POLYMER FUEL CELL STACK BASED ON SULFONIC ACID MEMBRANES WITH EXTENDED OPERATING TEMPERATURE RANGE UP TO 120 °C

T. Ruiu, A. Dreizler, J. Mitzel, E. Gülzow, K. A. Friedrich

German Aerospace Center (DLR)

Institute of Engineering Thermodynamics

Pfaffenwaldring 38-40, 70569 Stuttgart, Germany

Outline

- Introduction and motivation
- Stack design
- Results:
 - Stack performance
 - Thermal cycles 90–120 °C
 - Long-term test: 1000 h
- Summary

Summary

- stack development:
 - √ 30 cell stack with 2.5 kW_{el} nominal power
 - √ components developed and benchmarked
 - ✓ optimized concept for WTR conditions
- 30-cells stack results
 - √ 20 thermal cycles at 90–120 °C:
 - √ -21 % reversible power loss within a cycle
 - √ 6-times higher degradation rate: -714 µV h⁻¹ cell⁻¹
 - √ adequate long-term behavior at constant load:
 - ✓ -16 % P loss in 1000 h
 - ✓ degradation rate: -113 µV h⁻¹ cell⁻¹
 - √ water management issues and membrane degradation during constant load
 - √ catalyst growth during air starvation (compressor malfunction)

Successful proof-of-concept

Acknowledgments

- M. Schulze
- S. Graf
- I. Komninakis
- S. Anderle

Thank you for your attention!

