simple shapes woule also be interesting.

The proposed quartree regularization modified with average polygon complexity, thus

avoid the change of topological relationships between adjacent segments. In this ap-

proach, since all boundary pixels smaller than minimal size are assigned to foreground,

small structures which should be deleted are actually amplified. To improve the results,

up-sampling the image might be helpful. In this case, one pixel is up-sampled into sev-

eral pixels, so that area controlled by each pixel is decreased, and results from quadtree

regularization will be better.

6.2 Discussion of more general questions

6.2.1 Categories of existing methods: which is more suitable?

DSM or point clouds

Efforts have been made to reconstruct building models from both DSM segmentation and

poing clouds segmentation. In LiDAR community, DSM segmentation based approaches

are mostly researched in the early years of LiDAR building reconstruction, when LiDAR

points were not available in sufficient point density to apply region-growing. From this

aspect, DSM based segmentation is more suitable for TomoSAR point clouds.

Data driven or Model driven

In recent years, more authors use data driven approaches mainly because the point

density and accuracy of input data are increased, so that and topological relationships

between roof segments can be solved. While From this aspect, for TomoSAR point
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clouds, data driven approach is not enough to reconstruct building models in larger

area, where point density variation is large. Pure model driven approach requires prior

knowledge of study area to define model library thus is not adaptive to different data

sites. Combining data driven and model driven is a good way, i.e., data driven as main

approach to process areas with large point density, and model driven as constrains to

process the rest of data. In fact, the reconstruction results of dense area can be used as

feedback to build the model library, so that areas covered with less amount of points may

be reconstructed, and the effort of building model library is decreased since a “leaning”

process is included.

In the proposed workflow, ellipse fitting is performed in reconstruction step, as ellipse

shape is assumed to be in the “shape library” of building roofs. While the “shape library”

need to be expanded in order to better model the reality as well as reconstruct roofs

with lower point density. One possible way to dynamically train the “shape library” is

showed following, with an example.

Notice that in Figure 6.1, two similar shapes exist in upper part of the point clouds.

One of them is nearly closed in 2D view, with rich points each facades. Since the two

shapes are near, they might have very similar structure.

In Figure6.2, two nearby structures are similar. Morphlogical operations closed the

structure, and the more regular one is used as a feature to match the other. Matched

results together with thresholded SD map are taken as final results for shape matching.

Cross-correlation is used.

The assumptions behind are: 1) In the same region, buildings usually are constructed

in similar style; 2)Very tall buildings are usually small in 2D view, thus have relatively

simple roof structures.

To built a shape library suitable for studying area, upper layer of the points should

be separated out and learned. Each founded shape will be added to the library. Con-

strains should be made, such as similarity to accept a shape, and longest distance to

considered as “near”. If such library can be build, it will be very helpful in large area

reconstruction.
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(a) All points (b) up layer

Figure 6.1 TomoSAR point clouds on at one site

6.2.2 Amplitude image

Figure 6.3 shows SAR amplitude image over the convention center in las Vegas. As can

be seen, some bright lines and patches are clearly visible that are potentially edges of

roofs or part of building masks.

The intention of using amplitude image is to extract lines/edges and jointly use this

information together with the DSM- or point cloud-based workflows to improve the

reconstruction. Preliminary experiments have been done in this regard, and are shown

in following sections.

6.2.2.1 General steps in processing amplitude image

The amplitude image is first denoised by non-local mean algorithm. Then object of in-

terest are extracted, and two independent methods are tested: 1)local adaptive thresh-

olding, or 2)Hidden Markov Random Field Model and its Expectation-Maximization.

Knowledge of building masks and facades are included as constrains in following mor-

phological operations. Finally, the characters of detected objects are extracted using

Hough Transform.

73



(a) thresholded SD of upper points (b) closed shapes found

(c) contour of 1 found shape (d) feature matching result for another shape

(e) Detected shapes with thresholded SD map (f) Final shapes

Figure 6.2 Shape matching example
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6.2.2.2 Object extraction

Two methods are test. They are both independent, and aiming at extract objects of

interest.

Adaptive Thresholding

Thresholding is a commonly used technique in image processing which segment an image

by setting pixels whose intensity values above a threshold to a foreground value and the

rest to a background value. Conventional thresholding operators use a global threshold

for all pixels, the threshold used in adaptive thresholding is changed over the image,

depending on the local intensity change. The assumption is that smaller image regions

are more likely to have approximately uniform illumination.

Local adaptive thresholding is used in proposed workflow. To finding the local threshold,

the intensity values of the local neighborhood of each pixel are statistically examined.

The statistic which is most appropriate depends largely on the input image. The mean

of the local intensity distribution is used.

In local adaptive thresholding, the size of the neighborhood need to be large enough to

cover sufficient foreground and background pixels, otherwise a poor threshold is chosen.

On the other hand, choosing regions which are too large can violate the assumption of

approximately uniform illumination. In this work, two neighborhood sizes A1 and A2

are chosen to extract potential building masks and facades of interest.

Hidden Markov Random Field Model and its Expectation-Maximization

Markov random fields (MRFs) have been widely used for computer vision problems.

The HMRF-EM(hidden Markov random field and its expectation-maximization) frame-

work was first proposed for segmentation of brain MR images[Zhang et al., 2001]. The

used program is implemented by [Wang, 2012]. For detailed explain [Wang, 2012] is

referred.

In the HMRF-EM framework, first an initial segmentation is generated using k-means

clustering on the amplitude. Since we want bright edges, potential building masks, and

the back ground, “k” is set to 3. The initial segmentation provides the initial labels, and
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future refined in the HMRF.

6.2.2.3 Knowledge based Morphological Operations

Potential Building masks

First step after object extraction is to remove foreground objects that are smaller than

typical building size in IAT1. Opening by reconstruction is used to get IAT1O. To remove

unwanted objects in background, first image is converted to its compliment image IAT1C ,

then two constrains are defined, which referred as additional “Knowledge”.

The first constrain is the size of segment. Segments whose size is smaller than TaMin

should be removed, while those with size >= TaMax should be kept.

The second constrain is the segment complexity. Recall the process of data gaps classi-

fication in preprocessing of DSM processing, the data gaps inside building masks tend

to be more complex than those who are outside of building masks, and usually adjacent

to one facade. The segment complexity of all segments whose size fulfill first constrain

is computed, and segments whose complexity >= Tc should be removed.IAT1K is the

image after applying “knowledge”.

The image is converted to its compliment image IAT1BM to get the potential building

masks.

Potential Facades

For the results from adaptive thresholding, since there are plenty of details in thresholded

image IAT2, the orientation of building is introduced as the first additional “Knowledge”.

While it is not needed for the results from HMRF.

The second “Knowledge” is the ratio of the length and the width of the segments. The

assumption here is that the potential facades are narrow objects.

The orientation of building means the main directions of the buildings. To estimate it,

first a global threshold is applied to the image to show only high intensity pixels. The

threshold is set to a large value, so that only some of the facades will remain, because
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of the edge effect. Then for each connected component Si, its tangent direction ~ti and

normal direction ~ni is computed. All the tangent directions and normal directions are the

main directions. To simplify the following processes, the directions with small difference

are merged to number N . i = 1...N .

Morphological structuring line elements are created using the detected main directions,

described by the length of the line element Li and the orientation θi of it. The number

of the morphological structuring elements N is the number of main directions N . Then,

each element is applied to open the image IAT2, followed by an area open operator to

remove small objects whose size < Tf , resulting in IAT2i. All IAT2i are put together to

get IAT2N , the detected potential facades.

Now the second “Knowledge” is applied, to remove objects whose ratio of the length

and the width does not fulfill the constrain. The final image is denoted as IAT2F .

6.2.2.4 Hough Transform

To get vectors of detected objects, so that the extracted objects can be transformed to the

UTM (Universal Transverse Mercator) coordinate which contains point clouds, Hough

transform is applied to both IAT1BM and IAT2F (explained in subsection 3.4.1).

The advantage of Hough transform is that it only extract straight lines, which is much

more accurate than simplifying traced boundaries in raster images.

6.2.2.5 Preliminary experiment results

Input data

The input data is SAR ampiltude image over test site 1 at the convention center of las

Vegas. The input data is shown in Figure 6.3.

Results

The results of extracting object using adaptive thresholding are shown in Figure 6.3 to

Figure 6.8. The detection results of Potential Building Masks and Facades are shown in
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Figure 6.3 Amplitude Image of Convention Center, las Vegas

Figure 6.4, Figure 6.5.

The results of extracting object using HMRF are shown in Figure 6.6 to Figure 6.7.

Figure 6.8 shows the extracted potential facades and building masks together.

The information extracted from amplitude image is not yet combined with reconstruction

results from TomoSAR point clouds. SAR coordinates can be transformed to UTM

coordinate, if height is introduced. When putting the extracted straight lines together

with reconstructed building models from TomoSAR point clouds, the straight lines can

be used to increase accuracy of the building models. If the quality of extracted building

masks and line segments is high, “Cell Decomposition” is also worth trying. However,

because of the layovers and shadows in SAR images, building masks and line segments

is not very easy to identify. For now, only the results of building regions without strong

layovers are looking good.
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(a) Adaptive thresholding result (b) Opening by reconstrucion

(c) Compliment image of (b) (d) All Segments bigger than Ta, labeled

(e) Segments fulfill constrains (f) Results for potential Building Masks ex-

tracted from Amplitude image

(g) Hough lines(green), setting 2 (h) Hough lines(green), setting 1

Figure 6.4 Results for potential Building Masks extracted from Amplitude image, Using

Adaptive thresholding.



(a) Amplitude image (b) Adaptive thresholding result

(c) Detected objects with orientation 1 (d) Detected objects with orientation 2

(e) All detected objects, labeled (f) Objects fulfill constrains

(g) Hough lines(green), setting 1 (h) Hough lines(green), setting 2

Figure 6.5 Results for potential Facades extracted from Amplitude image, using adaptive

thresholding



(a) K-means segment result, k=3 (b) Refined segments by HMRF.

(c) Two classes of segments are put together as

foreground

(d) Complement image of (c), small segments

are removed.

(e) Complement image of (c), small segments

are removed.

(f) Segments fulfill constrains

(g) Results for potential Building Masks (h) Hough lines

Figure 6.6 Results for potential Building Masks extracted from Amplitude image, Using

HMRF.



(a) Refined segments by HMRF. (b) One class of segments is considered as fore-

ground

(c) Remove small segments from (b) (d) Label connected components in (c)

(e) Remove segments based on knowledge of fa-

cades

(f) Segments fulfill constrains

Figure 6.7 Results for potential Facades extracted from Amplitude image, Using HMRF.



(a) From adaptive thresholding (b) From HMRF

Figure 6.8 Results for potential facades and building Masks





7 Conclusion and Outlook

The research explored in this thesis aimed at exploring the potential of building roof

reconstruction using unstructured spaceborne point clouds generated by tomographic

processing of meter resolution TerraSAR-X spotlight image stacks. Two complimentary

data-driven workflows, one working over rasterized DSM and other utilizing direct 3-

D points, have been proposed. Both workflows are modular and reconstructs building

models by segmenting individual roof surfaces. Taking into the account the computa-

tional efficiency, DSM based workflow is however preferred and has been detailed in this

thesis.

Briefly, the developed DSM based workflow first extracts the building regions/pixels via

ground filtering approach from interpolated and denoised DSM - generated by exploiting

height and contextual facade information. Then, a novel watershed based segmentation

via constrained merging scheme is employed is developed to segment individual roof sur-

faces. Quadtree regularization under constrains of polygon complexity is later utilized to

simplify the outlines of these segments. Finally height is associated to each reconstructed

polygonal segment to generate prismatic 3-D building model. Results are demonstrated

over two large building complexes in the city of Las Vegas using TomoSAR point clouds

generated from data stacks acquired from ascending orbit only.

In addition to exploitation of spatial geometric information, preliminary experiments us-

ing SAR amplitude (backscattering) information have also been done where local adapa-

tive thresholding and HMRF with its expectation-maximization algorithm are utilizedsed

to extract possible building masks and facades by defining the sizes and orientations of

different objects. The results have shown that, the bright edges and patches in amplitude

images can be extracted, but the interpretation is quite challenging, especially in areas
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with severe layovers. The edges can be potential facades where edge-effecct is obvious,

while the near-edge regions may correspond to either parts of roofs or ground. These

regions are strongly affected by geometrical effects caused by side-looking SAR conse-

quently rendering the extraction and 3-D reconstruction of buildings using amplitude

only very difficult.

In future, the emphasis would be to jointly fuse the spatial geometric information to-

gether with the corresponding SAR amplitudes to develop a more robust roof recon-

struction methodology. The developed approach would then be tested over large areas

containing buildings with different sizes/scales. In addition to this, the potential of tak-

ing a more general prismatic model to more specific polyhedral roof modeling could also

be explored. In this direction, possible steps would to adopt a model-based approach

where a defined grammar with a library of primitives representing different roof shapes

could be employed.
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