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Abstract— We consider the problem of estimating the wind
velocity perceived by a flying multicopter, from data acquired
by onboard sensors and knowledge of its aerodynamics model
only. We employ two complementary methods. The first is
based on the estimation of the external wrench (force and
torque) due to aerodynamics acting on the robot in flight.
Wind velocity is obtained by inverting an identified model of
the aerodynamic forces. The second method is based on the
estimation of the propeller aerodynamic power, and provides an
estimate independent of other sensors. We show how to calculate
components of the wind velocity using multiple aerodynamic
power measurements, when the poses between them are known.
The method uses the motor current and angular velocity as
measured by the electronic speed controllers, essentially using
the propellers as wind sensors. Verification of the methods and
model identification were done using measurements acquired
during autonomous flights in a 3D wind tunnel.

I. INTRODUCTION

The small size and cost of multicopters makes them
a good candidate as versatile, flying wind sensors. Wind
field estimation has already been demonstrated in fixed-wing
UAVs [1], [2]. A pitot tube is used to measure the relative
airspeed, which is compared to the GPS-based ground speed
to obtain the wind velocity. Pressure probes can also be
used on quadcopters to obtain the airspeed [3], [4], [5].
However, it is more common to use an aerodynamics model
for this purpose [6], [7], [8], [9]. Together with increasingly
available localization in unknown, GPS-denied environments
[10], [11], these systems can be used for autonomous wind
field mapping.

Contribution. In this paper, we propose a novel method
to estimate the wind velocity based on momentum theory,
using only propeller power measurements. The propellers
are thereby used as wind sensors. We compare this method
to a linear and a neural network model of the aerodynamic
forces, which are estimated by an external wrench observer
[12]. To identify the model and verify the methods, we flew
a custom hexacopter in the world’s first 3D wind tunnel
[13], as depicted in Fig. 1. To the best of our knowledge,
this is the first such experiment. We test our methods using
experimental data. The power-based method presented in
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Fig. 1: Experimental verification of the presented methods is done
by flying a coaxial hexacopter in a 3D wind tunnel. The hexacopter
hovers autonomously using a position controller, based on pose
measurements from an external tracking system. For comparison,
we also log data from a stereo vision based onboard pose estimator.
Depicted is flow visualization at a wind velocity of around 6 m/s.
We loosely suspend the robot with a filament for safety purposes.

this paper opens new applications. It can be used as a
wind velocity measurement that is complementary to the
commonly used external wrench based estimation. The inde-
pendent measurement could be used to distinguish between
aerodynamic and contact forces, which is not possible when
using only external wrench information [9]. Furthermore, it
could be used to enhance MAV state estimation. We can
also use it to map wind velocities in a small area [14], and
perform aerodynamics-aware trajectory planning.

Related work. The freestream velocity of multicopter
MAVs is commonly obtained from accelerometer measure-
ments. This can be done because the propeller induced drag
and blade flapping produce a horizontal force that can be
measured by the onboard accelerometer. However, only the
horizontal velocity components can be obtained that way.
Waslander and Wang [6] used a linear drag model and the
propeller model from [15] to estimate the wind velocity.
Due to complexity of wind-dependent thrust calculations,
estimation of the vertical wind component had limited accu-
racy. This paper showed the feasibility of model-based wind
estimation. The same effect was used by Martin et al. [7] and
Abeywardena et al. [16] to estimate the relative airspeed of a
quadcopter. This aerodynamics model has also been used to
improve controller performance for aggressive maneuvers by
Huang et al. [15] and in a nonlinear control scheme by Omari
et al. [8]. The wind velocity and yaw rates of the vehicle
were neglected. Alternatively, Yeo et al. [4], [5] and Sydney
et al. [3] have used airspeed probes to measure the freestream
velocity of a quadcopter. They used this measurement to map
the wind field and improve controller performance. Bangura
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Fig. 2: Free-body diagram of the coaxial hexacopter used in the
experiments. The body frame B is located at position r and
orientation R in the inertial frame I and subject to wind velocity
vw. This causes the external wrench τ e = [fTe mT

e ]
T due to

aerodynamic forces dependent on the airspeed vr . The propellers
rotating at angular velocities $ = [$1 . . . $6]

T generate the
control wrench τ = [fT mT ]T through the thrusts Ti and drag
torques Qi. The propeller frames P1,2,3 are depicted in blue.

et al. [17], [18] used momentum theory [19] to estimate and
control the propeller aerodynamic power, which is directly
related to thrust. Furthermore, they used the estimated aero-
dynamic power to estimate the propeller thrust with known
freestream velocity. In our previous work [9] we showed
how to incorporate blade flapping and momentum theory into
external wrench estimation and collision detection.

In order to verify aerodynamics models, other authors
have carried out static wind tunnel measurements. Schiano
et al. [20] and Planckaert et al. [21] measured the forces
and torques acting on a static quadrotor under varying
conditions. Marino et al. [22] measured the motor power
in steady-state wind conditions and related it to the wind
velocity. They found that the mapping of power to wind
velocity is not unique, and the solution quality varies with
the flow conditions. However, no online estimation scheme
was proposed.

This paper is organized as follows. In Section II we review
the relevant mathematical models. In Section III we propose
two methods to estimate the wind velocity. The first method
models wind velocity as a function of the estimated external
forces. The second method uses multiple propeller power
measurements and momentum theory in a nonlinear least
squares formulation. The experimental setup is described in
Section IV, and results are shown in Section IV-C. Lastly,
we conclude in Section V.

II. PRELIMINARIES

A. Rigid-body dynamics

A free-body diagram of a coaxial hexacopter is depicted
in Fig. 2. The equations of motion can be written as

Mr̈ =Mge3 +Rf +Rfe (1)

Iω̇ = (Iω)× ω −Mg (rg)×RTe3 +m+me (2)

Ṙ = R (ω)× (3)

where M is the robot mass, r = [x, y, z]T is its posi-
tion in the fixed North-East-Down (NED) inertial frame,
R ∈ SO(3) is the rotation matrix from the body to the

vw

U = vw + vi

w

T

Fig. 3: Thrust T is generated by increasing the wind velocity vw by
the propeller induced velocity vi, which goes through the propeller
normal. The propeller slipstream finally merges into the wind flow
to produce w.

inertial frame, I ∈ R3×3 is its moment of inertia, (·)× is
skew-symmetric matrix operator, g is the acceleration of
gravity, ω is the body angular velocity, e3 is the z-axis unit
vector, rg is the location of the center of gravity, f and
fe are the body-frame control and external forces, and m
and me are the control and external torques, respectively.
We denote the control wrench as τ = [fT mT ]T , and the
external wrench as τe = [fTe m

T
e ]
T . In general, τ depends

on the freestream velocity v∞ and propeller speeds $ [9].

B. External wrench estimation

Here we briefly revisit the external wrench estimator
from [12]. The estimator uses the control input, a system
model and proprioceptive sensors only. The external wrench
estimate τ̂e = [f̂

T

e m̂
T
e ]
T is obtained from

τ̂e =




∫
Kf
I

(
Ma− f −f̂e

)
dt

Km
I

(
Iω −

∫ t
0
(m+ (Iω)× ω − m̂e) dt

)

 , (4)

where Kf
I and Km

I are the filter gains, a = RT (r̈ − ge3) is
the acceleration measured by an accelerometer in the center
of mass expressed in the body frame, and f̂e and m̂e are
the estimated external force and torque, also expressed in
the body frame. The estimation dynamics are shown to be
(s+KI)τ̂e = Kiτe. In contrast to e. g. [23], [24], this esti-
mator does not require translational velocity measurements.

C. Propeller aerodynamics

The forces exerted by a propeller depend on its freestream
velocity (relative wind velocity). The freestream velocity of
the k-th propeller expressed in the propeller frame is

v(k)
∞ = R

(k)
pb

(
RTvr + ω × rk

)
, (5)

where vr = ṙ − vw is the true airspeed, vw is the wind
velocity, R(k)

pb is the rotation matrix from the body to the
propeller frame and rk is the location of the propeller
relative to the center of gravity. The thrust acts in positive
z-direction of the propeller frame Pk, see Fig. 2. According
to momentum theory [19] it can be written as

T = 2ρAviU, (6)
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Fig. 4: Relative induced velocity vi/vh in forward flight, depending
on angle of attack and relative airspeed v∞/vh, depicted on
the radial axis. Unmodified momentum theory is invalid in the
delineated area, where the propeller is in the Vortex Ring State
(VRS) [19].

where ρ is the air density, A is the rotor disk surface area, and
U = ‖vie3 + v∞‖ is the velocity of the propeller slipstream.
The induced velocity vi can be obtained using

vi = v2
h/
√
v2
xy + (vi − vz)2, (7)

which may be solved by several Newton-Raphson iterations
with known vh and v∞ [19]. A flow visualization of thrust
generation and the relevant velocities is depicted in Fig. 3.
The horizontal and vertical components of the freestream
velocity are vxy = v∞ − vz and vz = eT3 v∞, respectively.
Their norms are vxy = ‖vxy‖ and vz = ‖vz‖. In hover
conditions the induced velocity is vh =

√
Th/2ρA, where

the hover thrust is Th = ρD4CT $
2. The thrust coefficient

CT can be obtained from static thrust measurements, D is
the propeller diameter, and $ is the propeller speed. The
propeller ideal aerodynamic power is

Pa = 2ρAviU(vi − vz). (8)

Furthermore, the aerodynamic power in forward flight is
related to the hovering power following

Pa/Ph = (vi − vz)/vh, (9)

with Ph = 2ρAv3
h. Nonidealities can be included through the

figure of merit (FM ), between 0 and 1, such that Pa =
Pm ·FM , where Pm is the motor power. The theory must be
applied in the valid domain. Unmodified momentum theory
does not apply in the unsteady Vortex Ring State (VRS) [19],
as depicted in Fig. 4.

D. Simplified brushless DC motor model

In order to estimate the propeller aerodynamic power, we
employ the BLDC motor model from [18]. The mechanical
part of motor dynamics can be represented by

τm = (Kq0 −Kq1ia)ia, (10)
Ir$̇ = τm −Dr, (11)

where ia is the current through the motor, and $ is the
rotor angular velocity. The motor torque is τm, with the
torque constant modeled as Kq(ia) = (Kq0 −Kq1ia). The

parameter Ir is the rotor inertia, and Dr is the aerodynamic
drag torque acting on the rotor. The total motor mechanical
power is Pm = Pa/FM + Pr, where the mechanical power
Pm and power consumed by rotor acceleration Pr are used
to estimate the aerodynamic power using

Pm = τm$ = (Kq0 −Kq1ia)ia$, (12)
Pr = Ir$$̇, (13)

P̂a = FM
(
(Kq0 −Kq1ia)ia − Ir$̇

)
$. (14)

In summary, we need to estimate or measure the motor
current ia, rotor speed $ and rotor acceleration $̇. The
measurements ia and $ can be obtained from modern ESCs,
and $̇ can be estimated [18].

III. WIND VELOCITY ESTIMATION

Previous work has shown that the dominant horizontal
force in multicopters is due to propeller induced drag [6].
Therefore, the external torques will be small and can be
neglected for wind velocity estimation. When estimating
wind from motor power, we expect high sensitivity of the
estimated horizontal wind velocity component to noise in
the motor power measurements. This is due to near-hovering
flight conditions (low forward flight velocity) and the copla-
nar configuration and of our propellers. Furthermore, we will
not be able to directly apply this method to our coaxial con-
figuration, as this is not accurately described by momentum
theory.

A. Wind velocity from external wrench measurements
We may obtain the wind velocity from the external wrench

τe acting on the robot. Assuming τe = τd, we need to invert
the aerodynamics model τd = d(vr). For simple models, this
can be achieved by simple relations [8], or iteration [9].

Linear model. The widely used induced-drag and blade
flapping model [8] can be written as

d(vr) =Dl vr
∑

$i, (15)

where Dl is the linear coefficient matrix. By applying
fe = d(vr), we may write

vr(d) =
1∑
$i
Df̂e, (16)

where D is a coefficient matrix. This model implicitly
assumes that the flying robot has a symmetrical shape.

Learning-based approach. We may also model the rela-
tion using a Radial Basis Function (RBF) neural network.
This has the advantage that the inverse relation can be
directly encoded into the RBF. However, the number of basis
functions, their centers and shape parameters also have to be
tuned. We model the relation vr = d−1(τ e) as a normalized
RBF network with K basis functions

vr =
1
φΣ
Wφ(τe), (17)

where the matrix W ∈ R3×K contains weights of the RBFs
for each velocity component

W =



wT
x

wT
y

wT
z


 =



Wx,1 · · · Wx,K

Wy,1 · · · Wy,K

Wz,1 · · · Wz,K


 , (18)



and the vector φ = [φ(r1), . . . , φ(rK)]T is the vector of
evaluated basis functions. The network is normalized by the
factor φΣ =

∑K
i=1 φ(ri). We use the Gaussian basis function

φ(ri) = exp
(
− 1

σ2
‖x− ci‖2

)
, (19)

where σ is a shape parameter, x is the evaluated vector, and
ci is the center of the i-th basis function. In order to avoid
the curse of dimensionality and for the norm to have physical
meaning, we use only the external forces fe.

For learning the vector wi; i ∈ (x, y, z), we use a
batch least squares approach of L measurements, such that
Y wi = b, with Y ∈ RL×K and b ∈ RL being

Y =



φ1(fe,1) · · · φK(fe,1)

...
. . .

...
φ1(fe,L) · · · φK(fe,L)


 , b =



vr,i,1

...
vr,i,L


 . (20)

With this approach we can easily include additional infor-
mation, for example aerodynamic power. We may thus learn
vr = f(τe, Pa/Ph). There is also no assumption on the
shape of the robot. However, a lot of data is needed for
learning, and the model does not generalize well.

B. Wind velocity from aerodynamic power measurements

In this section, we present a novel method to obtain wind
velocity from aerodynamic power measurements, based on
momentum theory. We start by rewriting the aerodynamics of
one propeller (7), (8) and (9) as a system of nonlinear equa-
tions F (vi, vz, vxy, vh, Pa) = 0, with F = [F1, F2, F3]

T ,
where

F1 = v4
i − 2v3

i vz + v2
i (v

2
z + v2

xy)− v4
h = 0,

F2 = viU(vi − vz)− Pa/(2ρA) = 0,

F3 = v2
h(vi − vz)− Pa/(2ρA) = 0.

(21)

We consider Pa/(2ρA) and vh to be known inputs, and want
to determine x = [vx, vy, vz, vi]

T . This system of nonlinear
equations is underdetermined, as we have two knowns and
three unknowns, since vx and vy are coupled in vxy . Due to
this mapping, the solution of (21) will be a manifold, and
depends on the initial guess. Hence, we cannot use (21) to
uniquely determine the unknowns. To solve this problem,
we expand the system of equations to include multiple mea-
surements. We then introduce a transformation of (21) into
a common frame. This allows us to estimate all three wind
velocity components and the propeller induced velocities by
solving a nonlinear least squares (NLS) problem.

Multiple measurements. Let us assume a constant wind
velocity vw = [vx, vy, vz]

T through N measurements. This
assumption holds in several cases. First, we can combine
instantaneous measurements from multiple propellers that
are rigidly attached (e.g. quadcopter). These may also be
rotated w. r. t. the body frame. Second, we can combine
measurements from multiple poses at different time instants
in a small time window. Third, if the flight is not aggressive,
i. e. the orientation does not change significantly, we can
estimate the body-frame freestream velocity. In effect, we

use information gained from N measurements to obtain the
wind velocity components.

We may extend the state to N measurements

x = [vx, vy, vz, v
(1)
i , v

(2)
i , . . . v

(N)
i ]T , (22)

and solve the extended system of equations

F (vx, vy, vz, v
(1)
i , v

(1)
h , P (1)

a , . . . , v
(N)
i , v

(N)
h , P (N)

a ) = 0,

F = [F
(1)
1 , F

(1)
2 , F

(1)
3 , . . . , F

(N)
1 , F

(N)
2 , F

(N)
3 ]T , (23)

where F (k)
1 , F (k)

2 and F
(k)
3 are evaluations of (21) for the

k-th measurement. A Jacobian is needed to solve (23). The
Jacobian for the k-th measurement is defined as

J (k) =



J

(k)
11 J

(k)
12 J

(k)
13 J

(k)
14

J
(k)
21 J

(k)
22 J

(k)
23 J

(k)
24

J
(k)
31 J

(k)
32 J

(k)
33 J

(k)
34


 , (24)

where J (k)
ij = ∂F

(k)
i /∂x

(k)
j . We can now construct the ex-

tended Jacobian J |N ∈ R3N×N+3. For three measurements
we have x|N=3 = [vx, vy, vz, vi,1, vi,2, vi,3]

T and

J |N=3 =




J
(1)
11 J

(1)
12 J

(1)
13 J

(1)
14 0 0

J
(1)
21 J

(1)
22 J

(1)
23 J

(1)
24 0 0

J
(1)
31 J

(1)
32 J

(1)
33 J

(1)
34 0 0

J
(2)
11 J

(2)
12 J

(2)
13 0 J

(2)
14 0

J
(2)
21 J

(2)
22 J

(2)
23 0 J

(2)
24 0

J
(2)
31 J

(2)
32 J

(2)
33 0 J

(2)
34 0

J
(3)
11 J

(3)
12 J

(3)
13 0 0 J

(3)
14

J
(3)
21 J

(3)
22 J

(3)
23 0 0 J

(3)
24

J
(3)
31 J

(3)
32 J

(3)
33 0 0 J

(3)
34




,

which is straightforward to extend to N measurements.
Transformed formulation. When combining measure-

ments from different poses, the wind velocity has to be
transformed into a common coordinate frame. Otherwise, the
constant wind velocity assumption will not hold. Define the
freestream velocity of propeller k as

v(k) =



v

(k)
x

v
(k)
y

v
(k)
z


 = R(k)



vx
vy
vz


+ v

(k)
0 , (25)

and use the transformed velocities when calculating (21)
and (24). The offset velocity v(k)

0 can be obtained from a
pose estimation system as the delta velocity between two
measurements. We may also use the propeller offset velocity
due to the body angular velocity, i. e. v(k)

0 = R
(k)
pb ω × rk.

This formulation allows us to determine all three compo-
nents of the freestream velocity independently. It also allows
to obtain the instantaneous wind velocity components when
the propellers are not mounted to the multicopter frame in a
coplanar configuration.

Solving the system of equations. When the equations
match, we solve a multidimensional root-finding problem.
The solution will then be at the intersection of all nonlinear
functions, where F = 0. However, under model mismatch,
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Fig. 5: Zero contours of (26), with color indicating the function
value. Green lines are contours of F (k)

1 , red lines are contours
of F (k)

2 , and black lines are contours of F (k)
3 at vi = const. The

blue lines show convergence of a Levenberg-Marquardt solver for
different initial guesses. The converged solution is depicted as
an orange diamond. The velocity components vx and vy lumped
into vxy . We used N = 6 measurements, velocity v∞ = 3.5m/s,
angle of attack α = 10◦, vh ∈ [4.1 . . . 6.7]m/s, and measurement
angles up to 10◦. Without noise on the power measurement
(Fig. 5(a)), the solution converges to the exact wind velocity
vw = [−3.45, 0 − 0.61]T m/s. With noise in the power measure-
ments, the least-squares solution moves depending on measurement
conditioning.

i. e. when the measured aerodynamic power does not match
momentum theory, the functions will not necessarily inter-
sect. In this case we have to solve a nonlinear least squares
problem with the objective function

f = 1
2F

TF , (26)

for example using a Levenberg-Marquardt solver [25], [26].
When an exact solution exists, it will be at f = 0, i. e.

the intersection of F = 0. Otherwise, if there is a model
mismatch or noise in Pa, we get a least squares solution.
Fig. 5 shows convergence of the solver for different initial
guesses and noise on Pa.

Limiting the search space. The space of (26) can contain
local optima. From the underlying physics, the same mea-
sured power can be obtained by various wind and induced
velocities. The optimized variables are velocities. We may
therefore use physical considerations to determine the set
of feasible solutions. A flying robot must expend power to
generate thrust, which implies T > 0 and Pa > 0, for which
we use (6) and (8), respectively. The induced velocity is
vi < vh in the normal working state, and vi > vh in the VRS.
We exclude VRS from the search space because momentum
theory is invalid in that state. Therefore, we limit induced
velocity to 0 < vi < vh. Likewise, we can limit vw in case
of knowledge of its limits. In order to limit the search
space using the Levenberg-Marquardt method, we add a
quadratic barrier function F4 to the optimization problem
formulation [25]. which increases the size of the problem, as
the function becomes F ∈ R4N , and the Jacobian becomes
J |N ∈ R4N×N+3.

Normalization. In order to improve stability of the nu-
merical solution, we normalize the goal function to its
initial value J0, i. e. we minimize J ′ = J−1

0 J . Further-
more, the functions F (k)

1...3 are normalized to v
(k)
h , such that
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−1.85 −1.80 −1.75 −1.70

vz [m/s]

4.62

4.64

4.66

4.68

4.70

4.72

v
i

[m
/
s]

True value

4◦
8◦

12◦

16◦

0.3 W

0.7 W

8.0 W

Fig. 7: Sensitivity of the NLS solution for the same case as in Fig.
6, but for perfect knowledge of horizontal velocity components
(vx, vy), which may be obtained from the induced drag model,
i. e. the external force. When the horizontal wind velocity is
known, the vertical component can be determined robustly from
the aerodynamic power measurements.

F ′1 = F1/v
4
h, F ′2 = F2/v

3
h, F ′3 = F3/v

3
h, F ′4 = F4/v

2
h. In this

way, the function values are dimensionless and have the same
order of magnitude.

Sensitivity analysis. Measurement noise will shift the
estimated wind velocity in a nonlinear manner, as can be
seen in Fig. 5. We therefore perform a sensitivity analysis to
estimate this effect. Figure 6 depicts the converged solutions
for increasing noise amplitude in the measured power. Since
the quality of the solution will depend on the distribution
of measurement poses, we uniformly distribute these under
different maximum angles, from 5◦ to 20◦. Higher relative
angles between measurement poses increase robustness of
the solution. However, estimation of the horizontal wind ve-
locity components is very sensitive to power measurements.

We therefore propose to estimate the horizontal velocity
components using the induced drag model, i. e. from the
external force. As shown in Fig. 7, this allows a robust
estimation of the vertical wind velocity component and
the propeller induced velocity even for a high error in
power measurements. A minimum angular distance between
measurements should also be considered when choosing
suitable measurements for the NLS problem. Having an
offset velocity v0 in (25) additionally reduces sensitivity to
noise in the power measurements.
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Fig. 8: Left: experimental setup inside the wind tunnel: four ART
Tracking cameras (1) and ART controller (2), RM Young Model
81000 Sonic Anemometer (3), groundstation laptop (4). Vanes (5)
are used to generate the vertical wind component. The flying robot
(6) is located in the center of the flying area. Right: schematic
layout of the wind tunnel test. Red arrows show horizontal flow
component, green arrows show vertical flow component, blue
arrows show net wind vector.
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Fig. 9: Experiment hardware setup. We use a Beaglebone Black
running a Linux with realtime patch as the autopilot. The Odroid
XU-3 is used as the onboard pose estimator, with a separate
IMU and triggered stereo cameras. They are connected through an
onboard wireless router, which also serves as a connection to the
groundstation.

C. Combined wind estimator

In order to overcome limitations of the two presented
methods, we propose a combined wind estimator. The hori-
zontal velocity components (vx, vy) are obtained from the ex-
ternal wrench, using (16) or (17). We then use the estimated
aerodynamic power and known (vx, vy) to calculate vz using
the nonlinear least squares formulation, by minimizing the
cost function (26). We note that this optimization may also
be implemented as a nonlinear filter for online estimation,
however this the subject of future work.

IV. EXPERIMENTAL SETUP AND RESULTS

A. Flying robot platform

Hardware. The experiments were carried out using a
custom-built hexacopter in a coaxial configuration. For
propulsion we used six identical T-Motor MN2212 920 Kv
motors at a 4S voltage (14.8V), with T-Motor CF 10x3.3
propellers. The computational hardware setup is outlined in
Fig. 9. A Beaglebone Black with realtime Linux is used
as the autopilot. We use ESC32v2 speed controllers with

firmware modified to support I2C communication. The ESCs
measure the motor current using a shunt resistor. An Odroid
XU3 is used for onboard pose estimation by fusing stereo
visual odometry and IMU data. The two PointGrey Firefly
cameras are synchronized with a hardware trigger. Communi-
cation between the two onboard computers is achieved over
Ethernet through a wireless router, which is also used as
connection with the groundstation.

Software. The orientation strapdown, attitude and position
controllers run on the autopilot computer at 500 Hz. The
motor feedback is obtained at 1/6th of the control rate. Pose
updates are sent to the autopilot either from the ground-
station (motion capture system) or the Odroid (onboard
pose estimation). The received poses are used for position
and attitude control. Communication between components
is done using a custom real-time capable middleware, over
shared memory and UDP. For onboard pose estimation we
employ a Roboception [27] Navigation Sensor which exposes
the full 6D pose of the robot, its velocities as well as unbiased
IMU measurements. The state estimator fuses keyframe delta
poses of a stereo vision odometry with IMU measurements
by an indirect, extended Kalman filter while latencies of the
vision system are compensated [11]. The whole pipeline runs
on the on-board Odroid XU3 computer.

B. Wind tunnel

The Wind Engineering, Energy and Environment
(WindEEE) Dome, see Hangan [13], is the world’s first 3D
wind chamber, consisting of a hexagonal test area 25 m
in diameter and an outer return dome 40 m in diameter.
Mounted on the peripheral walls and on top of the test
chamber are a total of 106 individually controlled fans
and 202 louver systems. Additional subsystems, including
an active boundary layer floor and “guillotine” allow for
further manipulation of the flow. These are integrated
via a sophisticated control system which allows dynamic
manipulation with thousands of degrees of freedom
to produce various time and spatially dependent flows
including straight uniform, atmospheric boundary layer,
shear gusts, downbursts and tornados at multiple scales. A
pair of 5 m diameter turntables allow for a wide variety of
objects to be tested inside and outside the facility.

For this project WindEEE was configured to produce
straight flow closed-loop and downburst flows concurrently.
In this configuration the test area was restricted to a 4.5 m
diameter, 3.8 m tall region at the centre of the facility. See
Fig. 8 for a schematic drawing of the layout. A rectangular
array of 36 fans (9 wide by 4 high) located on the south
chamber wall were used to produce horizontal flow and 6
large fans above the test chamber were used to generate the
downward flow. The respective flow rates from the horizontal
and vertical component fans were manipulated individually
to generate net wind vectors ranging in velocity from 1–5 m/s
and vertical plane angularity from 0–90◦. In some cases both
the velocity and vertical plane angularity were manipulated
dynamically to produce time-dependent wind vectors that
either varied in speed or angularity over a given test run.



TABLE I: Identified system parameters. Upper and lower propellers
have different thrust and torque coefficients. The nondiagonal
elements of I are two orders of magnitude smaller than the diagonal
elements, and are therefore neglected.

Parameter Value
Mass M 2.445 kg
Inertia Idiag [27.3, 25.3, 27.6]T · 10−3 kg m2

Center of mass rg [−0.46, 0.11, 1.25]T · 10−2 m
Thrust coef. CT 0.0048 (upper), 0.0058 (lower)
Torque const. Kq0 1.038 · 10−2 N m/A
Rotor inertia Ir 2.235 · 10−5 kg m2

C. Results

For training aerodynamic models, we flew in horizontal,
vertical and combined wind flows with varying wind veloc-
ities. The flying robot was hovering in position controlled
mode and was rotated about the yaw axis. We combined
several flights into a single training set, depicted in Fig. 10.
The algorithms were verified offline. Where necessary, data
was smoothed using a convolution filter without delay.

Parameter estimation. The system parameters were first
identified and verified in identification flights without wind
influence. For inertial parameters, we used a batch least
squares approach with a linear parameterization of the system
dynamics. We used the known mass to compute the gravity
wrench. The control input was obtained from the measured
propeller speeds. Table I lists the resulting parameters.

Horizontal velocity estimation. As can be seen from Fig.
11, both the linear model (LM) and radial basis function
(RBF) learning-based approach can estimate the horizontal
velocity from the external force with good accuracy. The
LM results in a full 3×3 matrix. For he RBF we used
64 centers. Therefore, it is able estimate the vertical wind
component better than the simple model. We found that using
motor power data (P̂

∑
a /P

∑
h in Fig. 10) did not improve

the accuracy of the RBF network. The experimental data is
therefore omitted for brevity.

Motor power. In order to test if using motor power in
the RBF improves accuracy, we used the total measured
motor powers normalized to the expected power in hovering.
As shown in Fig. 10, this approach coincides well with
momentum theory. However, it does not work for individual
propellers, as the effect of coaxial rotors is not modeled. We
therefore do not expect good results from the NLS approach
when applying the measured power. Note that this is only a
limitation of our hexacopter, and not due to the method.

Obtaining wind velocity from motor power. When
the horizontal velocity components are known, the NLS
momentum theory formulation presented in Section III-B
accurately reconstructs the vertical component. Using the
horizontal velocity obtained from the RBF still provides good
results, as can be seen in Fig. 11. Here we used the four
previous measurements of the top propellers, i. e. N = 12.
Results of the combined wind estimator are similar to RBF
approach, and are limited by the accuracy of the horizontal
velocity estimation, and accuracy of the aerodynamic power
model. The power-based wind estimation may therefore be
seen as complementary to the learning-based approach.
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Fig. 10: The training set for aerodynamics models contains 18
minutes of flight data under horizontal wind speed up to 8 m/s,
and vertical wind speeds up to 5 m/s. Higher vertical wind speeds
were not possible due to actuator saturation and loss of yaw control
authority. The relative airspeed in the body frame is depicted.
We varied the yaw angle throughout the flights. The middle plot
shows the sum of powers of the six motors. The hover power is
obtained from Ph = 2ρAv3h. The expected aerodynamic power is
Pa, with induced velocity calculated from (7) and (8), using the
relative airspeed obtained from the anemometer data and external
tracking system. Because momentum theory is not easily applicable
to coaxial rotors, we fit the estimated aerodynamic power as
P̂a = P0 + βPm, which provides a good fit with momentum theory.

V. CONCLUSION

In this paper, we presented methods to obtain wind veloc-
ity from two independent inputs, namely external wrench
and motor power. The first method, which builds on our
previous work, learns the drag model and inverts it for
velocity estimation for this purpose. It assumes that drag is
the only external wrench acting on the system. The scheme
requires an IMU and known control inputs only. The second
algorithm obtains wind velocity from aerodynamic power
measurements only, which are easy to obtain by modern elec-
tronic speed controllers typically employed in multicopters.
The method provides an estimate that is independent from
the drag model and other external forces as e. g. contacts.

Both schemes were experimentally verified with a hexa-
copter in a 3D wind tunnel. To the authors’ knowledge such
an experiment was done for the first time. In summary, the
following conclusions can be drawn. 1) The linear model
utilizing the wrench observer provides similarly accurate
results for the horizontal coordinates compared to the RBF
approach, that works also on the external force/torque es-
timation. Additionally including power measurements did
not improve these results. 2) If the horizontal velocity is
known (either from wrench estimation or ground truth), the
reconstruction of the vertical velocity works well. To sum
up, the combination of both methods we developed results
in a fully operational flying anemometer.

Next steps cover the execution of the schemes in real-
time, a more thorough sensitivity analysis and the accurate
modeling of the coupling effects due to coaxial rotors.



−4

−2

0

2

4

6
v
x
y

[m
/
s]

vx

vy

LMy

RBFy

−2

−1

0

1

2

3

v
z

[m
/
s]

LMz

RBFz

Pz

vz

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

ṽ
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Fig. 11: Estimation of the body-frame relative airspeed, for a
validation dataset. Ground Truth (vx, vy , vz) is also shown. Top:
The horizontal velocity is estimated using a Linear Model (LM) or
Radial Basis Function (RBF). Performance for vx is similar. The
RBF has better accuracy than LM in the vertical (second row).
Second and third row: vertical velocity vz and estimation error ṽz .
In case (R), black, we use Pa obtained by momentum theory and
ground truth horizontal velocity to reconstruct the vertical wind
velocity vz using NLS. For clarity, we only show the error. In
case (A), cyan, we use the RBF-estimated horizontal velocity for
reconstruction. In red (Pz) we employ the combined wind estimator,
using the estimated aerodynamic power P̂a and RBF horizontal
velocity. The discrepancy around t = 275 s presumably comes
from unmodeled interaction effects of coaxial propellers. Fourth
row: Aerodynamic power in hover (Ph), from momentum theory
(Pa) and estimated from motor measurements (P̂a = P0 + βPm).
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