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Coupled rotor simulation

Rotor simulation: the S4 code

e Simulates rotor blade movement, angles and forces
¢ High resolution
default: 20 blade elements, 2° steps, or (much) finer
® Dynamic-response problem:
— Sectional airloads: semi-empirical unsteady analytical
model
includes compressibility, yawed flow and dynamic stall
— Blade dynamics: modal synthesis approach
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Rotor wake dynamics

Rotor discretization

* Discretized rotor positions in space Xoior(f) € R>"
e Change according to

Xrotor(t) — |:rotor (xrotor(t)v I_‘rotor(l‘)) )
I—‘rotor(t) — fcirculation (xrotor(t), Vinflow(t)) (1)

with circulation on the blades TI';oor and inflow velocity Vinsiow

Wake simulation: the Freewake code

e Simulates the flow around a helicopter’s rotor
® \ortex-lattice method:
— Wake structure discretized by a set of elements
— Circulation on the blades creates vortices
— QCalculates wake-lattice perturbation
— explicit vortex tracing without numerical dissipation
— very fast compared to CFD

Wake discretization

* Rotor wake modeled by Lagrangian markers in space
Xwake(f) € R with m > n
® Change according to

Xwake (!) = Fwake (Xwake (), Xrotor, Irotor) »
Vinflow (1) = Finflow (Xwake (%), T'rotor) (2)

® Markers depend on the history of X,oor and the circulation
I'otor leading to the integral equation

Vinflow(t) = J

0

t

AN

Fuwake (t, xrotor(?), rrotor(ﬂ) dt (3)

Vorticity transport equation

Vortices move with the flow except for stretching/tilting and
dissipation:

D® L=\ o S0

Dr = (w-V) V+vWew
Stretching/tilting is implicitly respected in a moving wake grid.

Model assumptions

e \orticity is concentrated in a thin layer.
e Coarse discretization requires subgrid modeling:
— (Tip) vortex roll-up
(vorticity concentrates radially at vortex’ centers)
— Vortex core radii (vorticity smoothly distributed)
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Parallelization

Vortex methods

® Most expensive operation: Calculating induced velocities in
the wake (Biot-Savart):

. Ngridcells J (I,) % ()_(’, B }_/;)

V(%) = - u
(1% — 712+ 2

dy

%
I Gel
* Required at every grid point: naive runtime O(n?).

e Non-trivial integration formula from subgrid models.
— Fast multipole methods (FMM) not easily applicable!

® |dea: Approximations of different accuracy depending on the

distance || x — y/|.
e Performance compute-bound, small data.

OpenMP and MPI parallelization for multicore CPUs

e Well encapsulated, all data replicated on all processes.
e Parallelization of V(X;) over grid points i.
® Some intermediate data recalculated on every thread.

® Dynamic load balancing over processes
with static OpenMP scheduling
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OpenACC parallelization for GPUs

e Dedicated code for OpenACC for specific data dimensions.
Only calculations for the complete grid executed on GPUs.
® Testable on CPUs.
e High level code, but still more complex than CPU code.
® No vector-reductions in OpenACC
— Bad loop nest ordering
e Hybrid calculation with GPUs+CPUs possible
— Not useful, yet: data dimensions too small!

Table 1 : Timings for one revolution on a workstation with 2x12 core Intel
Xeon E-2670 and NVidia Tesla K40m

Timestepping Parallelization Time [s]
AB-2 Single core 28.5
OpenMP (12 cores) 9.2
OpenMP (24 cores) 8.9
MPI (24 proc.) 8.0
MPI1+OpenMP (2x12) 8.4
OpenACC (K40m) 15.8
Expl. Euler OpenMP (12 cores) 26.5
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Time integration schemes

Rotor mechanics: Runge-Kutta method

® Runge-Kutta-Gill-4 (variant of classical RK4) [. * * ¢
e Uses substep-predictions at t + 3.
* Not all parts of the model F,.1r are updated in each substep: ° )\ )\ )\
Xrotor (£ + 1) = Xrotor(1) + b1Ky + ba2Ko + bsks + bsks, <=
e Vi t=0
k‘| —Frotor(t,...) { L 4 4 L 4
1
k2 — Fro'[or(ZL —+ 51 SR )
. 1 @ @ @
kSZFrotor(t+§1---) U

k4 — Frotor(t, - )

(In steps with IErotor, right hand side is updated approximately
reusing results from the previous substep.) * * ® ¢

Wake simulation: multistep method ¢ t—¢ ¢ t=0.5

e Variable step size Adams-Bashforth-2 (two-step method)
® Requires induced velocity from previous timestep:
— No data is available for new grid points. [0 ° ° ° °

(directly behind the rotor blades)
— Use explicit Euler with smaller timesteps there. ( . ) ) )
® Predictions (second order) for Vinsiow-
e Complicates calculating/tracking velocities in the wake: Vi-05; F— 1
See figure on the right: T ! v, 1 *
t = 0.0 : No old data available, start with explicit Euler. B
t = 0.5 : Use the two-step method. v ¢ o — o ¢
t = 1.0 : Use the two-step method for black dots,
explicit Euler for red dots. o . . -
t =1.5: Combine old data, and use the two-step method. (
(Scheme more complex with variable step size and smaller
explicit Euler steps!) ? ? ? *
Vi—05 + Vi—05 T+ Vi—05; i 15
L 4 4 4 o—
Vi
1 @ L L o—

Coupling schemes

Weak coupling

(\/Start ‘
e Only for quasi-steady operational conditions
® Rotor and wake are updated in a loop. l
See figure on the right.
® Needs another, simple wake model for the first step.
¢ Coupling data captured over one revolution
Vinflow, I€SP. Xrotor, rrotor
— Apply low-pass filter to remove irregularities
Frequencies not resolvable by discretization F

Initialize with
simple wake
model

Rotor aeromechanics:
simulate 3 revolutions

Main simulation loop

Wake aerodynamics:
simulate 3 revolutions

Strong coupling l

Rotor aeromechanics:
simulate 3 revolutions

® Wake evaluated inside Runge-Kutta-scheme.

® Wake still uses its own time-stepping. l
(RK4 for the wake too costly!) T T
® Predict Vinfiow(t + At). o T —
e Circular dependence of Vintiow(t) and Trotor(t) \\\Cf’fvergenf/e/?///
— |dea: use small fixed-point iteration (untested) T /
j;
((Stop \\

Plans for the future

Versatile Aeromechanics Simulation Tool (VAST)

Planned features

e Various rotor configurations
multiple rotors, co-axial, tilt,. . .

® Account for fuselage aerodynamics
and fuselage-rotor interference

e Arbitrary arrangement of the rotors
(even non-symmetric)

® Model for the pilot
e Support for wind turbines

e Simulation of freely flying helicopters
* Independence from commercial/proprietary codes.

® Modern, adaptive and future-proof high performance
framework without simplifications.
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