
Hybrid Parallel Simulation of Helicopter Rotor Dynamics
Melven Röhrig-Zöllner1, Achim Basermann1, Johannes Hofmann2,

Margrit Klitz1, and Lukas Schmierer1

1DLR, Simulation and Software Technology
2DLR, Institute of Flight Systems

Coupled rotor simulation

Rotor simulation: the S4 code

• Simulates rotor blade movement, angles and forces
• High resolution

default: 20 blade elements, 2◦ steps, or (much) finer
• Dynamic-response problem:
− Sectional airloads: semi-empirical unsteady analytical

model
includes compressibility, yawed flow and dynamic stall

− Blade dynamics: modal synthesis approach
→ fast

Rotor discretization

• Discretized rotor positions in space xrotor(t) ∈ R3n

• Change according to

ẋrotor(t) = Frotor (xrotor(t), Γrotor(t)) ,

Γrotor(t) = fcirculation (xrotor(t), vinflow(t)) (1)

with circulation on the blades Γrotor and inflow velocity vinflow

Wake simulation: the Freewake code

• Simulates the flow around a helicopter’s rotor
• Vortex-lattice method:
− Wake structure discretized by a set of elements
− Circulation on the blades creates vortices
− Calculates wake-lattice perturbation

→ explicit vortex tracing without numerical dissipation
→ very fast compared to CFD

Wake discretization

• Rotor wake modeled by Lagrangian markers in space
xwake(t) ∈ R3m with m� n

• Change according to

ẋwake(t) = Fwake (xwake(t), xrotor, Γrotor) ,

vinflow(t) = finflow (xwake(t), Γrotor) (2)
• Markers depend on the history of xrotor and the circulation

Γrotor leading to the integral equation

vinflow(t) =
∫ t

0
F̂wake

(
t , xrotor(̂t), Γrotor(̂t)

)
dt̂ (3)

Rotor wake dynamics

Vorticity transport equation

Vortices move with the flow except for stretching/tilting and
dissipation:

D ~ω

Dt
=
(
~ω · ~∇

)
~v + ν~∇2~ω

Stretching/tilting is implicitly respected in a moving wake grid.

Model assumptions

• Vorticity is concentrated in a thin layer.
• Coarse discretization requires subgrid modeling:
− (Tip) vortex roll-up

(vorticity concentrates radially at vortex’ centers)
− Vortex core radii (vorticity smoothly distributed)

Parallelization

Vortex methods

• Most expensive operation: Calculating induced velocities in
the wake (Biot-Savart):

~v(~xi) =
1

4π

ngridcells∑
j

∫
Cellj

~ω× (~xi − ~y)

(‖~xi − ~y‖2 + r2
c )

3
2

d~y

• Required at every grid point: naive runtime O(n2).
• Non-trivial integration formula from subgrid models.
→ Fast multipole methods (FMM) not easily applicable!
• Idea: Approximations of different accuracy depending on the

distance ‖~x − ~y‖.
• Performance compute-bound, small data.

OpenMP and MPI parallelization for multicore CPUs

• Well encapsulated, all data replicated on all processes.
• Parallelization of ~v(~xi) over grid points i .
• Some intermediate data recalculated on every thread.
• Dynamic load balancing over processes

with static OpenMP scheduling

OpenACC parallelization for GPUs

• Dedicated code for OpenACC for specific data dimensions.
Only calculations for the complete grid executed on GPUs.

• Testable on CPUs.
• High level code, but still more complex than CPU code.
• No vector-reductions in OpenACC
→ Bad loop nest ordering
• Hybrid calculation with GPUs+CPUs possible
→ Not useful, yet: data dimensions too small!

Table 1 : Timings for one revolution on a workstation with 2x12 core Intel
Xeon E-2670 and NVidia Tesla K40m

Timestepping Parallelization Time [s]

AB-2 Single core 28.5
OpenMP (12 cores) 9.2
OpenMP (24 cores) 8.9
MPI (24 proc.) 8.0
MPI+OpenMP (2x12) 8.4
OpenACC (K40m) 15.8

Expl. Euler OpenMP (12 cores) 26.5

Time integration schemes

Rotor mechanics: Runge-Kutta method

• Runge-Kutta-Gill-4 (variant of classical RK4)
• Uses substep-predictions at t + 1

2.
• Not all parts of the model Frotor are updated in each substep:

xrotor(t + 1) = xrotor(t) + b1k1 + b2k2 + b3k3 + b4k4,

k1 = F̃rotor(t , . . . )

k2 = Frotor(t +
1
2

, . . . )

k3 = F̃rotor(t +
1
2

, . . . )

k4 = Frotor(t , . . . )

(In steps with F̃rotor, right hand side is updated approximately
reusing results from the previous substep.)

Wake simulation: multistep method

• Variable step size Adams-Bashforth-2 (two-step method)
• Requires induced velocity from previous timestep:
− No data is available for new grid points.

(directly behind the rotor blades)
→ Use explicit Euler with smaller timesteps there.
• Predictions (second order) for vinflow.
• Complicates calculating/tracking velocities in the wake:

See figure on the right:
t = 0.0 : No old data available, start with explicit Euler.
t = 0.5 : Use the two-step method.
t = 1.0 : Use the two-step method for black dots,

explicit Euler for red dots.
t = 1.5 : Combine old data, and use the two-step method.
(Scheme more complex with variable step size and smaller
explicit Euler steps!)

vt

vt−0.5,

vt−0.5,

v̄t

t = 0

t = 0.5

t = 1

t = 1.5
vt−0.5 = vt−0.5 + v̄t−0.5,

vt

vt

vt

Coupling schemes

Weak coupling

• Only for quasi-steady operational conditions
• Rotor and wake are updated in a loop.

See figure on the right.
• Needs another, simple wake model for the first step.
• Coupling data captured over one revolution

vinflow, resp. xrotor, Γrotor

→ Apply low-pass filter to remove irregularities
Frequencies not resolvable by discretization

Strong coupling

• Wake evaluated inside Runge-Kutta-scheme.
• Wake still uses its own time-stepping.

(RK4 for the wake too costly!)
• Predict vinflow(t + ∆t).
• Circular dependence of vinflow(t) and Γrotor(t)
→ Idea: use small fixed-point iteration (untested)

Plans for the future

Versatile Aeromechanics Simulation Tool (VAST)

• Simulation of freely flying helicopters
• Independence from commercial/proprietary codes.
• Modern, adaptive and future-proof high performance

framework without simplifications.

Planned features

• Various rotor configurations
multiple rotors, co-axial, tilt,. . .

• Account for fuselage aerodynamics
and fuselage-rotor interference

• Arbitrary arrangement of the rotors
(even non-symmetric)

• Model for the pilot
• Support for wind turbines

DLR – German Aerospace Center Simulation and Software Technology Institute of Flight Systems: Helicopters


