Atmospheric CO\textsubscript{2} Sensing with a Random Modulation Continuous Wave Integrated Path Differential Absorption Lidar

Mathieu Quatrevalet, Xiao Ai, Antonio Pérez-Serrano, Pawel Adamiec, Juan Barbero, Andreas Fix, Jose Manuel G. Tijero, Ignacio Esquivias, John G. Rarity and Gerhard Ehret

Abstract—We propose an integrated path differential absorption (IPDA) lidar system based on a hybrid master oscillator power amplifier (MOPA) and single photon counting detection for column-averaged measurements of atmospheric CO\textsubscript{2}. The random modulated continuous wave (RM-CW) approach has been selected as the best suited to the average output power of several Watt from a hybrid and monolithically integrated MOPOAs. A compact RM-CW IPDA lidar instrument has been designed and fabricated. High sensitivity and low noise single photon counting has been used for the receiver. Co-located 2 km horizontal trial path experiments with a pulsed system and in-situ measurements were performed for comparison. The RM-CW IPDA lidar instrument shows a relative accuracy of the order of about ±10 % or ±40 ppm CO\textsubscript{2} concentration in absolute terms. The measurements qualitatively demonstrate the feasibility of CO\textsubscript{2} IPDA measurements with a RM-CW system.

I. INTRODUCTION

C
arbon dioxide (CO\textsubscript{2}) is the major anthropogenic greenhouse gas contributing to global warming and climate change. Due to gaps in the understanding of the carbon cycle, a better knowledge of the spatial and temporal distribution of the sources and sinks of CO\textsubscript{2} at the Earth’s surface is required for appropriate policy-making. In the so-called top-down approach, the sources and sinks are inferred from the observed spatial gradients in the atmospheric CO\textsubscript{2} column concentration, making use of atmospheric transport models and the inverse modeling technique [1]. However, at present, the concentration is mainly measured in-situ at a number of surface stations that are very sparsely and unevenly distributed over the planet. While some passive instruments already provide global maps of the CO\textsubscript{2} column, they are prone to interference from aerosols and thin clouds, and are typically not sensitive enough in the lowermost layer of the troposphere, where the gradients are the strongest [2], [3]. Furthermore they cannot provide measurements at high latitudes and during night time. Future space-borne active missions based on the integrated path differential absorption (IPDA) technique have the potential to overcome these limitations and close the gap [4], [5].

Typical laser sources currently used for gas sensing in IPDA systems (or its range-resolving counterpart, the differential absorption lidar (DIAL)) are solid state lasers (SSLs) working in pulsed regime. They emit ns pulses with high energy at low to medium repetition rate (typical values are 10-50 ns, ∼10-50 mJ, 50-200 Hz) [6]-[13]. These values correspond to ∼500 kW pulse peak power and ∼2 W of average power. Although these laser systems have demonstrated the characteristics required by the application, i.e. high average power, high laser beam quality and frequency stability, it is at the expense of a bulky system with low wall plug efficiency which is a main concern for space-borne applications.

Systems combining distributed feedback (DFB) semiconductor lasers or external cavity diode lasers (ECDLs) as seed lasers and erbium doped fiber amplifiers (EDFAs) have also been used to perform CO\textsubscript{2} measurements [14]-[18]. Although the use of active optical fibers in space applications requires specific attention due to their sensitivity to radiation, recent progresses have been made to develop high power EDFAs for different space applications [19], [20]. Average powers higher than 5 W and 20 W have been demonstrated in EDFAs for free space communications and IPDA lidar applications, respectively [21].

Approaches based on semiconductor lasers and amplifiers are promising candidates to be used in future air-borne and space-borne IPDA systems because they have clear advantages over other laser types in terms of compactness and conversion efficiency (up to 75 %). In addition, they present high reliability and good radiation hardness for most space applications. In a very recent publication an attempt has been undertaken to use ECDLs and external semiconductor amplifiers for column measurements of CO\textsubscript{2} and methane (CH\textsubscript{4}) [22]. The monolithically integrated master oscillator power amplifier (MOPA) architecture is particularly attractive due the small footprint and simplicity. These devices have reached output powers of...
12 W in CW operation and 42 W in pulsed operation at 1064 nm [23]. At eye-safe wavelengths, around 1500 nm, full-semiconductor MOPAs have reached 1.6 W in CW operation and 2.7 W in pulsed operation [24]. In any case, their main drawback is that they can not produce the high energy pulses obtained with SSLs and required by the application.

The alternatives to the pulsed operation are the so-called intensity modulation continuous wave (IM-CW) techniques [25]. These techniques include sine wave CW [26] and random modulated CW (RM-CW) approach [27], also called pseudo-random noise (PRN) modulation. The main feature of these techniques is that average output power is more important than peak power, thus making possible to use a relatively low peak power laser such as a monolithically integrated MOPA. During the last years, CO$_2$ measurements have been performed using sine wave CW techniques [17], [28]. In particular, a lot of research has been performed by NASA, including the proposal and realization of advanced sine wave CW techniques [29]-[32]. In a RM-CW lidar a pseudo-random sequence is sent to the atmosphere and the received signal reflected from the target is correlated with the original sequence in order to retrieve the path length [33]. The RM-CW approach has been successfully applied to spatial aerosol profile measurements [34], cloud topographic measurements [35], underwater ranging and imaging [36] and atmospheric temperature and wind measurements [37]. RM-CW has also been used in IPDA measurements of atmospheric water vapor [38] and DIAL gas sensing [39]. However, only recently the technical requirements regarding spectral purity, beam quality and output power have been achieved by semiconductor lasers. A monolithically integrated three-section MOPA fulfilling these requirements has been demonstrated in [40]. In principle, the experiments described in this paper should have been performed with two three-section MOPAs. Unfortunately, this was not possible due to technical problems and the experiments were performed with a back-up system based on an hybrid MOPA. On the side of the receiver, high sensitivity and low noise single photon counting (SPC) techniques have been found to be the most suited for the application [41].

In this paper we report on the design and development of a RM-CW IPDA lidar system based on a hybrid MOPA and SPC for atmospheric CO$_2$ concentration measurement. A compact eye-safe prototype instrument has been fabricated and tested. The transmitter is based on two commercial DFB lasers, providing the on-line and off-line wavelengths close to the selected CO$_2$ absorption line around 1572 nm, and being frequency stabilized by an external opto-electrical feedback loop. Both CW optical outputs are externally modulated and then amplified by an EDFA. The receiver is based on an in-house developed single photon detector. Co-located horizontal 2 km trial path CO$_2$ measurements were performed and compared with measurements of the pulsed system CHARM-F [7] and an in-situ instrument. The obtained experimental results demonstrate the validity of RM-CW IPDA lidar systems for atmospheric CO$_2$ sensing.

In Section II the theoretical background of both IPDA systems (RM-CW and pulsed) is briefly summarized. The compact fabricated RM-CW IPDA lidar instrument design is detailed in Section III. The test campaign performed together with a pulsed IPDA lidar instrument and an in-situ device is described in Section IV. Special emphasis in given to the experimental methodology used to compare the results obtained from the different instruments. Section V describes and discusses the obtained results. Finally, the conclusions are drawn in Section VI.

II. THEORETICAL BACKGROUND

Air-borne and space-borne pulsed IPDA lidar systems estimate the column concentration of trace gases in the atmosphere by measuring the pulse echoes scattered back to the instrument by a hard target at the end of the optical path [4], which is a cloud top or the Earth’s surface. The standard technique consists in transmitting sequentially a pair of laser pulses at different frequencies: the on-line frequency (ν_{on}) is close to the center of a CO$_2$ absorption line, and the off-line frequency (ν_{off}) is set away of the same absorption line. Both frequencies are close enough such that the two pulses exhibit different CO$_2$ absorption but all other contributors to the return signal strength (attenuation from thin clouds, aerosols and non-CO$_2$ molecules and reflectivity of the target) are spectrally flat at this scale. Fig. 1 (a) shows the CO$_2$ one-way optical depth seen from a space-borne instrument for a US standard atmosphere and on a 3 km horizontal path at ground level. Several theoretical studies have investigated in detail the choice of the absorption line and the exact position of the on-line and off-line wavelengths with respect to the absorption line [4], [42]. In this work, we used the wavelengths proposed in [43] around the CO$_2$ absorption line at 6361.2504 cm$^{-1}$.

In a RM-CW or PRN lidar [27], a pseudo-random bit sequence (PRBS) is transmitted to the atmosphere, as illustrated on the top in Fig. 1 (b) for the on-line wavelength. In [44] we have theoretically analyzed the performance of a RM-CW IPDA system with SPC. In the following we summarize only the most relevant expressions required for making comprehensible our experimental analysis and the reader is referred there for further details. We use the most basic M-sequence [27] and the fact that the cross-correlation of an N-bit PRBS $a[i] \in \{0, 1\}$ with its bipolar sequence described by $\tilde{a}[i] = 2a[i] - 1 \in \{-1, 1\}$, only has a significant value at zero shifts and close to zero elsewhere. It can be written, for $N \gg 1$, as

$$a[i] \otimes \tilde{a}[i] \simeq N \delta[i],$$

where $\delta[i]$ is the discrete unit impulse function or Kronecker delta $(\delta_{i,0})$. In the case of RM-CW IPDA systems a second PRBS originated from a second laser at the off-line frequency is simultaneously transmitted. The two signals share the same code but with a delay between them [45], [46]. The received signals, as illustrated in third and fourth rows of Fig. 1 (b) present a delay corresponding to the time-of-flight (TOF) with respect to the emitted sequences. The signal at the receiver, together with a fraction of the transmitted signals to be used as power reference, is correlated with the original sequence. The result of the cross-correlation shows four peaks in the correlation time scale, which are proportional to the transmitted and
received powers in both wavelengths. The peaks are separated by the delay and the TOF. This is illustrated in Fig. 1 (c), where the four peaks obtained in a pulsed system in a real time scale (top) are compared with the four cross-correlation peaks in the RM-CW system (bottom). The ratio between peaks provides information about the differential attenuation of the beam. In both cases, pulsed and RM-CW systems, the one-way differential atmospheric optical depth (DAOD) is the physical quantity that can be directly derived from the return signals R_{on} and R_{off} as

$$\text{DAOD} = \frac{1}{2} \ln \left(\frac{E_{on}}{E_{off}} \frac{R_{off}}{R_{on}} \right), \quad (2)$$

where E_{on} and E_{off} are internal references at each wavelength. In the case of a pulsed system, $E_{on,off}$ are proportional to the transmitted energy pulses at on- and off-line wavelengths and $R_{on,off}$ are proportional to the number of photons scattered back from the hard target to the receiver. On the other hand in the case of a RM-CW system, $E_{on,off}$ are the cross-correlation peaks corresponding to the reference of the transmitted on- and off-line signals and $R_{on,off}$ are obtained from the peaks corresponding to the received echoes. In our case, using SPC, they can be written as [44]

$$R_{on,off} = N T_{e} \eta_e P_{on,off} A_r \alpha D e^{-2OD_{on,off}}, \quad (3)$$

where T_{e} is the bit time or chip time, η_e denotes the conversion coefficient from total photon energy to detections of photo-electrons, $\eta_e = \lambda \eta_{ph}/(hc)$, where λ is the emission wavelength, η_{ph} is the optical and quantum efficiency, h is the Planck’s constant and c is the speed of light in vacuum; $P_{on,off}$ are the emitted average power at each sounding wavelength, α is the surface albedo or target reflectivity, A_r is the area of the receiver, D is the distance to the target and $OD_{on,off} = OD_0 + \int_0^D \sigma_{on,off}(p,T)n_{co2}(p,T) \, dz, \quad (4)$

is the total column optical depth, which includes a frequency-independent losses term due to aerosols OD_0, and the CO$_2$ optical depth, where $p = p(z)$ and $T = T(z)$ are the pressure and temperature profiles along the path, $\sigma_{on,off}(p,T)$ are the pressure- and temperature-dependent absorption cross-sections of CO$_2$ at each wavelength and $n_{co2}(p,T)$ is the CO$_2$ number density. Making use of the Beer-Lambert law along the laser beam, the DAOD can be converted to a weighted average of the dry-air volume mixing ratio of CO$_2$ along the laser beam, XCO_2, the quantity of scientific interest,

$$XCO_2 = \frac{DAOD}{IWF}, \quad (5)$$

with

$$IWF = \int_0^D \left[\sigma_{on}(p,T) - \sigma_{off}(p,T) \right] n_{air}(p,T) \, dz, \quad (6)$$

being the integrated weighting function, where $n_{air}(p,T)$ is the dry air number density, which is related to $n_{co2}(p,T)$ via the volume mixing ratio $\nu n_{co2}(p,T) = n_{co2}(p,T)/n_{air}(p,T)$. Thanks to spectroscopic characterizations of the absorption cross-section in the laboratory and pressure and temperature profiles from a weather station or a numerical weather prediction model, Eqs. (5) and (6) are typically applied for a down-looking, space-borne or air-borne instrument.

In the case of RM-CW SPC IPDA lidar, the signal to noise ratio (SNR) can be written as [44]

$$SNR_{on,off} = \frac{R_{on,off}}{\sqrt{R_{on} + R_{off} + R_{det} + R_{amb}}} \quad (7)$$

where R_{det} takes into account the detector dark counts, $R_{det} = N k_d T_c$, being k_d the dark count rate per second; and R_{amb} represents the shot noise induced by the ambient light,

$$R_{amb} = NL_s \eta_T C_\Delta \lambda A_s A_r D^2 e^{-OD_0}, \quad (8)$$

where L_s is the solar spectral radiance, $\Delta \lambda$ is the filter bandwidth, A_s is the target surface area covered by the detector field-of-view (FOV), $A_r = \pi^2 D_{FOV}^2/A$. A deep analysis of the previous equations including parameter dependence in the context of a space-borne scenario can be found in [44]. Our results indicated that a worst case retrieval precision of
1.5 ppm over a 50 km path integration can be obtained for expected conditions in a space mission assuming state-of-the-art photon counting detectors and transmitters delivering an average output power of 2 W.

III. RM-CW IPDA LIDAR SYSTEM

The design of the complete IPDA lidar system is shown in Fig. 2 (a). It consists of the laser transmitter, the optics for beam transmission and reception, and the control electronics. The laser transmitter architecture is shown in the upper part of Fig. 2 (a). It provides two output beams: one is sent to the target and the other is used as reference and mixed with the received signal, for the calculation of the $DAOD$. It consists of two DFB lasers (one for each sounding frequency λ_{on}, λ_{off}), two acousto-optic modulators (AOMs), an EDFA, the control electronics and the frequency stabilization unit (FSU). A fraction of the output power of the two laser chips is sent to the FSU in order to stabilize the emission frequency. The other fraction is sent to an AOM where is non-return-to-zero (NRZ) modulated with the PRBS. We have used a chip time $T_c = 40$ ns corresponding to a bit rate of 25 Mb/s, thus the range resolution of the system is 6 m. The length of the PRBS is $N = 2^{14} - 1 = 16383$, therefore the unambiguous range is 98.3 km. After the AOM, the two signals are combined and sent to a polarization scrambler (PS) avoiding the polarization dependent beam splitting to the reference path before being amplified by the EDFA (Keopsys KPS-STD-BT-L-30-PB-101-FA-FA). The average output power for each sounding frequency after the amplification stage is around 0.3 W. After being amplified a small fraction of the signal is sent to the integrated sphere to be used as reference by the receiver. The integrating sphere is used for beam homogenization and the rotational diffuser reduces the speckle noise in the references. One should notice that there is also another speckle noise source that affect our measurements. The one that comes from the target, due to fixed or slowly moving target. This can be minimized by vibrating or moving the transceiver [22], and it will not be present in air-borne or space-borne systems when target (lidar) is moving at high speed. In our case the pan-tilt mounting allowed to vibrate the instrument, in order to slightly but continuously change the line-of-sight of the whole instrument, thereby changing the speckle pattern at the target. Fig. 2 (b) shows a photograph of the compact fabricated instrument on the mount.

For accurate estimation of the gas molecule concentration, IPDA lidar systems require high frequency stabilization [4]. In this regard, the most critical frequency is the on-line, due to the slope in the wing of the line. The CW emission linewidth and the linewidth knowledge accuracy are expected to be uncritical for the proposed transmitter, because pseudo-random modulation dominates the linewidth. The expected broadening at full width at half maximum (FWHM) in our system is...
Light emitted from the master laser is injected into the on- and off-line frequency locking loops and it is used to stabilize the beat note of the on-line and off-line signals with respect to the master laser frequency, with a tunable 350 MHz and with a fixed 10 GHz offsets, respectively. We measured a stability of ~50 kHz during 20 s for the offset locked lasers.

On the side of the receiver, the reflected light from the target is collected by a Newtonian telescope (\(\varnothing = 152.4 \text{ mm} \)) with a field of view (FOV) of 200 \(\mu \text{rad} \) matching the laser beam divergence. Alignment issues are addressed by using a short-wave infrared (SWIR) camera. A very high sensitivity detector based on InGaAs negative feedback avalanche diode (NFAD) is used for SPC of the received signal. The NFAD is used in order to minimize the degradation of the SNR in comparison with pulsed systems due to the detector noise [41]. We have developed in-house our own single photon detector unit as commercial detectors do not satisfy our need of a high saturation count rate [47]. A scheme of the single photon detector is plotted in Fig. 3 (a). The detector achieves 5 Mcps with 100 kcps dark count with an efficiency of 10 %. It should be noticed, that the intrinsic NFAD non-linearity caused by detector dead-time can be completely canceled out, due to the fact that CO\(_2\) concentration is calculated from the ratio between the on- and off-line received echoes [41].

The modulation sequence and the correlation process required by the RM-CW technique are implemented with a field programmable gate array (FPGA). Alternatively to other correlators, the FPGA implementation of the single photon correlator is based in an asynchronous design, see Fig. 3 (b). This presents modifications respect to the correlators presented in [33], [48]. First of all the PRBS is generated by a first layer of linear feedback shift registers. A second layer of shift registers, acting as delay lines, records the PRBS signal. Once a photon is received, the rising edge of the photon trigger will latch the shift register contents into the flip-flop of the asynchronous sampling registers. Subsequent to this layer a synchronization registers layer is needed to deal with meta-stability. The last layer is the correlator elements that are just counters which increments with logic ‘1’ being seen at the second layer shift registers and decrement with ‘0’. The result of the correlation appears as a triangle (see Fig. 3 (b)) where

TABLE I

<table>
<thead>
<tr>
<th>Transmitter</th>
<th>On-line average output power (P_{on})</th>
<th>300 mW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Off-line average output power (P_{off})</td>
<td>300 mW</td>
<td></td>
</tr>
<tr>
<td>On-line frequency (\nu_{on})</td>
<td>190.704710 THz</td>
<td></td>
</tr>
<tr>
<td>Off-line frequency (\nu_{off})</td>
<td>190.694980 THz</td>
<td></td>
</tr>
<tr>
<td>PRBS chip time (T_c)</td>
<td>40 ns</td>
<td></td>
</tr>
<tr>
<td>Length sequence (N)</td>
<td>16383</td>
<td></td>
</tr>
<tr>
<td>Beam divergence (\theta_{div})</td>
<td>200 (\mu \text{rad})</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Receiver</th>
<th>Telescope mirror area (A_r)</th>
<th>(1.82 \times 10^{-2} \text{ m}^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Receiver field-of-view (\theta_{FOV})</td>
<td>200 (\mu \text{rad})</td>
<td></td>
</tr>
<tr>
<td>Dark count rate (k_{dc})</td>
<td>100 kcps</td>
<td></td>
</tr>
<tr>
<td>Optical and quantum efficiency (\eta_{ph})</td>
<td>10 %</td>
<td></td>
</tr>
<tr>
<td>Sampling rate</td>
<td>100 MS/s</td>
<td></td>
</tr>
</tbody>
</table>

![Schematics diagram](image-url)
the addition of the two highest consecutive peaks (c[1] and c[2]) indicate the number of correlated photons. The optical spectra of the on-line signal will be distorted due to its position on the wing of the absorption line, and consequently also the temporal response. This effect will influence the shape of the correlated signal, but it will not generate distortion or side-lobes in the correlation result. The shape of the correlated peak is not important, only the total energy within the correlation peak is considered. Table I shows a summary of the RM-CW IPDA lidar system parameters.

IV. MEASUREMENT SCENARIO AND METHODOLOGY

In order to test and demonstrate the validity of the RM-CW IPDA lidar system for column-averaged CO₂ concentration measurement, a test campaign with co-located measurements with a pulsed system and an in-situ instrument was performed. The test campaign took place during February 2016 at the Institute of Atmospheric Physics, DLR Oberpfaffenhofen, Germany. In the following subsections, details on the pulsed system, the trial path and the experimental methodology are given.

A. CHARM-F system overview

CHARM-F is the result of a five-year in-house development [7], [49], [50], which aims to serve as a technology demonstrator for IPDA lidar measurements of the two main anthropogenic greenhouse gases, CO₂ and CH₄. The instrument was designed to fly on a research aircraft in a down-looking configuration, but can also be operated from the ground in a sideways-looking configuration thanks to a dedicated frame. CHARM-F’s laser sources (one for CO₂ and the other for CH₄) are based on injection-seeding of pulsed optical parametric oscillators (OPO) by a low-power, CW laser source, allowing to simultaneously achieve the very narrow bandwidths and high pulse energies required for the application. The OPOs are themselves pumped by Nd:YAG lasers producing double pulses at 1064 nm separated by only a few hundred ns at a rate of 50 Hz. A fast optical switch enables switching between the on-line and off-line seed laser in the short time between the two pulses. The spatial mismatch between on-line and off-line footprint on ground is thereby minimized, although not fully removed. In this aspect the RM-CW approach presents a clear advantage.

The OPO cavity must be actively maintained in resonance with the seed lasers by means of a piezoelectric actuator on one of the cavity mirrors; a heterodyne measurement of the frequency difference between a frequency-shifted (by means of one of the cavity mirrors; a heterodyne measurement of the frequency difference between a frequency-shifted (by means of a piezoelectric actuator on one of the cavity mirrors; a heterodyne measurement of the frequency difference between a frequency-shifted (by means of an AOM) light from the seed laser and a very small fraction of the outgoing OPO pulses, picked up by a fiber, provides the error signal.

Fig. 4 (a) shows both instruments in the laboratory, the RM-CW IPDA lidar and the CHARM-F system in its frame and the rack for the frequency reference and data acquisition subsystems. CHARM-F is equipped with two receivers per trace gas, one making use of a quadrant PIN photodiode and a reflective telescope with an aperture of 20 cm, the other making use of an avalanche photodiode (APD) at the focus of a refractive telescope of 6 cm aperture. The APD and small telescope were designed to mimic the configuration that would be favoured for a spaceborne instrument, while the quadrant PIN photodiode allows active beam pointing on the one hand, and cross-checks of the APD-retrieved values, as discussed in Section V. Unfortunately, the CHARM-F lasers themselves were not used during the experiments due to issues with the pump units. However, a back-up was available in the form of an early OPO prototype pumped by a commercial double-pulse Nd:YAG laser on the optical table of the laboratory (not shown). The OPO output energy was of the order of 2.5 mJ per pulse, which provided a sufficient SNR on the trial path described hereafter. The output laser beam from the prototype was guided to the CHARM-F optical bench, and the relevant electronic and optical signals for injection seeding and OPO cavity stabilization were brought to and from the frequency stabilization and data acquisition unit.

B. Trial path and in-situ instrument

DLRs premises in Oberpfaffenhofen are placed in a rural setting, right next to an airfield, and thanks to a convenient position of the Institute with respect to the neighboring buildings, one window of the laboratories offers an obstacle-free view across the airfield to a forested area at a distance of around 2 km, as illustrated on Fig. 4 (b). Furthermore, the presence of a hill on the line of sight makes it possible to target trees at different ranges, from about 2 to 3 km. This trial path was previously used successfully for the validation of IPDA systems [7].

The in-situ instrument (LI-820 CO₂ gas analyzer) is based on a dual filter infrared detection system. By means of a long plastic pipe and existing feedthroughs between the laboratory and an astronomical cupola on the roof of the institute, the air was sampled directly above the lidar systems, as shown in Fig. 4 (c), providing a localized point measurement at the very beginning of the path. Since the building does not house a heating station, this location was optimal to ensure that no nearby source, such as an open window leaking office air, disturbs the measurement of the background concentration. However, local sources within a radius of a few tens to a few hundred meters still have an influence.

C. Methodology

As explained in the previous section, the measurements shown in this paper were performed in an horizontal path. In this case, Eq. (6) is greatly simplified compared to a down-looking IPDA measurement through many heterogeneous layers of the atmosphere. It can indeed be safely assumed that the pressure and temperature along the horizontal path are uniform, so Eq. (5) simplifies as

$$XCO₂ = \frac{DAOD}{D [σ_{on}(p, T) - σ_{off}(p, T)] n_{air}(p, T)}.$$ (9)

In the frame of the measurements presented in this paper, the absorption cross-sections were computed using a Voigt profile and the latest line-by-line spectroscopic parameters from the HITRAN database [51]. Pressure and temperature...
Two type of experiments were performed, we refer to them as: (1) **long term experiments** and (2) **scanning experiments**. In the **long term experiments**, the three instruments were measuring simultaneously, both IPDA lidar instruments along the trial path but not at the same range. The nearest part of the forested area visible on the inset of Fig. 4 (b) - just over 2 km away - was used with the RM-CW system, while the pulsed system was pointed to the higher part of the forest, on top of the hill, at a distance of just under 3 km.

The experimental setup is shown in Fig. 4 (d). It consists of both lidar systems, the RM-CW IPDA and CHARM-F instruments, and a self-referenced optical frequency comb (OFC) (Menlo systems FC1500 Optical Frequency Synthesizer) with absolute long-term optical frequency stability better than 1 kHz, used for frequency monitoring and locking. Fig. 4 (e) shows a diagram explaining the method to perform the **long term experiments**. For both lidars, the \(DAOD \) was calculated according to Eq. (2), from pulse energy or correlation measurements respectively. This value was then converted to \(XCO_2 \) using Eq. (9). To reach a sufficient SNR, averaging was applied in the form of a gliding average on the data. In order to avoid biases due to the low SNR at signal level and the non-linearities of Eq. (2), averaging was partly applied to the signals themselves, and partly to the ratio inside of the logarithm function, before the latter was applied. Eq. (9) was applied on the fully averaged (but still with the full original time resolution) data. In all of the results presented in Section V, the overall averaging time was 10 minutes.

As far as on-line and off-line wavelengths are concerned, the conditions were the following. The CHARM-F on-line...
seed laser was locked to the self-referenced OFC using a PLL loop, effectively transferring the OFCs long-term stability to the on-line position. More specifically, the seed laser was first coarsely brought less than 30 MHz away from the top of the CO$_2$ absorption line at 1572.02 nm thanks to a high-accuracy wavemeter, calibrated using an acetylene-stabilized auxiliary laser. Then the repetition rate of the OFC was adjusted until the beat frequency between seed laser and OFC was close to 21.4 MHz, the center frequency of a bandpass filter used in the PLL electronics. The PLL, using a reference synthesizer at the same frequency, could then be switched on. From the repetition rate and the coarse (< 30 MHz) knowledge of the seed laser position, the number of the OFC mode with which the seed laser was beating was determined, which enabled in turn to calculate the absolute optical frequency of the locked seed laser. This was 6361.250661 cm$^{-1}$, i.e. only about 6 MHz away from the line center in vacuum (at 6361.250433 cm$^{-1}$, according to the latest HITRAN database) and it remained fixed for all of the measurement campaign.

The OFC-locked CHARM-F seed laser was used simultaneously as reference laser for monitoring the absolute position of the RM-CW IPDA on-line laser when the latter was not locked using the FSU, using an heterodyne measurement technique. The frequency variations of the free-running (i.e. only temperature and current-regulated) on-line DFB laser of the RM-CW IPDA system were recorded for the 17/02. Over the whole afternoon, the laser drifted by less than 150 MHz peak-to-peak, which is only a fraction of the approximately 2.5 GHz-wide CO$_2$ absorption line at ground pressure. Since all measurements were carried out close to the top of the line, the corrections are rather subtle, but they were nevertheless taken into account in Eq. (9) when the on-line laser of the RM-CW IPDA system was not locked. On the in-situ instrument side, the same gliding average was applied on the XCO_2, and the values compared with the lidar retrievals from Eq. (9) for both instruments, and for both receivers in the case of CHARM-F.

In the second type of experiments, the scanning experiments, the RM-CW IPDA lidar system and the in-situ device results were compared. In this case steps were applied to the temperature regulation of the free-running RM-CW IPDA online DFB laser, so as to measure the $DAOD$ at different positions around the center of the absorption line. A diagram explaining the experiment is shown in Fig. 4 (f). The position at each stage was held for about half a minute before applying the next step and ten steps were applied before going back to the initial position. The 10-step scan was repeated 10 times during each scanning experiment. In order to increase the SNR, the data at each step were averaged to provide a single point. Only Eq. (2) was applied, since the goal was to observe the absorption line’s shape and compare with the expected values. The latter were calculated by applying the reverse of Eq. (9) from the in-situ device’s data, using the knowledge of the on-line laser’s absolute position and of the range. Although the frequency variations of the on-line laser during the hold time of each step were small, they were taken into account when computing the expected values.

![Fig. 5. Results of the long term experiments. CO$_2$ dry-air volume mixing ratio along the laser beam (XCO_2) measured with the different instruments: RM-CW IPDA lidar, in-situ instrument and CHARM-F. (a) 05/02/2016: $T = 278 K$ and $p = 957$ hPa. (b) 16/02/2016: $T = 275 K$ and $p = 958$ hPa. (c) 17/02/2016: $T = 275 K$ and $p = 945$ hPa. (d) 18/02/2016: $T = 276 K$ and $p = 946$ hPa.](image-url)

V. EXPERIMENTAL RESULTS

Several series of long term and scanning experiments were performed in different days. Due to various issues with the weather (including intermittent snowfall on the 17/02) and with the systems, the maximum measurement duration with both instruments running was between one and three hours. Fig. 5 (a) compares the measured XCO_2 with the RM-CW IPDA system and the in-situ instrument during the first phase of the test campaign at the beginning of February, when the back-up laser for CHARM-F was not yet ready. The on-line laser of the RM-CW IPDA system was locked using the FSU. This experiment achieved the best match between the RM-CW IPDA system and the in-situ measurements, with a maximum discrepancy of 10 ppm over two hours.

During the measurement on the 16/02 (see results in Fig. 5 (b)), the pan-tilt vibration of the RM-CW IPDA system, which was intended to reduce the impact of speckle effects, was unintentionally switched off and the system displayed strong drifts. On the 17/02 and on the 18/02 (see results in Fig. 5 (c) and (d), respectively), the pan-tilt vibration was active but the results of the RM-CW IPDA system displayed some strong time-varying offsets in comparison with both the in-situ instrument and the CHARM-F data. These data were rather flat, except on the 18/02 for the CHARM-F.

Overall, time-varying offsets of up to ±10 % were observed on the RM-CW IPDA system results with respect to the in-situ data. Offsets were also present in the data of the pulsed system; however, both receivers of the CHARM-F had a small and roughly constant offset relative to each other of about 10 ppm and a constant offset of -20 ppm with respect to the in-situ instrument data, while the RM-CW IPDA system had a different offset (with a different sign) on different days. The
constant offset can be satisfactorily explained by the uncertainty of ±10 ppm on the concentration of CO$_2$ in the reference mixture that was used to calibrate the in-situ instrument, on the one hand, and by the uncertainties in the HITRAN line parameters that were used to convert between XCO_2 and $DAOD$ values through Eq. (9), on the other hand.

As far as the remaining variations are concerned, some evidence points to speckle effects combined with the heterogeneous reflectivity of the target. First, the CHARM-F data exhibits larger instability on the 18/02, when the local wind was weaker than on the previous days, producing less "blurring" of the speckle patterns through the movement of the trees. Second, a faster drift of the RM-CW system is observed on the 16/02, when the pan-tilt motion of the system, meant to introduce speckle diversity by changing the line-of-sight, was unintentionally switched off. And third, the generally larger amplitude of the variations on the RM-CW system are consistent with a smaller number of speckles in the field of view, due to the system’s smaller divergence.

On the other hand, two exploitable scanning experiments were carried out during the measurement campaign, on the 16/02 and 17/02. The results are presented on Fig. 6 (a) and (b), respectively. The correct overall shape and position was obtained, with a shift of the absorption line at ground pressure of about 200 MHz towards lower optical frequencies with respect to the line center in vacuum, as expected. However, the same variability of about ±10 % in the absolute values of the measured $DAOD$ was observed when comparing measurements at the same frequency position within the same scan experiment (as seen from the spread of the measurements within a column). A different overall offset from one experiment to the next was also observed: most measurements were above the expected value on the 16/02, but below the expected value on the 17/02.

After the evaluation of the accuracy of both IPDA lidar systems, we briefly analyze here the precision of the RM-CW IPDA lidar. Fig. 7 (a) shows, as an example, $DAOD$ measurements taken every 0.02 s corresponding to the 05/02/2016 data shown in Fig. 5 (a). The $DAOD$ Allan deviation of this data is shown in Fig. 7 (b). It is clear that up to ~100 s the system is limited by shot noise. The precision of the one-way $DAOD$ achieved in an integration time of 7 s (proposed for space-borne system) is 0.63 %, which corresponds to an XCO_2 error of 2.5 ppm. Speckle noise starts to dominate for integration times longer than 100 s. This result is not far from the error estimation making use of the theoretical SNR Eq. (7), although a direct comparison is difficult due to the uncertainties in some parameters, specially in the surface reflectivity. A more detailed comparison between theory and experiments is in progress and it will be further reported.

The precision of the RM-CW instrument is comparable with other IPDA systems: Spiers et al. [9] reported a precision of 0.4 ppm over ocean. Other IPDA systems: Dobler et al. [17] obtained values of 1.3 ppm over water and 0.97 ppm over land for 10 s averaging, and recently Wagner and Plusquellec [22] reported an error of 7 ppm for an integration time of 7 s.

The error of our RM-CW instrument also compares well with that obtained for CHARM-F system on air-borne experiments where a statistical error of 0.7 % (2.8 ppm) was obtained.

VI. CONCLUSIONS

An IPDA lidar system for atmospheric CO$_2$ measurement based on a hybrid MOPA and SPC receiving techniques has been proposed and demonstrated. Experiments in a horizontal path have been carried out and compared with a pulsed system and with an in-situ instrument. It has been found that a relative accuracy of the order of about ±10 %, or ±40 ppm CO$_2$ concentration in absolute terms, was achieved with the proposed RM-CW IPDA lidar system. These numbers are more than one order of magnitude away from the threshold requirement for a space-borne IPDA lidar mission for CO$_2$.

Fig. 6. Results of the scanning experiments. The one-way differential absorption optical depth ($DAOD$) versus frequency offset with respect to the CO$_2$ line center in vacuum, measured with the RM-CW IPDA lidar and the expected values derived from the in-situ instrument. (a) 16/02/2016. (b) 17/02/2016.

Fig. 7. Precision of the RM-CW IPDA lidar system. (a) $DAOD$ measurements for 10^4 s. The sampling time is 0.02 s. (b) $DAOD$ Allan deviation. Data corresponding to the measurements performed 05/02/2016, shown in Fig. 5 (a).
however they should be put in perspective with the consideration that due to speckle effects, a horizontal measurement on a fixed target is a worst-case scenario compared to an airborne or space-borne measurement with a continuously changing target. Our results have also shown than for a 7 s integration time, the random error in the DAOD is about 0.67 %, corresponding to an XCO_2 error of 2.5 ppm. Nevertheless, our experiments qualitatively demonstrate the feasibility of CO_2 IPDA measurements with a RM-CW system. These systems can be implemented with recently demonstrated monolithically integrated MOPAs [40] together with SPC at the receiver for future space-borne lidar instruments.

ACKNOWLEDGEMENT

The authors would like to thank M. Faugeron, M. Krakowski and F. van Dijk at III-V Lab for the loan of the EDFA used in the RM-CW IPDA lidar instrument.

REFERENCES

Mathieu Quatrevalet was born in Creutzwald, France, in 1980. He graduated as an optical engineer from the Institut d’Optique Graduate School in Palaiseau, France in 2004. Since 2009 he is with DLR’s Institute of Atmospheric Physics, working on the development of air-borne and space-borne lidars for trace gas measurements.

Xiao Ai is a postdoctoral researcher at University of Bristol, graduated from his PhD program which specialized in 3D imaging techniques. His research involves the development of lidar technologies: for remote sensing and range finding applications.

Antonio Pérez-Serrano was born in Badalona, Spain, in 1978. He graduated and obtained the Ph.D. in Physics from the Universitat de les Illes Balears, Palma de Mallorca, Spain, in 2006 and 2011, respectively. He is currently a research associate at the Universidad Politécnica de Madrid, Spain.

Pawel Adamiec received the M.Sc. degree in physics and computer sciences from Rzeszow Pedagogical University, Poland, in 2000 and Ph.D. degree in physics from Warsaw University of Technology, Poland, in 2006. Since 2014 he has engaged in the analysis and studies of new photonic technologies for the aerospace sector at ALTER Technology.

Juan Barbero was born in Segovia, Spain in 1968. He received the M.S. degree in Material Physics from the Universidad Complutense de Madrid in 1991. Since 2002, he has been involved in the Innovation Area of ALTER Technology (former Tecnologica).

Andreas Fix graduated at University of Hannover, Germany in co-operation with Laser Zentrum Hannover. In 1995 he received the Ph.D. degree in Physics from University of Kaiserslautern, Germany. He joined DLR, first as a post doctoral researcher, later as a research scientist and since then is engaged in the development and application of lidar systems.

Jose Manuel G. Tijero was born in Burgos, Spain, in 1960. He received the M.Sc. and Ph.D degrees in physics from the Universidad de Zaragoza in 1984 and from the Universidad Autonoma de Madrid in 1989, respectively. Since 1994, he is an Associate Professor at the Universidad Politécnica de Madrid.

Ignacio Esquivias was born in Madrid, Spain, in 1955. He received the M.Sc. and Ph.D degrees in Electronic Engineering from the Universidad Politécnica de Madrid in 1977 and 1983, respectively, becoming Full Professor at this university in 2001. He leads the Laser Diode Group of the CEMDATIC.

John G. Rarity is professor of optical communication systems in the Dept. of Electrical and Electronic Engineering at the University of Bristol, a post he has held since 2003. He is a member of the Quantum Computation and Information group and quantum photonics at the University of Bristol. He was elected a Fellow of the Royal Society (FRS) in 2015.

Gerhard Ehret was born in Kenzingen, Germany, in 1953. He received his diploma in Physics and became Dr.rer.nat at the University Freiburg, Germany, in 1981 and 1986, respectively. He was member of the WALES and ASCOPE Mission Advisory Groups at ESA, and is currently the Co-Principal Investigator of the French-German climate mission MERLIN. Since 2000, he leads the LIDAR Department at the Institute for Atmospheric Physics at DLR Oberpfaffenhofen, Germany.