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Nomenclature  III 

Symbols and Units  
Table 1-1: List of Symbols and Units 

Symbol Description Unit 

[ ]s23 90,0  Symmetric laminate with 6 0° and 4 90° plies  
][A  Extensional stiffness matrix N/mm 
][B  Extension – bending coupling matrix N 
][D  Bending stiffness matrix Nmm 

E  Elastic modulus N/mm² 
G  Shear modulus N/mm² 
L  Minimum step length between two terminating plies mm 
N  Total number of plies  

ijQ  Matrix entries of the reduced stiffness matrix of a lamina N/mm² 

kijQ ,  Matrix entries of the reduced stiffness matrix of the kth ply 
transformed into the global coordinate system N/mm² 

T  Total laminate thickness mm 

1U  First material invariant  

[ ]
AV *
2,1  In-plane lamination parameter 1 and 2, normalized by the 

laminate thickness  

X  Number of removed plies  
a  Panel length mm 
b  Panel width mm 
h   Step size  
{ }n̂  In-plane forces (per unit length) N/mm 
{ }m̂  Out-of-plane moments (per unit length) N 

0t  Thickness of one laminate ply mm 
{ }qx  Vector of design variables of the q-th iteration  
{ }( )xg  Constraint function  

z  Thickness coordinate of the k-th ply  
{ }ε  Strains  
{ }κ  Curvatures  
ρ  Density g/mm³ 
σ  Stress N/mm² 
ν  Poisson’s ratio  
θ  Ply angle ° 
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Indices 
Table 1-2: Indices 

Index Description 
1,2,3 Lamina (local) coordinates, with 1 along fiber direction 
k  Ply index  
𝑥𝑥, 𝑦𝑦, 𝑧𝑧 Laminate (global) coordinates 
crit  Critical  
opt  Optimum value  
stacking  Value that belongs to a discrete stacking 

 

 

Terms and Abbreviations  
Table 1-3: Terms and abbreviations used 

 
Description 

CLT Classical laminate theory 
LP Lamination parameter 
RF Reserve factor 
VErSO  Virtual Environment for Structural Optimization 
UD Fabric with unidirectional fibers 
Biax Fabric with bi-axial fibers 
Triax Fabric with tri-axial fibers 



Introduction and problem description  1 

1. Introduction and problem description 
Endless fiber-reinforced plastics are used in structures which require a high stiffness-to-weight as well as 
strength-to-weight ratio such as aircraft wings or wind turbine blades. The idea is to design the structure 
in a way that it meets the functional requirements combined with a high utilization of the material. 
Thereby the directional properties of the composite material are used to tailor the structural performance 
in a principle direction where it is needed. One example for a performance requirement would be the 
global bending stiffness of a wind turbine blade to restrict the deformation towards the tower. A uniform 
stiffness in all directions (e.g. in case of steel) would lead to an oversizing of the structure in the non-
principle directions. The design variables that influence the structural performance are the ply counts of a 
given material and the ply orientation angle which form together with the through-the-thickness position 
the so-called “stacking sequence” of a laminate. Changing the stacking sequence for a fixed overall 
laminate thickness can lead to a different bending behaviour.  

The structural performance can be evaluated with the help of finite element models that are used to 
proof whether selected failure criteria for composites are satisfied. Failure criteria in this context describe 
the failure modes of composites for strength (ply based stress criteria) and buckling stability. Such criteria 
drive the design in a direction that it does not fail. 

To support the designer utilizing the composite material strengths best possible on the one side and to 
handle its weakness on the other side, design rules have been developed during the last decades. These 
guidelines are based on results from prototype tests and industrial experience. The intention of using 
design rules is to avoid the occurrence of critical failure modes e.g. delamination and simultaneously 
guarantee a manufacturable design. They are usually defined based on ply level in thickness or in 
longitudinal direction. One example rule in thickness direction is the usage of only laminates that are 
symmetric about their mid-plane which leads to restrictions in the stacking sequence. One important 
design rule in longitudinal direction is the continuity of plies between two neighbouring panels to ensure 
the manufacturability. The terms “panel” and “laminate” are used synonymous and subsidiary for a 
component with the same laminate material properties.  

Due to the fact that the structural performance is driven by several influential variables and the design 
has to fulfill different failure criteria and design rules, a parametric description of the design process is 
useful and has major advantages. It allows the usage of mathematical optimization with the influence 
quantities as design values and the failure criteria as constraints which brings the design process into a 
systematic and well-organized form.  

There are several optimization procedures available for composite structures based on either discrete 
(e.g. ply angles and position of a discrete set) or continuous design variables (e.g. thickness). Usually the 
laminate stiffness is described by the thickness and the stacking sequence that has a non-linear influence 
on the structural deformation. An alternative is to formulate the stiffness as a linear combination of the 
material invariants and the so-called “lamination parameters” which characterize laminate configurations 
(ply angles and thicknesses) and have a linear dependency regarding the laminate stiffness.  

The lamination parameters replace the trigonometric functions and therefore represent the laminate 
stacking. The avoidance of the trigonometric functions leads to a convex lamination parameter space, 
which makes the 12 lamination parameters suitable as continuous design variables in a gradient-based 
optimization process. In case of laminates with more than 13 plies the number of design variables can be 
reduced significantly when using lamination parameters and the laminate thickness instead of ply 
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orientations. Regarding the application of the already mentioned design rule for the usage of only 
symmetric laminates allows a reduction to 8 lamination parameters which further decreases the number 
of design variables. 

The above mentioned design rules can also be implemented in an optimization process. Due to their 
definition based on ply level, several rules are already mathematically formulated as design criteria to 
make them appraisable. Based on the criteria constraints are derived for an optimization with the 
stacking sequence as discrete design variables. One important criterion is the stacking sequence 
continuity developed by Liu et al. [1] which is a measure of continuous plies between two adjacent 
laminates respectively two neighbouring optimization regions. A ply is defined to be continuous when it 
occurs in both laminates and is separated in thickness direction by only one terminated ply. Thereby it 
does not matter if the terminated ply is part of the thinner or thicker laminate. A further approach to 
obtain a certain degree of ply continuity is the so called “laminate blending” introduced by Adams et al. 
[2]. A laminate of two panels is blended outwardly (or inwardly) if the stacking of panel 2 is obtained by 
removing the outermost (or innermost) plies of panel 1. To generate a globally blended structure a 
genetic algorithm is used to find an optimal stacking guide for the complete structure. The stacking guide 
represents the thickest panel and all other panels of the structure are obtained by dropping plies from it.  

To the best of the authors’ knowledge the only existing approach, that takes into account blending 
constraints in lamination parameter space for continuous optimization is the one developed by Macquart 
et al. [3]. His approach is based on an analytical formulation of blending constraints  for laminates, in 
which all plies have the same orientation angle (extreme laminates). With the help of this extreme value 
analysis it turns out, that the allowable change of a single lamination parameter is mostly driven by the 
taper ratio (number of removed plies over all plies) and not by the blending itself. Therefore the obtained 
feasible domain for the allowable change in lamination parameter space, when removing plies from the 
thicker laminate, seems to be too large as will be shown within the present work. 

In commercial sizing tools like HyperSizer [4] the consideration of design rules is usually a downstream 
process and is based also on discrete stacking sequences. The sizing process itself returns the target 
thickness and the percentage of different ply orientations. Based on this data discrete stacking sequences 
are derived by manually shuffling the stackings in order to fulfill several design rules. 

The goal of the present thesis is to formulate a design criterion based on selected design rules in thickness 
as well as in longitudinal direction. The selection of the design rules is done in accordance with their 
importance and the feasibility of the implementation into an optimization process. A design criterion is an 
appraisable quantity and is used to derive constraints for a gradient-based optimization with lamination 
parameters as continuous design variables for a pre-defined set of ply angles. These constraints should 
restrict the feasible domain of the laminate parameter space in a way that selected design rules are 
fulfilled.  

The mentioned design criteria of Liu et al. [1] and Adams et al. [2] (developed for discrete stacking 
sequences to guarantee ply continuity) serve as a basis to formulate a modified criterion for the 
lamination parameter space as a mixture between laminate blending, stacking continuity and a required 
taper slope. It is important to note that this design criterion brings out so called “assembly constraints” 
that interrelate the design variables of two adjacent but different panels to each other. The design rules 
concerning symmetric and balanced laminates are also treated as a criterion to restrict the lamination 
parameter space of each individual panel. The assembly constraints are implemented in a gradient-based 
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optimization process called “VErSO” (Virtual Environment for Structural Optimization), which was 
developed in cooperation with Mr. Sascha Dähne at the DLR Institute of composite structures and 
adaptive systems in Brunswick. 

The present thesis is structured in five sections. A description of the relevant design rules for the sizing 
and optimization during the preliminary design phase of composite structures used in the aircraft- and 
wind power industry is given in section 2. The selection of relevant design rules that will be implemented 
in the optimization process is explained. Section 3 introduces the gradient-based optimization with 
lamination parameters as continuous design variables. After a short overview of the constitutive 
equations for a laminated composite plate, a description of the laminate stiffness as function of the 
lamination parameters and material invariants is given. An introduction into gradient-based optimization 
is followed by the description of the feasible domain of the LPs as continuous design variables. Section 3 
concludes with an overview of the developed optimization process VErSO. State-of-the-art formulations 
of design criteria are presented in section 4. Furthermore the definition of a modified design criterion is 
given, that combines the approaches from Liu et al. [1] and Adams et al. [2] and make them applicable for 
the lamination parameter space. Based on this design criterion assembly constraints are formulated to 
restrict the lamination parameter space of adjacent panels. The application of an assembly with two 
components is documented in section 5. The results with and without assembly constraints are compared 
and discussed. The thesis concludes with a summary and an outlook presented in section 6. 



4                                                         Design rules for composite structures 

2. Design rules for composite structures 
This chapter lists the relevant design rules for the sizing and optimization of endless fiber-reinforced 
composites used in the aircraft- and wind power industry. Afterwards the selection of the most important 
design rules is described and their choice is justified. The documentation of the design rules is focused on 
the preliminary design of large scale and continuous composite structures and has therefore not the right 
of completeness. Further design rules regarding other topics like bonding, assembling, thermal 
treatments, testing and repair of composite structures can be found in [5] and [6]. 

2.1 Aircraft industry 

Table 2-1 lists the relevant design rules in thickness direction (z-direction in Figure 2-1) for laminates used 
in the aircraft industry. The design rules in longitudinal direction (x-direction in Figure 2-1) are given in 
Table 2-2. More details about the background of each individual design rule can be found in the related 
reference giving in the last column of the tables. 

Symmetric laminates 

Laminates that have a stacking of ply angles symmetric to the laminate mid-plane are called symmetric 
laminates. Within the present work it is assumed that the mid-plane is located between two plies. As 
described in Niu et al. [5] and the Composite Materials Handbook (MIL-HDBK-17-3F) [6], the main 
advantage of these laminates is the uncoupling of membrane and bending behaviour of the structure. 
Analysis and testing like the measurement of stiffness and strength values of the structure can be 
simplified due to a more predictable deformation behaviour. Furthermore, the tolerance management 
during the assembly is simplified. The present design rule cannot be always rigorously fulfilled for 
example in tapering areas where the laminate thickness changes. In case of locally non-symmetric 
laminates the asymmetric part should be placed as close as possible to the mid-surface to minimize the 
warping.   

Balanced laminates 

An extension of the demand for symmetric laminates is the usage of balanced laminates. Balanced in this 
context indicates that all ply angles other than 0° and °90  should occur in pairs of θ+  and θ−  above and 
below the mid-surface. Balanced laminates have similar advantages like symmetric ones. One important 
property is the decoupling of in-plane membrane and shear behaviour of the structure. The two 
membrane stiffness terms representing this coupling are determined by the summation of the ply 
stiffness terms that contain products of odd powers of sine and cosine functions as shown by Jones [8]. 
Therefore 0° and 90° do not contribute to these stiffness terms. If other ply angles θ+  have a partner ply 
angle θ−  the sum of both results in zero and a contribution is also not given. A further criterion why 
laminates should be symmetric and balanced is the maximization of buckling strength. As documented in 
Niu et al. [1] and Jones [8] the membrane-bending and also bending-twisting coupling increase the 
deformation while decreasing at the same time the buckling resistance and vibration frequencies as it 
would be expected for panels with a significant lower bending stiffness. An important exception where 
unbalanced laminates are used is the application of aero-elastic tailoring. One example is a forward swept 
wing where unbalanced laminates are used to produce a membrane in-plane and shear coupling of the 
wing skins to avoid an aerodynamic divergence. A further example is an aero-elastic tailored wind turbine 
blade for which a structural bend-twist coupling is requested to improve locally the angle of inflow. 
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Outer plies and damage tolerance 

Another design rule in thickness direction given in Niu et al. [5] is the placement of ±45° plies on the outer 
laminate surface to increase the damage tolerance and impact resistance e.g. against tool drop. At the 
same time the load-carrying 0° plies should not be placed at the outer surfaces due to operational 
aspects. This procedure is recommended for possibly instable laminates to maximize the buckling 
resistance. The effect can be shown with equation (2-1) [8] for the critical buckling load of a long panel 
axially loaded. 

The variables a and b constitute the panel length and -width and m is the number of half waves of the 
buckling mode shape in longitudinal direction. It can be observed that xn̂  is a function of four times 66D

and only one times of 11D  (respectively 22D ). Therefore adding ±45° plies as far as possible from the mid-

surface to increase 66D  is four times more effective than adding 0° or 90° plies. 

Contiguity and maximum ply thickness 

This design rule refers to a limitation in the thickness of adjacent plies with the same orientation angle. 
According to Niu et al. [5] for a laminate with a standard ply thickness of 0.127mm, not more than four 
contiguous plies are recommended. For thicker plies not more than two plies with the same orientation 
angle should be staged together. To outline the origin of this design rule a short introduction into inter-
laminar stresses is given in the following. As described by Pipe et al. [9] the classical laminate theory (CLT) 
predicts a state of plane stress for symmetric laminates under traction loads. Each ply has an axial stress 

xσ  and an in-plane shear stress xyτ  as shown in Figure 2-1.  

 
Figure 2-1: Symmetric laminate with four plies under axial loading [9] 

The stresses are constant within the ply but vary from one to another ply. The results of the CLT are only 
exact in case of laminates with infinite widths due to the fact that at the free side edge (Figure 2-1 at y=b) 
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the shear stress xyτ  reduces to zero and inter-laminar stresses xzτ , yzτ  and zσ  occur in the boundary 

region.  

Figure 2-2 shows the right half of the outer ply extracted as a free body in the y-z plane. The normal stress 

yσ  is caused by differences in Poisson’s ratio and thermal expansion in the x-y plane of the neighbouring 

ply with a different orientation angle. Its normal force is balanced by the shear force produced by the 
inter-laminar stress yzτ  close to the free edge. Due to the fact that the forces are not collinear a moment 

arises from this couple of forces. A counter moment arises near the free edge which induces a normal 
stress couple in z-direction as shown in Figure 2-2. The thicker the ply the greater is the moment (due to 
the distance between yσ  and yzτ ) and the higher are the resulting inter-laminar stresses yzτ  and zσ  

which can cause transverse cracks or free-edge delamination. Based on these observations the design rule 
was created to limit the ply thickness respectively the number of plies with the same orientation angle. 
Exceptions exist for situations where matrices with higher performance are used and the maximum 
allowable ply thickness can be enlarged. 

 
Figure 2-2: Right part of the outer ply extracted as a free body 

10%-rule  

The so called “10%-rule” refers to the requirement having minimal in-plane stiffness in all fiber directions 
like 0°, 90° and ±45°. The goal is to cover secondary loads and to create more robust laminate properties 
in comparison to highly orthotropic laminates. Furthermore a matrix-dominated behaviour (e.g. nonlinear 
effects and creeping) can be avoided for laminates where the main fiber direction is not aligned with 
principle load axis as described in the MIL-HDBK-17-3F [6]. There is no formal documentation of this 
guideline that confirms its validity, but due to the fact that it has been followed successfully in many 
production programs it is still present in these days. 

Taper slope and maximum thickness step 

The first design rule in longitudinal direction of the laminate is the limitation of the taper slope in zones 
where the plies are dropped off due to thickness variations. As documented in Niu et al. [5] thickness 
changes lead to discontinuities and eccentricities in the laminate stiffness which can cause inter-laminar 
failures as described above. Thickness steps along the main load direction should have a taper slope of at 
least 1:20. In case of a drop of four plies (e.g. 0.508mm) the next ply drop can occur earliest after 20 x 
0.508mm = 10.16mm in horizontal direction. Thickness changes in other directions should have a taper 
slope of at least 1:10 which is also valid for stiffeners and beam flange edges. Plies with angles other than 
0° and 90° have to be dropped off in θ±  pairs in case that unbalanced laminates are not allowed.  

According to Niu a single thickness step should not exceed 0.508mm which corresponds to four plies if the 
ply thickness is 0.127mm. This is the same value as recommended above for the maximum thickness of 
contiguous plies. The goal is to smooth the load distribution over the structure and to avoid high stress 
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concentrations (especially inter-laminar stresses) at the ply drop. Further limitations according to 
dropping of plies are documented in the following. 

Ply-drop techniques 

Recommended techniques how the ply drops should be arranged are given in [6] and [10]. If possible, ply 
drops should be arranged symmetric about the laminate mid-plane to achieve an adequate redistribution 
of the load through the remaining plies, especially the continuous outer plies. Therefor the first ply should 
be dropped off close to the mid-plane. Several proposals for symmetric ply drop techniques exist and can 
be found in [10].  

Continuity of plies 

This design rule is an extension of the rule “Taper slope and maximum thickness step”. At every interface 
between two adjacent panels, the plies of the respective thinner panel should cover the complete rest of 
the structure. The goal of this procedure is to ensure the structural integrity and manufacturability of the 
structure. This rule implies that ply orientation mismatches between adjacent panels like cutting plies 
between two panels to change their orientations (butt joints), are not allowed to avoid discontinuities in 
the material and to keep the manufacturing costs low. 

Covering plies 

The outer plies of a laminate should be continuous over the complete structure and cover the all ply 
drops to avoid delaminations at the free edges of the ply ends.  
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Table 2-1: Design rules in thickness direction used in the aircraft industry 
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 Table 2‐2: Design rules in longitudinal direction used in the aircraft industry 
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2.2 Wind power industry 

Table 2-3 lists the relevant design rules for optimization of composite structures used in the wind power 
industry. A comparison of the design rules between aircraft industry (documented in [5] and [6]) and the 
design rules used in the wind power industry shows that the rotor blade guidelines like the DNVGL-ST-
0376 [11] have taken over some of the rules in a similar way e.g. the tapering or the continuity of plies. 
Other rules like the contiguity or the ply drop technique play only a minor role due to the common usage 
of fabrics and tapes. The demand for symmetric and balanced laminates exists but exceptions are present 
due to ongoing research on structural bend-twist coupled blades in the current days for example within 
the Smart Blades project [12]. The design rules used in the wind power industry are described in the 
following subsections. More details about the background of each individual design rule can be found in 
the related reference given in the last column of the tables. 

Outer plies and damage tolerance 

The design rule for outer plies and damage tolerance is taken over from the aircraft industry and adapted 
for the usage of fabrics. According to Bir et al. [13], the outer plies should be made of Biax or Triax 
material to provide shear strength and to prevent the inner laminate (unidirectional material) from 
splaying and buckling. In case of a sandwich structure, the sandwich face is made of Triax plies to transfer 
the shear loads into the core.   

Taper slope and maximum thickness step 

In parallel to the aircraft industry the present design rule exists also for the wind power industry. The 
taper slope has to be calculated specifically based on the shear load criterion to avoid delaminations. 
Equation (2-2) [11] allows the calculation of the minimum step length L  for a ply with the thickness 0t  and 

an average laminate strength S [N/mm2]. 

An investigation on delaminations due to ply drops in wind turbine blades has been done by Cairns et al. 
[14]. According to his results, dropping more than one ply promotes the delamination process as already 
explained for the covering plies in the previous section. Furthermore inner ply drops are more resistant to 
delamination due to the double shear surface. 

In the DNVGL guideline [11] the tapering criterion is extended for sandwich laminates. The taper slope of 
core materials should be between 1:3 and 1:10 in the main load direction and between 1:3 and 1:5 in 
other directions. In the transition region between sandwich core and solid laminate the core material 
should be tapered with a gradient of maximum 1:3. 

Continuity of plies 

The demand for continuous plies is also present in the wind power industry [11] to reduce continuity 
breaks in the structure and keep the manufacturing costs low. In case that a butt joint is not avoidable at 
least five undisturbed plies have to be placed in between. Also multiple overlaps should be prevented. 
Any split of reinforcement plies (e.g. in UD caps) has to be analysed by the designer. Especially for large 
wind turbine blades the manufacturability of the design is important in terms of production effort and 
material costs. 

N
mmtSL

2
0

10
⋅

=  (2-2) 
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Covering plies 

The  requirement  for  covering  plies  over  the  complete  structure  is  directly  taken  over  from  aircraft 
industry. The goal is to avoid delaminations at the free edges of the ply ends as described by Cairns et al. 
[14].  

Table 2‐3 Design rules used in the wind power industry 
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2.3 Selection of design rules 

Comparing the design rules of the aircraft- and wind power industry it can be observed that the 
intersection of both is given by the following five rules, which are all related to the stacking sequence of a 
laminate: 

1. Symmetric and balanced laminates 
2. Outer plies and damage tolerance 
3. Taper slope and maximum thickness step 
4. Continuity of plies 
5. Covering plies 

Rule 2 and 5 specify the properties of the outer plies for one laminate and an assembly of minimum two 
laminates. These rules are not further treated within the present work because their influence on the 
lamination parameter space can be treated as an offset. In case that an arbitrary laminate stacking has a 
pair of ±45° as covering plies the contribution to its stiffness can be treated as a constant offset which is in 
case of the bending and coupling matrix ( ][D  and ][B ) dependant of the laminate thickness. For the 

present work the following design rules are selected: 

1. Symmetric and balanced laminates 
2. Taper slope and maximum thickness step 
3. Continuity of plies 

The selected rules are present in both industries and have a significant influence on the feasible domain 
of the lamination parameter space, which will be further explained in section 3.4 and 4.3. 

The selected design rules are all based on the discrete stacking sequence. Some of the design rules are 
already formulated as design criteria to make them appraisable for the optimization with discrete ply 
angles as design variables. An extract of the state of the art based on a literature research is given in 
section 4.1. Before that an introduction into gradient-based optimization using lamination parameters as 
continuous design variables is documented in the following section. 
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3. Gradient-based optimization of composites using lamination 
parameters 

The goal of the present section is to set up an optimization process for composites with the so called 
lamination parameters as continuous design variables. The linear mechanical behaviour of a laminated 
composite plate can be described in a compact form as function of the material invariants and lamination 
parameters, first introduced by Tsai and Pagano in 1968 [15]. 

In section 3.1 the constitutive relations of a laminated plate are set up. How they can be reformulated in 
terms of laminate invariants and the lamination parameters is described in section 3.2. An introduction to 
gradient-based optimization is given in section 3.3. The geometrical texture and mathematical description 
of the lamination parameter space is documented in section 3.4. The suitability of the LPs for the 
application within a gradient-based optimization process is described in section 3.5. The challenging step 
of converting a laminate parameter set to a feasible stacking is documented in section 3.6. 

3.1 Constitutive equations of a laminated composite plate  

To set up the constitutive equations of a laminated plate consisting of several unidirectional plies the 
Classical Laminate Theory (CLT) can be applied. The CLT comprises several assumptions like the plane 
stress state, small displacements and straight cross section surfaces under deformation.  

A loaded laminated plate can be treated as a combined problem of a membrane- and plate element. The 
cutting forces of an element shown in Figure 3-1 are termed stress resultants with the dimension “force 
per unit length” (applied force related to the element width). The three in-plane stress resultants are 
denoted by the vector { }n̂  and the out-of-plane stress resultants are indicated by the vector{ }m̂ . 

 
Figure 3-1: Sign convention for the cutting forces on a) the membrane- and b) the plate element 

The combined problem allows it to define an extensional stiffness matrix [ ]A  for the membrane element 

and a bending stiffness matrix [ ]D  for the plate element. Both are coupled with the extension-bending 

coupling matrix [ ]B . The combination of all three matrices is the global stiffness of the laminate named as 

“ABD-matrix”. The relation between the stress resultants and the strain vector { }ε  respectively the vector 

of curvatures { }κ  is shown in Equation (3-1) which represent the constitutive equations for a laminated 

plate. 
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According to Jones [8] the matrix entries can be calculated with equation (3-2), in which ( )
kijQ denote the 

transformed reduces stiffnesses of the kth lamina. “Transformed” in this context refers to the 
transformation from the local 1,2 coordinate system (with 1 in fiber direction) to the global x-y coordinate 
system of the laminate. The notation and position of the plies with respect to the laminate middle surface 
is shown in Figure 3-2. 

 
Figure 3-2: Ply numbering and -positioning within the laminate 

3.2 Lamination parameters 

This section introduces the lamination parameters (LPs) according to the notation used by Tsai and 
Pagano [15]. The goal is to define the laminate stiffness as a linear combination of the material invariants 
and the LPs to use them as continuous variables in a gradient-based optimization. As shown in equation 
(3-2) the matrix entries of the ABD-matrix are build up based on the reduced stiffness of each single ply. 

As example the matrix entry 11A  is the sum of the products of kQ ,11  and the related ply thickness for every 

laminae k. 11Q  can be splitted into three parts like derivated by Jones [8] and shown in Figure 3-3. One 

constant part 1U  not affected by the orientation angle θ  and two frequency components ( )θ2cos2U  and 

( )θ4cos3U  varying with .θ  
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Figure 3-3: Decomposition of the reduced stiffness component [8] 

1U  to 5U  denote the five material invariants calculated with the single, non-transformed material 

stiffnesses ijQ  as shown in equation (3-3). 

Finally 11A  can be calculated with the following equation:  

In case that all plies have the same material and thickness, the invariants can be brought outside the 
summation. In the following equation the cosine terms are replaced by the first two lamination 
parameters 1V  and 2V . 

The same procedure can be done for the other matrix entries of the [ ]A , [ ]B  and [ ]D  matrices. In total 12 

lamination parameters together with the material invariants are required to describe the stiffness 
behaviour of a laminated composite. The 12 LPs normalized to the total laminate thickness T  are listed in 
equation (3-6).  
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The definition of the stiffness entries as a function of the lamination parameters and the material 
invariants are given in equation (3-7). 

Applying some of the design rules discussed in section 2, the set of individual LPs can be reduced. In case 
that the laminate is symmetric, the four LPs of the [ ]B -matrix vanish. Is the laminate in addition balanced 

according to its mid-plane, the third and fourth LPs [ ]
AV *
4,3  for the [ ]A -matrix are zero. 0° and 90° plies have 

no contribution to the sum of sine functions. Pairs of angled plies cancel out each other due to the anti-
symmetry of the sine function with respect to the ordinate. Is the set of allowable ply angles reduced to 
0°,±45° and 90° plies the fourth LPs are zero, due to the factor 4 within the sine function. As shown in 

equation (3-7) the LP [ ]
DV *

3  is only part of the bend-twist coupling terms of the [ ]D -matrix 16D  and 26D . 

These terms do not have a contribution to the selected analytical failure criteria for buckling given in 

equations (3-43) and (3-46) and therefore the [ ]
DV *

3  parameter is neglected. The remaining four LPs that 

describe a symmetric and balanced stacking and serve as design variables within an optimization process 

are [ ] .,*
2,1

DAV  

It can be summarized that the originally non-linear relationship between laminate stiffness and a discrete 
stacking sequence becomes linear when replacing the trigonometric functions by the lamination 
parameters like done in equation (3-4). In comparison to the discrete stacking sequence the lamination 
parameters can be used as continuous and dimensionless design variables within a gradient-based 
optimization process as described in the following sections. The number of individual LPs could be 
reduced to four when following the design rules for symmetric and balanced laminates with an even 
number of plies. Together with the laminate thickness five continuous design variables are needed to 
describe an arbitrary stacking sequence of a laminate. 
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3.3 Gradient-based optimization 

Numerical optimization, as part of the virtual prototyping process, plays an important role in the design of 
composite structures. Virtual prototyping is used to reduce the number of physical experiments on 
prototypes by replacing them with numerical models which describe the design with the design variables. 
Usually the design process of a composite structure is too complex to describe it with an analytical 
formulation. As explained by Vanderplaats [16], the analysis of all design variations based on the 
approach “try them all” is very expensive in computational cost especially with a high amount of design 
variables. Over the last years a high number of algorithms have been developed to solve numerical 
optimization problems that describe an automatized design process. Before setting up the mathematical 
formulation of an optimization problem a physical example is given in the following section. 

3.3.1 Physical example 

A physical example for an optimization problem is described by Vanderplaats [16]. The goal is to find the 
top of a hill when person stands at the bottom and wears a blindfold as shown in Figure 3-4 (above). The 
person has to stay within two fences (one curved and one straight) going from the bottom to the top of 
the hill. The fences constitute the so-called “constraints” within an optimization. The constraints have the 
task to constrain the feasible region which is in our example the front side of the hill. In principle the 
person is able to feel the slope by doing small steps in several directions. He could search in the upward 
direction for the top of the hill where the two fences meet. This process can be described mathematically 
in a similar way. The starting location of the person is stored in a vector of the geographical coordinates 
{ }0x  (design variables). The direction of the steepest ascent is determined by the gradients calculated 

with the finite difference method (explained in section 3.5.2) and stored in a vector { }0s  that indicates the 

search direction. The search in the steepest ascent direction is stopped either when crossing the top or by 
hitting a fence as shown in Figure 3-4 (below).  

 
Figure 3-4: Physical example (above) and process (below) for a gradient-based optimization [16] 
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The location at the fence is denoted by vector { }1x  indicating the end of the first iteration. The vector of 

the design variables is obtained with { } { } { }101 sxx α+= . Now the gradients of the hill and of the fence 

(outward normal vector) are used to determine a new search direction { }2s  which pushes the person 

away from the curved fence. Going along the fence is not possible because the person can move only 
along straight lines (direction vectors) as far as possible. The second fence is reached after the second 
iteration at{ }2x . Now a search direction { }3s  along the straight fence is possible to reach the top of the 

hill. Indicators that the optimum is found are the zero gradient at the top (only in this example) and the 
fact that no further search direction going upwards can be found without moving outside the fences.  

To set up the mathematical formulation some terms are required which will be introduced based on the 
described example. The topographical lines (contour lines) constitute the objective function (in this 
example a quadratic one) where the maximum is searched for. The design variables (geographical 
coordinates) are allowed to assume values only within the feasible domain. The feasible domain is the 
area bounded by the constraints that have always be satisfied. In this example the constraints are 
represented by the two fences (a linear and a non-linear constraint).  

3.3.2 Mathematical formulation 

The optimization problem described in the previous section is a constrained maximization of the objective 
function. Of course there are a lot of unconstrained optimization problems which are much easier to solve 
because their optimum is simply the point where the gradient of the function is zero. 

The vector { }x  describes the design variables with n  components out of the domain X . The objective 

function denoted as { }( )xf  can be constrained inequality constraints { }( )xg  and/or equality constraints 

{ }( )xh . The elements u
i

l
i xx ,  of the vector denote the lower and upper boundary values of the design 

variables and are usually named as side constraints. A standard formulation of the constrained 
optimization problem is given in the following equation. 

Minimize: 

Such that 

Where 

In case that the objective function should be maximized the same formulation can be used by just 
minimizing { }( )xf− . The objective function and also the constraints can be linear or non-linear functions 

of the design variables and can be solved explicitly or implicitly. Therefore their evaluation may be done 
with any analytical, numerical or even experimental method. For a gradient-based method the objective 
function and the constraints have to be continuously differentiable with respect to { }x . The set of design 

variables out of X  for which all constraints are satisfied constitutes the feasible domain. In case that for a 

{ }( ) { } Xxxf ∈  (3-8) 

{ }( ) mjxg j ,...,10 =≤  (3-9) 

{ }( ) lkxhk ,...,10 ==  (3-10) 

nixxx u
ii

l
i ,...,1=≤≤  (3-11) 

{ } { }Tnxxxx ,....., 21=  (3-12) 
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specific design point the equality condition of an inequality constraint holds, the constraints is treated as 
an active constraint. All satisfied equality constraints are active and all inequality constraints can either be 
active or inactive in case that they are satisfied with a margin.  

3.3.3 General optimization procedure 

The goal of this section is to describe the iterative procedure of an optimization algorithm. Based on an 
initial set of design variables { }0x  the design is updated iteratively as given by the following equation [16]. 

q  denotes the iteration number, { }s  the vector in search direction and α  the scalar value of the 

translation along { }s . Figure 3-5 shows the iterative procedure for a two-variable problem with one 

search direction. The search direction can be chosen in a way arbitrary with the limitations that the 
objective function is reduced and no constraint is violated. In the given example the opposite of the 
gradient of the objective function (steepest descent) is used as search direction which is a typical 
approach for gradient-based methods. Generally the determination of the search direction is also 
influenced by the gradients of the constraints at the current design point. The next step is to determine 
the distance to minimize the objective function without violating any constraint. This is done based on a 
numerical interpolation scheme. It has to be noted that for this example a one-dimensional search has 
been applied. The optimum { }*x  is only found when a new search direction is determined at the point 

{ }1x . Based on the present example the non-linear optimization procedure can be splitted in two parts. 

One part is the calculation of a search direction that reduces (or increases respectively) the objective 
function in a way that all constraints are satisfied. The second part is the determination of the scalar 
parameter α  that represents the translation along the search direction. 

 
Figure 3-5: Two-variable problem with a one-dimensional search [16]  

An important question for the user of an optimization algorithm is, whether the algorithm has found the 
real optimum or does a better solution exist within the feasible domain. 

{ } { } { }qqq sxx α+= −1
 (3-13) 
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One practical approach for the proof would be to start the optimization from different initial vectors { }0x  

and check if the same optimum can be reached. A more reliable approach is to set up mathematical 
expressions that represent necessary conditions for an existence of an optimum as described in the 
following. First the concept of convexity is shortly explained as a necessary condition for the existence of 
an optimum.  

A set of points is convex if every point along a line spanned by 2 points of the set is inside the set. In case 
that any point along the line is outside the set, the set is non-convex. A graphical example is given in 
Figure 3-6. Any set of lamination parameters form a convex set which denotes the feasible domain as 
described in the following section.  

 
Figure 3-6: A convex (a) and a non-convex (b) set of points 

A function is convex between two points { }1x  and { }2x  if the following equation holds. 

One possible proof of the equation is to show the convexity of the constraint function { }( )xg  between the 

design point { }1x  and the optimum { }*x  given in Figure 3-5. Furthermore this example shows that if the 

feasible domain is bounded by a convex objective and convex constraint functions, the design points form 
a convex set with only one optimum and this is the global one.  

  

{ } ( ){ }( ) { }( ) ( ) { }( )2121 11 xfxfxxf µµµµ −+≤−+  with 10 ≤≤ µ  (3-14) 
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3.4 Feasible domain 

The goal of the present section is to describe the feasible domain of the lamination parameter (LPs). To 
use the LPs as continuous design variables in a gradient-based optimization process the feasible domain 
has to be convex as described in the previous section. 

3.4.1 General description 

A graphical design procedure which describes the feasible domain of the two in-plane LPs [ ]
AV *
2,1  was 

introduced by Miki [17]. Later the procedure was extended by Miki et al. [18] for the two out-of-plane LPs

[ ]
DV *
2,1 . A limit value consideration of equation (3-6) indicates the bounds of the LPs with [ ] 11 ,*

2,1 ≤≤− DAV . In 

case that we would consider a laminate with only one fiber orientation angle (extreme laminate) the LPs 
are ( )θ2cos*

1 =V  and ( )θ4cos*
2 =V . In case that we would vary the fiber angle continuously from 0° to 

90° the parabolic boundary line shown in Figure 3-7 is drawn. With the help of the trigonometric identity, 

the two in-plane- or out-of-plane LPs can be put into relationship as shown in the following equation. 

In case that the laminate has more than one orientation angle, equation (3-16) has to be written as an 
inequality. 

The feasible domain of the LPs ( )DADA VfV ,*
1

,*
2 =  is indicated by the area within the curve ABC, shown in 

Figure 3-7. The points A, B, C, D and E denotes the laminates with only 0°, ±45°, 90°, ±30° or ±60° plies. 
Choosing a discrete set of orientation angles leads to a different shape and a reduced area of the feasible 
domain in form of a polygon with vertices located on the perimeter of the feasible domain [18]. Two 
examples are indicated by dotted lines in Figure 3-7. The set of 0°, ±45°, 90° plies generates a triangular 
shape and the set of 0°, ±30°, ±60°, 90° brings out a trapezoidal shape of the feasible domain.  

 
Figure 3-7: Feasible domain for either the in- or out-of-plane LPs 

( ) ( )( )14cos
2
12cos2 += θθ

 
(3-15) 

12 *2
1

*
2 −= VV  (3-16) 

12 *2
1

*
2 −≥ VV  (3-17) 
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As already indicated in equation (3-6) every LP is a linear combination of volume fractions. Considering a 

point P on the line AC  (representing laminates with 0° and 90° plies) at the distance of 0.8 from point A 
and a total distance between A and C of 2 units, the volume fraction vector can be calculated with the 
following equation: 

In case of a 10 ply laminate point P could correspond to the configuration [ ]s23 90,0  or any other 

configuration with the same ratio of 0° and 90° plies. This procedure can be applied to any straight line 
within the entire feasible domain. Furthermore it indicates that every point can be constructed by 
multiple pairs of two points which leads to multiple laminates belonging to the same design point in the 
feasible domain. An example is given in Figure 3-8 where the design point { }0,0  is constructed by two lines 

AE  representing laminates with 0° and ±60° plies and CD  representing laminates with 90° and ±30° 
plies. 

 
Figure 3-8: Construction of a design point representing multiple laminates 

3.4.2 Special case for 0°, ±45° and 90° plies 

A special case constitutes the feasible domain of laminates with 0°, ±45° and 90° plies. Here every design 
point for the [ ]A -matrix describes exactly one combination for the counts of 0°, ±45° and 90° plies, as 

shown in Figure 3-9 (left) for a laminate of 4 plies. As already described in section 3.2 the fourth LPs 
( )θ4sin,*

4 =DAV  vanish due to the fact that the quad of 0°, ±45° and 90° is 0° respectively 360° and 

therefore also the sine of it. The complete feasible domain of any symmetric laminate with ply angles out 
of the set 0°, ±45° and 90° is shown in Figure 3-9 (right). 

{ } ( ){ } { } { } { } { }4.0,6.01,0
2
8.00,1

2
8.011 =






+






 −=+−= cAP vrvrv

 
(3-18) 
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Figure 3‐9: Discrete design points of a 4‐ply laminate (left), Complete feasible domain of any symmetric laminate 

 with ply angles out of the set of 0°,45° and 90°  

Fukunaga and Sekine [19] defined the analytical relationship between all four in‐ and all four out‐of‐plane 
LPs separately without taking into account the coupling between them. Diaconu et al. [20] found out that 
the feasible region of any pair of two LPs representing either the   A ‐,   B ‐ or   D ‐matrix can be described 

analytically. Furthermore he presented a variational approach to determine the complete feasible domain 
for  any  desired  set  of  LPs  numerically. During  the  variation  of  a  LP  set  the  boundary  of  the  feasible 
domain is reached by determining a layup function   z  that maximizes the functional    zF   given in 

the following equation, where  z  denotes the normalized thickness coordinate  Tzz /2 .  

Geometrically  the  functional  F   can  be  interpreted  as  a  constant  on  a  hyperplane  with

   TDDBBAA kkkkkkk 414141 ,...,,,...,,,...,  denoting  its unit normal. The hyperplane  is  tangent  to a LP set   V  

touching  the boundary of  the  feasible domain.  Increasing  F   leads  to  a  translation of  the  hyperplane 
along the  k  direction until  F  reaches it’s maximum where the hyperplane touches the boundary line of 

the feasible region as shown in Figure 3‐10.  

      



4

1

1

0

,
i

D
i

D
i

B
i

B
i

A
i

A
i zdzzGVkVkVkzF 

 

with: 

       

 

             

      















4

1

222

4,3,2,1

2

4

1

1

4sin,4cos,2sin,2cos
2
3

2
1

,

i

D
i

B
i

A
i

D
i

B
i

A
ii

i
ii

kkk

zzzzzf

zkzkkzg

zfzgzzG





 

(3‐19) 



24                                                         Gradient-based optimization of composites using lamination parameters 

 
Figure 3-10: Feasible domain of a desired lamination parameter set [20] 

Due to the convexity of the feasible domain the boundary can be obtained by determining the 
hyperplanes for all directions { }k . This procedure can be done to obtain the feasible domain for any set of 

LPs without restrictions on potential ply orientations. The detailed mathematical derivation is given in 
[20]. 

Diaconu et al. [21] carried out a layup optimization of long composite cylindrical shells. Therefor they 
derived explicit relations between the LPs to describe the feasible domain based on the developed 
approach previously described [20]. The ply orientation angles are restricted to 0°, ±45° and 90° plies 
which reduced the number from twelve to nine LPs. The fourth LPs ( )θ4sin,,*

4 =DBAV  are zero as already 

explained.  

The linear analytical expressions given in the following equation relating the in- or out-of-plane LPs that 
form the triangular shape of the feasible domain (see Figure 3-9) were already derived by Fukunaga and 
Sekine [19].  

Expressions relating the LPs for the coupling where derived by Diaconu et al. based on the method given 
in [20]. 

The following equations are derived by Diaconu et al. in [21] and [22]. 

012 ,*
2

,*
1 ≤−− DADA VV

 (3-20) 

012 ,*
2

,*
3 ≤−− DADA VV

 (3-21) 

022 *
2

*
1 ≤−− BB VV

 (3-22) 

022 *
2

*
3 ≤−− BB VV

 (3-23) 

01*
3

*
1 ≤−+ BB VV

 (3-24) 
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( )( ) ( ) ( ) 3,2,1,31114
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To proof whether the explicit equations given above completely describe the feasible domain Diaconu 
worked out an optimization procedure. The method is illustrated in Figure 3-11 where { }0V  denotes a 

potential feasible LP set. A hyperplane { } { }VkF T=  with { }k  as its normal vector is tangent to the feasible 

region. { }QV  marks the intersection point between the elongated feasible LP vector { }0V  and the 

hyperplane F . To proof the feasibility of { }0V  the following norm constitutes the objective function to be 

minimized. 

{ } { } { } { }0VkVkD TT=  with { } { } { }000 VVV =  (3-39) 
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Figure 3-11: Proof if a LP set belongs to the feasible domain [20]  

The starting values of the design variables { }k  are selected in a way that they create a sharp angle with 

{ }0V  to have { } { } 00 >Vk T . The optimization problem can be formulated as follows: 

Minimize: 

Design variables:  

The optimization delivers the optimal { }QV  on the boundary of the feasible region. The feasibility of { }0V  

is given when { }0min VD ≥ . According to Diaconu this condition is fulfilled for all randomly generated 

LPs satisfying the constraints giving in equations (3-20) to (3-38). This proofs that the constraints are 

sufficient to describe the feasible domain for the nine LPs [ ]
DBAV ,,*

3,2,1  in case that the ply angles are 

restricted to 0°, ±45° and 90° plies. 

The constraints derived by Diaconu given in equation (3-20) to (3-38) represent the feasible domain for a 
ply angle set of 0°, ±45° and 90°. They are used as basis for the gradient-based optimization described in 
the following section. It has to be noted that only the constraints are used where the four selected LPs 

[ ]
DAV ,*

2,1 have a contribution. The other LPs are set to zero as described in section 3.2. 

  

{ }( )kD  (3-40) 

{ } { }TDDDBBBAAA kkkkkkkkkk 321321321 ,,,,,,,,=  (3-41) 
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3.5 Optimization with lamination parameters 

The goal of the present section is to describe the implemented optimization process named VErSO 
(Virtual Environment for Structural Optimization). The tool is written in the programming language 
Python. The development of VErSO was done in cooperation with Mr. Sascha Dähne at the DLR Institute 
of composite structures and adaptive systems in Brunswick. In the first subsection the optimization 
problem is formulated based on an example with two components. The structural model will be detailed 
specified in section 5.1. The only relevant information to explain the present process is the number of 
components. A component specifies a region with the same laminate material properties and is therefore 
equivalent to an optimization region. In the aircraft industry a wing panel is defined as the area between 
two rib bays. Within the present work a panel consists of one component. 

The terms “panel” and “laminate” are used synonymous and subsidiary for a component. After the 
mathematical formulation of the optimization problem, VErSO specific properties and processes like the 
determination of the gradients and the selection of the optimizer itself are documented. The section 
concludes with a description of the optimization process workflow.   

3.5.1 Optimization problem 

Before formulating the constrained optimization problem the notation has to be modified in a way that is 
applicable to multiple components. In the following two indices are used: The first index of 2,1x  specifies 

the component number and the second index the design variable number respectively the constraint 
number. 

The objective function that is to be minimized is the overall structural mass of the two components. The 
mass itself is a linear function of the panel thickness as shown in the following equation. The panel 
thickness is from now on denoted as the last design variable of a component { }nix , .  

Minimize: 

The vector { }nc  represents the constants of the panel like the dimensions and the density. The other four 

design variables are the reduced set of lamination parameter [ ]
DAV ,*

2,1  due to the restriction on symmetric 

and balanced laminates with 0°, ±45° and 90° plies as described in section 3.2. In total there are ten 
design variables, five per component (4 LPs and the laminate thickness). 

Two different types of constraints are used for the optimization. The constraints that describe the feasible 
domain for the LPs of each panel are given in equations (3-20) to (3-38). Furthermore the failure criteria 
compression buckling, shear buckling and strength are considered. The failure criteria are determined 
analytically. The critical compression buckling load of an axially loaded panel is determined with the 
following equations [8]. 

{ }( ) { } { } { } Xxxcxm nini
T

ini ∈= ,,, ,  (3-42) 
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RF  denotes the reserve factor which is in general the existing stress (respectively strain) over the 
allowable stress (respectively strain). RF  has to be smaller or equal to one. The stiffness values of the 
[ ]D -matrix are obtained by multiplying the respective LP with the corresponding material invariant, see 

equation (3-7). The variables a  and b constitute the panel length and -width and m is the number of half 
waves of the buckling mode shape. The panel length points in the direction of the axial panel load xn̂ . 

The critical buckling load for shear is calculated with the VDI guideline 2014-3 [23]. The approach is 
generally only valued for symmetrical and orthotropic laminates. According to [23] the influence of 
anisotropy is rated to be small and can therefore be neglected in the preliminary design stage. The 
bending stiffness of non-symmetric laminates has to be modified with the following equation. 

The critical buckling load for shear can be calculated with the following equation. 

sk denotes the buckling factor which is determined based on an approximation method developed by 

Dähne [24]. The buckling curves are approximated with equations derived from quadratic regression 
functions in dependency of the modified aspect ratio and Seydel’s plate parameter as characteristic value 
for the orthotropy. 

As a constraint for the panel strength the criterion developed by Ijsselmuiden et al. [25] is used. Based on 
the Tsai-Wu failure criterion the failure envelope equations were formulated. The most important step 
hereby is the elimination of the ply orientation dependency to obtain functions that describe conservative 
design envelopes which are convex in the strain envelope. The strength constraint is formulated with a 

safety factor λ  that relates the strain state at the boundary of the envelope *P  to an arbitrary design 
point P of applied strains as shown in Figure 3-12 and equations (3-47) and (3-48). The safety factor is the 
inverse of the reserve factor .RF  { }( )εr  denotes the failure index as function of the strain level which is 

the reserve factor squared to guarantee the differentiability at all points within the failure envelope. 
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Figure 3-12: Definition of the safety factor for the strength criterion 

Especially for bending loads the present approximated criterion is more conservative than Tsai-Wu, 
because the position of plies in thickness direction is not taken into account. In case that sandwich panels 
are used for bending loaded areas this drawback vanishes because the facesheets are loaded in-plane. 

As a last step the upper and lower bounds for the design variables have to be defined. In principle they 
can be chosen in a way arbitrary. The bounds for the lamination parameter are -1 and 1 as described in 
3.4. The bounds for the thickness are chosen based on design or manufacturing rules and practical 
requirements. As an example when the requirement for symmetrically balanced laminates is present and 
possible ply angles are 0°, ±45° and 90°, the minimum thickness equals to 8 plies. Important criteria for 
the selection of the minimum skin thickness e.g. for an aircraft wing are the repair strategy, impact and 
abrasion resistance. The upper bound value for the thickness is restricted among others by the installation 
space e.g. the aerodynamic hull that represents the outer surface on which the laminate is build-up 
inwardly. The selected bound values for the given two-component example are shown in the following 
equations.  

{ }
{ } RFv
vcrit 1

==λ
 

(3-47) 

{ }( ) 2
2

1 RFr ==
λ

ε  (3-48) 

{ }( ) 01≤−εr  (3-49) 

mitxt ni ,...,1308 0,0 =≤≤  (3-50) 

njmix ji ,...,1,,...,111 , ==≤≤−  (3-51) 
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It has to be noted that up to now all constraints are formulated on panel level. Constraints on assembly 
level will be introduced in section 4. 

3.5.2 Determination of the gradients 

The calculation of the gradients for the objective function and all constraints at the current design point is 
necessary to determine the search direction for the next iteration. There are several numerical and 
analytical methods available. One standard and robust numerical approach which is selected for the 
present work is the finite difference method. In a further development of the optimization algorithm 
outside this thesis, analytical approaches could be tested to save computational time. An overview of 
available analytical methods determining the sensitivity of static response is given by Adelman et al. [26]. 

The finite difference approximation of a gradient is obtained by truncating the taylor series 
representation of the function after the second term. This leads to truncation (discretization) error 
between the approximation with first-order accuracy and the exact solution. A further error occurs when 
the computer rounds off decimal quantities e.g. for small step sizes which leads to a loss of precision. The 
choice of the step size itself constitutes an uncertainty. For the actual implementation of the optimization 
algorithm the step size is selected individually with 10-9 for the laminate thickness (expressed in meters) 
and 10-3 for the LPs.  

The process to calculate the gradients can be summarized as follows: 

• Vary every design parameter  
• Determine the FE solution 
• Calculate all constraints for the varied design parameters and compare to the constraints of 

the originally design parameters 
• Form the finite differences based on the following equation 

The calculation of the gradients of a function g  with respect to every design variable and the step size h  

is given in the following equations. 

The gradients are determined for the objective function and all constraints with respect to all design 
variables of all panels to obtain a completely filled gradient matrix as indicated in Table 3-1 (without the 
objective function). The first index denotes the panel and the second the constraint respectively the 
design variable for example 2,1g  stands for constraint 2 of panel 1 and 2,1x  is the second design variable of 

panel 1.  

The constraints bounding the feasible domain of the design variables of one panel are only dependant on 
the design variables of that relevant panel. Therefore the gradients with respect to design variables of 
other panels, positioned outside the diagonal of the gradient matrix, are zero. These gradients are 
denoted as local gradients. The constraints describing the failure criteria for strength and buckling of one 
panel are dependent on the design variables of the panel itself and on other panels. An example would be 
the impact of a laminate thickness change of panel 1 on the strength of panel 2. Such possible load re-
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distributions between the panels are covered by the off-diagonal terms of the global gradient matrix 
which cannot be determined with analytical methods. 

The last rows of the gradient matrix represent the gradients for the constraints on assembly level which 
means that these constraints are functions of a design variable of several panels for example linking the 

lamination parameter AV *
1  of panel 1 and 2. A more detailed description will be given in section 4.  

Table 3-1: Matrix containing the gradients 

 Panel 1 Panel 2 … Panel m 

1,1x  2,1x  … 1,2x  2,2x  … … … nmx ,  

Panel 1 
1,1g  

1,1

1,1

dx
dg

 
2,1

1,1

dx
dg

 … 
1,2

1,1

dx
dg

 
2,2

1,1

dx
dg

 … … … 
nmdx

dg

,

1,1  

2,1g  
1,1

2,1

dx
dg

 
2,1

2,1

dx
dg

 … 
1,2

2,1

dx
dg

 
2,2

2,1

dx
dg

 … … … 
nmdx

dg

,

2,1  

… … … … … … … … … … 
Panel 2 

1,2g  
1,1

1,2

dx
dg

 
2,1

1,2

dx
dg

 … 
1,2

1,2

dx
dg

 
2,2

1,2

dx
dg

 … … … 
nmdx

dg

,

1,2  

2,2g
 1,1

2,2

dx
dg

 
2,1

2,2

dx
dg

 … 
1,2

2,2

dx
dg

 
2,2

2,2

dx
dg

 … … … 
nmdx

dg

,

2,2  

… … … … … … … … … … 
… … … … … … … … … … … 
Panel m … … … … … … … … … … 
 

nmg ,

 1,1

,

dx
dg nm  

2,1

,

dx
dg nm  … 

1,2

,

dx
dg nm  

2,2

,

dx
dg nm  … … … 

nm

nm

dx
dg

,

,  

Assembly 1 
1Ag   

2,1

1

dx
dg A  … 

1,2

1

dx
dg A   … … … 

nm

A

dx
dg

,

1  

… … … … … … … … … … 
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3.5.3 Selection of the optimizer 

The selection of the optimizer is based on the requirements that result from the optimization problem. 
The algorithm has to be able to process gradients of a linear objective function and non-linear inequality 
constraints. The non-linear inequality constraints result from the description of the feasible domain given 
in section 3.4. Furthermore the selected algorithm has to consider the definition of upper and lower 
bounds for the design variables namely the normalized lamination parameters whose design space is 
limited by -1 and 1 as described in section 3.4. Based on these requirements an algorithm is chosen out of 
the free available packages for the python environment. For the first implementation of the optimization 
algorithm in VErSO which constitutes the basis of the present work the MMA algorithm of NLopt [27] is 
used. NLopt is an open-source library for non-linear optimization that provides an interface to a number 
of different algorithms callable, inter alia, from Python.  

MMA stands for “Method of Moving Asymptotes” and is based on the CCSA (Conservative Convex 
Separable Approximation) approach developed by Svanberg [28]. In each step a local and convex 
approximation in form of a sub-problem is generated. First the values for the constraints and the 
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gradients of the constraints are determined for the given iteration. Based on these values the usually 
implicit functions are replaced by approximating explicit functions. A quadratic penalty term is used to 
keep the approximating functions conservative (greater or equal) with respect to the exact functions.  

The optimal solution of the sub-problem constitutes the possible candidate for the next design point. The 
objective and constraints are evaluated and in case that the approximating functions are conservative the 
iteration is completed and the process is restarted at the new design point. If that is not the case the 
penalty term of the approximations is increased and a new solution of the sub-problem is generated and 
checked for conservativeness. 

3.5.4 Convergence criteria 

There are several termination options available in NLopt [27]. One option is the definition of an absolute 
or a relative tolerance based on the function values. The best way would be to set the error in relation to 
the optimum function value but this is not possible since the optimum is not known. To overcome this 
most algorithms consider the change of the function value between two consecutive iterations like 
formulated in the following equation:  

The same can be done based on the design variables. A further termination criterion is the definition of a 
stopping value. The algorithm stops when the objective function reaches the specified value for any 
feasible design point { }x . 

In the most applications the relative tolerance criterion is used, which is also the case for the present 
work and the optimization process described in the following section. The advantage using a relative 
criterion is the independence of any units or scale factors. The tolerance value should be chosen in 
accordance with the machine precision. Close to the minimum the change of the function value based on 
the taylor series expansion can be described with the following equation. 

Assuming a variation in the design values of 610−  would produce a change in the objective of 1210−  which 
leads to the assertion that a requested tolerance for the design values should be smaller than the square 
root of machine precision. Generally NLopt terminates the process when the first (weakest) termination 
condition is fulfilled. 
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3.5.5 Optimization process 

Before the optimization can be started the process needs to be initialized as shown in Figure 3-13. The 
necessary information can be taken out of any input file, here the FE-model is used. The model structure 
defines the hierarchical relation between assemblies, components and finite elements (from top level to 
bottom level) and is needed to initialize the object model. Component properties like the geometry are 
required to determine the buckling length. The material properties are used to set up the constraints for 
buckling and strength. 

 
Figure 3-13: Initialization of the optimization 

Based on the model structure the initialization of the object model is done on three levels. The initialized 
component objects are committed to the related assembly. All assemblies belong to one wing object. 
After the object model is created the design parameters have to be indexed. The structure of the object 
model and the procedure of indexing are shown in Figure 3-14 for an example with two assemblies, each 
having two components. Each component has two design parameters.   

 
Figure 3-14: Object model structure and indexing of the design parameters 

The indexing is done by a function on the wing level. It generates a set of indices by asking for the 
parameter sets of the design variables and constraints for every assembly and all related components. As 
shown in Figure 3-14 for assembly 2 the translation of indices is done between the component and 
assembly level. In case that a new design parameter set provided by the optimizer has to be assigned to 
the object model, the same strategy of index slicing is used. Every object on every level knows only its 
own parameters. This allows a formulation of constraints on component as well as on assembly level 
without knowing the complete structure of the wing. Once the object model is initialized, a set of start 
design variables is provided for which the objective and the constraints are evaluated. The complete 
parameter set is sent to the optimizer for his initialization. 

Based on the initial parameter set the optimizer determines the first design parameter set. The running 
optimization process is sketched in a simplified way in Figure 3-15. It has to be noted that the sketch is 
focused on the process and not on the data flow. Not all passed data are used by the next function. The 
FE interface uses the new design parameter set to calculate the finite element loads and post-process 



34                                                         Gradient-based optimization of composites using lamination parameters 

them to obtain the panel design loads based on the element peak method. This method determines the 
critical element load of a panel for a series of metrics. Using the strength metric as an example only the 
highest xn̂+  is taken as the design load.  

With the panel loads { }1ˆ +qn  and the new design parameter set { }1+qx , the constraint values are updated. 

Also the objective { }1+qxf  is evaluated with the new parameter set. The set of constraints and objective is 

used by the optimizer to generate a new design parameter set for the next iteration. The process ends 
when one of the set convergence criteria (described in the previous section) is satisfied. 

 
Figure 3-15: Running optimization process in VErSO 

3.6 Conversion from LPs to a laminate configuration 

For the final evaluation of the laminate configuration the optimal LP set of a panel found by the optimizer 
has to be transformed back to a discrete stacking sequence. Based on the discussion about the feasible 
domain of lamination parameters in section 3.4 it can be concluded that there is no closed form solution 
to convert any single design point in the LP space into a unique laminate stacking sequence. As shown in 
Figure 3-9 (left) the possible stacking sequences correspond to discrete design points in the LP space. 
Using the LPs as continuous design variables in an optimization procedure is not exact, because the 
closest LP set that describe a real stacking has to be chosen. This error gets smaller with an increasing 
number of plies and can be neglected in the preliminary stage of the design process.  

Two special cases can occur when converting an optimal found LP set to a discrete laminate stacking. The 
first case is that several discrete design points representing real stackings are equally close to the optimal 
found LP set e.g. surround it. The second case is that the found LP set represents more than one stacking 
as described with Figure 3-8. Both cases have the advantage that more than one stacking is available for a 
panel. Therefore the stackings of two neighbouring panels can be chosen in a way that they best fulfill the 
selected design rules in longitudinal direction. 
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4. Implementation of design rules in the optimization algorithm 

The previously described optimization process VErSO uses the four lamination parameters [ ]
DAV ,*

2,1  as 

continuous design variables. The restriction on only 4 out of 12 LPs implies the two design rules in 
thickness direction namely the usage of only symmetric and balanced laminates as detailed discussed in 
section 3.2 and 3.4. Two types of constraints for the two individual panels are taken into account, the 
failure constraints and the constraints that restrict the LP space of each panel as described in section 3.4. 

The goal of the present section is to formulate the selected design rules (see section 2.3) in longitudinal 
direction as assembly constraints to restrict the change in thickness and in the LPs between the two 
panels during the optimization. 

The state of the art for existing formulations of the selected design rules as appraisable design criteria are 
documented in section 4.1. A modified design criterion that combines two of the existing formulations for 
the design rules “Taper slope” and “Continuity of plies” is presented in section 4.2. Based on this modified 
design criterion constraints are set up for the assembly of two adjacent laminates which is described in 
section 4.3. A comparison to an existing constraint formulation for the LP space is given in section 4.4 
followed by the implementation of the assembly constraints in the optimization environment VErSO in 
section 4.5. 

4.1 State of the art 

The present section gives an introduction into existing formulations of the selected design rules as 
appraisable design criteria within an optimization process. Liu et al. [1] developed the so-called stacking 
sequence criterion that represents the ply continuity as a measure of continuous plies between two 
adjacent laminates (respectively two neighbouring optimization regions). A continuous ply occurs in both 
laminates and is separated in thickness direction by only one terminated ply. It does not matter whether 
the terminated ply is part of the thinner or thicker laminate. An example is given in Figure 4-1.   

 
Figure 4-1: Stacking sequence continuity [1] 

The outermost ply 2l  is not treated as continuous due to the separation of three truncated plies in-

between. The thickness of continuous plies can be calculated with the following equation where ( )ilt

denotes the thickness of ply il . 

( ) ( ) ( )413 ltltlttcont ++=  (4-1) 
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The two-sided stacking sequence continuity C  is determined by the following equation where 1T  denotes 

the total thickness of laminate 1 respectively 2T  the thickness of laminate 2. 

A further method to obtain a certain degree of ply continuity and to follow a certain ply drop technique as 
described in section 2.1 is the so called laminate blending for which various definitions have been 
developed in the last years. In the blending definition of Adams [2], stacking sequences can only be 
blended outwardly (respectively inwardly) if the stacking of panel 1 is obtained by removing the 
outermost plies (respectively innermost). To obtain a globally blended design a genetic algorithm is used 
to find an optimal stacking guide for the complete structure. The stacking guide is used for the thickest 
panel and the stackings of all other panels of the structure are obtained by dropping plies of the stacking 
guide, as shown in Figure 4-2.  

 
Figure 4-2: Guide based design completely outwardly blended [2] 

The two approaches presented above are formulated for discrete stacking sequences and therefore in 
their originally form not usable for the optimization with the continuous LPs. In 2015 Macquart et al. [3] 
developed an approach that takes into account blending constraints for the LP space. Based on the 
author’s knowledge this is the only available analytical method formulated for the LP space until today. 
He quantifies the change in lamination parameters (LPs) due to ply drops. Equation (4-3) shows the 

change in the LP AV1  where X  specifies any number of removed plies out of the set S  and N  denotes 

the total number of plies. 

From the equation above it can be derived that the maximal and minimal delta values occur for 
[ ] [ ]°°= 90;0; ii θθ  and [ ] [ ]°°= 0;90; ii θθ . Macquart numerically verified the above equation by generating 

three different pools of stacking sequences, one randomly generated, the second one with symmetric 
laminates of 0°, ±45° and 90° plies and the third one with extreme laminates. Extreme laminates in this 
context specify laminates in which all plies have the same orientation angle. Figure 4-3 shows the result 

for AV1  and it can be observed that the maximum change in the LPs occur for extreme laminates. 

Therefore the complete constraint formulation of Marquardt is based on extreme laminates.  

{ }21
21 ,max TT

tC cont=>−
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Figure 4‐3: Normalised change in lamination parameter V1 due to one ply‐drop [3] 

Based on  this  restriction equation  (4‐3) can be  simplified and generalized  for  the other  in‐plane LPs as 
follows: 

To consider the variation of two LPs at the same time Macquart uses the Euclidian distance to formulate 
the constraint. The maximum of the Euclidian distance can be associated with the allowable radius within 
the LP space referring to dropped plies. This radius reaches its maximum when using extreme laminates. 

Macquart calculated for all combinations of two LPs the factor  ),( ijk θθf . In case of  DAV ,
1  and  DAV ,

2  

this factor is still 2. The generalized constraint formulation for in‐plane LPs is given in equation (4‐5) and 
for out‐of‐plane LPs in equation (4‐6). 

The above constraint formulation guarantees that no blended solution exists in case that the constraint is 
not  fulfilled. The  formulation  is very  conservative because  the  factor 2  covers  in general  the  complete 
lamination parameter space. The constraint is mainly driven by the taper ratio X/N. Another critical point 
is that the usage of only extreme laminates is generally avoided due to design rules as specified in section 
2.1 and 2.2. Furthermore  it must be questioned  if  the application of  laminate blending  (e.g. usage of a 
stacking guide)  is  still  sensible when using only extreme  laminates which are blended  in any  case. The 
advantages with  respect  to manufacturability of blended  laminates  should not be cancelled out by  the 
disadvantages of extreme laminates and their restricted structural performance. 

The  two presented design  criteria  from  Liu  et  al.  [1]  and Adams  et  al.  [2]  are  formulated  for discrete 
stacking sequences and therefore  in their original form not usable for the optimization with continuous 
LPs. The constraint formulation of Macquart et al. [3] for the LP space and blended laminates seems to be 
too conservative as will be shown in section 4.4. 
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The goal  is to formulate a modified design criterion for the LP space that allows the combination of the 
design rules selected in 2.3. This criterion is based on the approaches from Liu et al. [1] and Adams et al. 
[2].  It  is  used  in  section  4.3  to  derive  constraints  that  restrict  the  LP  space  for  the  gradient‐based 
optimization process VErSO described in section 3.6. 

4.2 A	modified	design	criterion	

A modified design criterion that combines the requirements regarding ply continuity and a specified taper 
slope for terminating plies can be formulated on the basis of the described approaches from Liu et al. [1] 
and Adams et al.  [2]. The blending concept  is adopted but  in a generalised way. All plies of the thinner 
laminate have to be existent in the thicker one to fulfill the blending but they do not have to be inwardly 
or outwardly blended. 

According to the design rule “Taper slope and maximum thickness step” the overall maximum thickness 
step  between  two  adjacent  laminates  is  limited  to  0.508mm  (4  plies)  in  principal.  To  keep  the 
computational costs manageable the detailed tapering of terminated plies along the longitudinal direction 
cannot  be  considered within  the  optimization.  The  tapering  areas  have  to  be  summarized  to  discrete 
thickness changes at the borders between two optimization regions as shown  in Figure 4‐4. Therefore a 
restriction in the maximum thickness step at one interface is not helpful and instead of a taper slope the 
taper ratio defined as number of removed plies over all plies is used.  

 
Figure 4‐4: Tapering areas based on a taper slope (left) summarized to a discrete thickness step (right) 

For applications of larger structures with more than two optimization regions the taper ratio between two 
adjacent panels should be automatically determined based on their geometrical size. This implies that for 
larger optimization regions a higher taper ratio (thickness step) should be allowed to cover all terminated 
plies of the section in longitudinal direction that belongs to the respective optimization region. During the 
real manufacturing process the thickness change can be splitted into two or more thickness steps to get a 
smoother  transition. For  the present application of  two optimization  regions  the  taper  ratio  is used as 
percentage of the terminated plies with respect to the thicker laminate in the following. 

The  position  of  the  terminating  plies  is  generally  driven  by  the  continuity  criterion  of  Liu  et  al.  [1]. 
Following  the  criterion  strictly  would  lead  to  the  fact  that  mainly  all  terminated  plies  are  located 
outwardly like shown in Figure 4‐5 for a blended laminate of 12 plies, 50% ply continuity and a taper ratio 
of 50%. There are two reasons for that behaviour. First the restrictive definition of a continuous ply (step 
of only one ply  in  thickness  is  allowed)  leads  to  the  fact  that only one  terminated ply  can be  located 
inwardly or between  the  continuous plies and all other  terminated plies have  to be  located outwardly 
above the continuous plies. Furthermore it has to be noted that the allowable step in thickness direction 
of one ply is referred to the mid‐plane.  
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Figure 4‐5: Blended laminate with 12 plies, 50% ply continuity and 50% taper ratio 

The ply continuity definition of Liu et al. [1] is evaluated as to restrictive. Therefore the allowable step in 
thickness direction of  a  continuous ply  is  set  to  four plies.  For other  applications with more  than  two 
optimization regions, this value should also be adapted based on the panel size like already mentioned for 
the taper ratio. In contrast to the definition of Liu the allowable thickness step is not referred to the mid‐
plane but to the undermost ply. For a real manufacturing of a composite structure a continuous outer skin 
is required. Generally negative moulding tools are used and therefore the outermost ply is the ply which 
is placed at first and the stacking  is build‐up  inwardly. One possible blended  laminate based on the new 
continuity definition is shown in Figure 4‐6. It has to be noted that the reachable ply continuity is limited 
by the taper ratio (ply continuity ≤ 1 ‐ taperRatio). It can be observed that the same plies are continuous 
as in Figure 4‐5. The difference is that four terminated plies are located inwardly, because the allowable 
step of a continuous ply in thickness direction is selected to 4 plies.  

 
Figure 4‐6: Blended laminate with 50% ply continuity and 50% taper ratio, new definition of continuous plies 

A  modified  design  criterion  that  combines  the  two  design  rules  regarding  the  ply  continuity  and  a 
prescribed  taper  ratio  could  be  formulated.  The mathematical  formulation  of  this  design  criterion  as 
constraint is given in the following section. 

4.3 Assembly	constraints	formulation	

In  the  present  section  the  previously  formulated  design  criterion  is  applied  on  discrete  stackings  to 
evaluate the influence of the design rules on the lamination parameter. Based on that results, equations 
shall be derived that interrelate the LPs of adjacent panels and restrict their feasible domain. 

4.3.1 Approach	

To evaluate the  influence of the design rules on the  lamination parameter a parameter study  is carried 
out  in  the programming  language Python. A material  is  selected and  it  is assumed  that all plies of  the 
laminates  have  the  same  material.  The  material  data  are  given  in  section  5.1.  The  process  of  the 
parameter  study  can  be  structured  in  the  following  three  steps  for  one  selected  laminate  thickness 
(respectively number of plies). The  first  step  is  to generate all possible  stackings  that  fulfill  the design 
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criterion in thickness direction namely the usage of only symmetric and balanced laminates. It is assumed 
that the mid-plane of a symmetric laminate is located between two plies. For every generated stacking all 
reduced stackings that fulfill the design criterion are determined within the second step. The reduced 
stackings have to fulfill the design criterion in thickness direction as well as in longitudinal direction which 
includes the taper ratio, the blending and the ply continuity. As described in the previous section the 
taper ratio is treated as percentage of the terminated plies with respect to the thicker laminate. In the 

third step the differences of the LP sets DAV ,*
]2,1[D  between every reduced and the original stacking are 

calculated. The process is illustrated in Table 4-1 for a symmetric and balanced laminate of 12 plies. The 
allowable number of removed plies is 4. Every reduced stacking represents a feasible point in the domain 

of the LPs DAV ,*
]2,1[D .  

Table 4-1: Exemplary process to obtain the changes in LPs for the reduced stackings of one original stacking 

Original Stacking Reduced Stacking AV1∆  AV2∆  DV1D  DV2D  

[ ]S,90,9045,-45,0,0  [ ]S45,-45,0,0  0.5 0.3 0.1 0.1 
[ ]S9045,-45,90,  0.2 0.2 0.4 0.1 
[ ]S045,-45,0,9  0.2 0.4 0.2 0.2 
[ ]S0,0,90,90  0.3 0.2 0.4 0.8 

[ ]S0,0,9045,-45,90,  [ ]S45,-45,0,0  0.5 0.3 0.1 0.1 
[ ]S045,-45,90,  0.2 0.45 0.2 0.2 

… … … … … 
… … … … … … 

4.3.2 Mathematical formulation 

Based on all feasible points two different mathematical approaches are investigated. In the first approach 
the maximum change of every LP over all reduced stackings is determined. Every maximum change of one 
LP could be produced by a different reduced stacking as marked with orange colour in Table 4-1. 
Furthermore it can be observed that for different original stackings the same reduced stacking can be 
obtained. Only the LP sets (rows in Table 4-1) where a maximum value occur in one of the four columns 

DAV ,*
]2,1[D  are taken as points to construct the convex feasible domain as shown later. 

The second approach is based on the calculation of a convex hull. As already shown in section 3.4 the LP 
space is convex and therefore also the difference values form a convex set. A Python interface of the 
QHULL function developed by Barber [29] is used to calculate the convex hull of all points. Each point (one 

row in Table 4-1) in a four-dimensional space is represented by the four values DAV ,*
]2,1[D . Equation (4-7) is 

used to determine the convex hull with X  denoting the finite set of points. 

As shown in Figure 4-7 the convex hull of the delta values results in a convex polyhedron formed by the 
mimimum number of points on the boundary of the feasible domain. Furthermore it can be observed that 
the polyhedron is bounded by a set of hyperplanes. The QHULL function of Barber et al. [29] outputs a set 
of vertices for each hyperplane. In the present case of a four-dimensional space, four vertices are 
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necessary to describe a hyperplane. Based on the set of vertices the five coefficients for each hyperplane 
can be determined with equation (4-8). 

Any point with the delta values DAV ,*
]2,1[D  is located within the convex hull when equation (4-9) is fulffilled 

for every hyperplane forming the convex hull. This equation constitutes the main part of the constraint 
formulation. 

Figure 4-7 shows the comparison between the two approaches discussed above. It can be observed that 

the feasible domain constructed by the envelope of the DAV ,*
]2,1[D  max. values (marked red) is significantly 

smaller in comparison to the convex hull of all feasible points (marked green). In case that each of the 
max. value would be treated constant over the other LPs the feasible domain would have the shape of a 
rectangular box and would be much larger than the feasible domain of the convex hull. Due to the large 
differences in the shape and size of the feasible domain, the first approach of constructing the feasible 

domain based on the DAV ,*
]2,1[D  max. values is not suitable.  
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Figure 4-7: Comparison between the envelope of the ΔVmax values and the convex hull for a laminate configuration with 12 

plies a taper ratio of 0.5 and a required ply continuity of 0.5 

The approach of constructing the feasible domain based on the convex hull is used for the constraint 
formulation (see equation (4-7)) and implementation in the optimization process. Thereby the convex hull 
serve as a measure for the compliance of the selected design rules. 

4.3.3 Results of the parameter study 

Based on the selected approach of the convex hull function, important results of the parameter study will 
be discussed to present the influence of the selected design rules on the feasible domain of the LP space. 
Figure 4-8 shows the number of hyperplanes and the volume size as characteristic properties of the 
convex hull depending on the number of plies. Between 10 and 18 plies the number of hyperplanes 
increases while the volume size decreases. It has to be noted that the number of removed plies stays 
constant within this range. A continuous value of the taper ratio 0.2 has to be converted to an even 
integer number of removed plies. 0.2 of 18 plies is 3.6 which has to be rounded down to 2 removable 
plies. The same happens in the range between 20 and 28 plies. Therefore the taper ratio has to be 
corrected for each laminate thickness individually. In case of 28 plies the number of removed plies is 4 
and the corrected taper ratio is 0.14 instead of 0.2. Between 18 and 20 plies a doubling of the volume size 
can be observed. The optimization process described in section 3.5 works with a continuous thickness. To 
formulate the constraint a relation between the hyperplane coefficients and the laminate thickness has to 
be found. Due to the fact that the number of hyperplanes increases with the number of plies, a 
continuous dependence of the hyperplane coefficients on the laminate thickness is not given and an 
approximation e.g. with polynomial functions is not possible. Therefore a conservative approach is chosen 
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in which the next higher thickness value that represents an even integer number of plies is used. More 
details about the constraint implementation are given in section 4.5. 

 
Figure 4-8: Number of hyperplanes and volume size over laminate thickness 

The feasible domain of the four delta values DAV ,*
]2,1[D  is shown in form of two-dimensional sectional views 

called subdomains in Figure 4-9, where the laminates consist of 12, 16 and 20 plies. The taper ratio is set 
to 0.2 and the ply continuity is 0.6. One effect can already be seen in the left column of Figure 4-7 

comparing the subdomains ( )AA VfV *
1

*
2 ∆=∆  and ( )DD VfV *

1
*

2 D=D . A higher scattering of the feasible 

points can be observed in the domain ( )DD VfV *
1

*
2 D=D . Every point in this domain represents one 

stacking sequence, whereas the LPs DAV ,*
]2,1[D  representing the [ ]A -matrix are independent of the stacking 

sequence, which leads to a significant smaller number of feasible points. Figure 4-9 shows that the shape 
of the feasible domain between 12 and 16 plies does not change significantly only the size decreases. 
Comparing the domains of 12 and 20 plies a change in the shape as well as an increase of the size is visible 

especially in the domain ( )DD VfV *
1

*
2 D=D . The increse of the size was already indicated in Figure 4-8 in 

form of a step between 18 and 20 plies. The reason for that is the conversion of the taper ratio as a 
continuous value to an even integer number of plies that can be removed. The general trend of the 
increasing number of hyperplanes as indicated in Figure 4-8 leads to a finer discretization of the feasible 

domain’s boundary which can be seen when comparing the subdomains ( )AD VfV *
1

*
1 D=D  or 

( )AD VfV *
2

*
2 D=D  for 12 plies and 20 plies (see Figure 4-9).  
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A comparison of Figure 4-7 and Figure 4-9 shows the change of the feasible domain when varying the 
design criterion for the taper ratio from 0.5 to 0.2. A completely different shape and a significantly smaller 
size in all subdomains can be observed. 

 
Figure 4-9: Feasible domains for 12, 16 and 20 plies with a taper ratio of 0.2 and a required ply continuity of 0.6 

Reducing the ply continuity from 0.5 in Figure 4-7 to 0.0 in Figure 4-10 increases only the size of the 

subdomains ( )AD VfV *
1

*
1 D=D  and ( )AD VfV *

2
*

2 D=D . Neglecting the ply continuity leads to a higher 

number of allowable reduced stackings which increases the number of feasible points in the domain 
which can be seen when comparing Figure 4-7 and Figure 4-10. 
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Figure 4-10: Feasible domain for 12 plies with a taper ratio of 0.5 and a required ply continuity of 0.0 

4.4 Comparison to Macquart’s constraints 

The selected approach (see section 4.3) for constructing the feasible domain based on the convex hull 
should be compared to the method of Macquart et al. [3] already discussed in section 4.1. Macquart’s 

construction of the feasible domain for ( )AA VfV *
1

*
2 ∆=∆  and ( )DD VfV *

1
*

2 D=D  is based on the Euclidian 

distance as formulated in equations (4-5) and (4-6). Figure 4-11 shows that the feasible domain of 
Macquart’s approach is significantly larger than the one generated by the convex hull especially for the 

domain ( )DD VfV *
1

*
2 D=D . 
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Figure 4-11: Comparison between Macquart’s feasible domain and the convex hull for a laminate configuration with 12 plies a 

taper ratio of 0.2 and a required ply continuity of 0.6 

A main advantage of Macquart‘s constraints is the usage of analytical equations that can be quickly 
evaluated by the optimizer. In addition, the constraint equations are independent from the material 
properties.  

The determination of the hyperplane coefficients that describe the convex hull is much more 
computational-intensive and has to be done for all possible number of plies. The advantage is that the 
computation can be parallelized and distributed on several CPU’s. The complete process of computing the 
constraints is done in advance of the optimization. The actual evaluation of the high number of linear 
constraint equations (see (4-9)) is quickly done by the optimizer. 
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4.5 Assembly constraints implementation 

The present section describes the implementation of the assembly constraints based on the mathematical 
formulations given in section 4.3. Two assembly constraints are implemented, one for the taper ratio and 
a second one to represent the feasible change of the LP space for the two adjacent panels. The necessary 
input for the constraints are the design parameters namely the thickness values and the LP sets of both 
panels of the current iteration as shown in Figure 3-15. 

The first assembly constraint imposes the allowable difference of the thickness between the two adjacent 
panels. The taper ratio is defined as percentage of the terminated plies with respect to the thicker 
laminate which has to be identified first. It has to be noted that the corrected taper ratio is used as 
explained in section 4.3.3. As an example for a laminate with 12 plies and an allowed taper ratio of 0.2 the 
number of removed plies is 2 and the corrected taper ratio therefore 0.167.  

The constraint value which has to be equal or smaller than zero can be calculated with the following 
equation where Thint ,2  specifies the thickness of the thinner panel 2. 

The second assembly constraint represents the feasible domain of the DAV ,*
]2,1[D  values of the adjacent 

panels. Based on the approach given in section 4.3 the hyperplane coefficients representing a hyperplane 
of the convex hull are determined for all even numbers of plies between 10 and 30 and the material 
selected in section 5.1. The values are stored in a hierarchical data format (HDF) that links the data to the 
corresponding laminate thickness. As already explained in section 4.3.3 a continuous approximation of 
the hyperplane coefficients in dependent on the laminate thickness is not possible. To stay conservative 
the next higher thickness value that represents an even integer number of plies is used. Based on the 
constraint equation (4-11) the values for all hyperplanes are calculated. 1h  to 5h  denote the hyperplane 

coefficients and DAV ,*
]2,1[D  the current LP set. The maximum value over all hyperplanes is taken as the 

constraint value and returned to the optimizer. 
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5. Application	of	an	example	
An assembly of  two components  serves as an application example. The characteristic quantities of  the 
optimization process VErSO  are  the  structural mass  as objective,  the  lamination parameters  as design 
variables and  three  types of constraints. The  failure constraints as well as  the constraints  that describe 
the LP space are present. Additionally the assembly constraints derived in section 4.3 are applied. 

The FE‐model described in section 5.1 is deliberately built up in a way that different load conditions occur 
in the two panels. The goal is to obtain more divergent design parameter sets (thickness and the LP set) of 
the two panels to evaluate in a second step how the assembly constraints prevent such a behaviour. The 
reference  results  of  the  optimized  panels without  assembly  constraints  are  shown  in  section  5.2.  The 
results including the assembly constraints are discussed in section 5.3. 

5.1 Model	and	material	definition	

The  FE‐model  is  created with  the  software ANSYS  [30].  The model  consists of  linear  4‐node  shell  181 
elements  as  shown  in  Figure  5‐1.  The  global  y‐axis  is  aligned with  the  panel  length  b  in  longitudinal 
direction. At  0y  the compression load  CP  acts with 15 N/mm on panel 1. The tension load  TP  acts on 

the edge nodes at  by 2  of panel 2 with 120 N/mm. A fixed bearing is applied to the nodes at  by  . 

The  two nodes at  ax 5.0  and  by 2;0  are mounted by non‐locating bearings  (fixation  in x‐ and z‐

direction). Furthermore the rotational degrees of freedom around y and z are surpressed.  

 
Figure 5‐1: FE‐model 

The model data is shown in Table 5‐1. The selected material is a Hexcel prereg T800/M21 [31]. Its data is 
listed in Table 5‐2. 
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Table 5-1: Model data 

Property Value Unit Description 
a  1000 mm Width of both panels 
b  1500 mm Length in longitudinal direction of each panel 

CP  15 N/mm Compression load of panel 1 

TP  120 N/mm Tension load of panel 2 
    

Table 5-2: Material data 

Property Value Unit Description 

0t  0.184 mm Ply thickness 

11E  134.7 GPa Young’s modulus 

6622 EE =  7.7 GPa  

1312 νν =  0.369  Poisson’s ratio 

23ν  0.5   

1312 GG =  4.2 GPa Shear modulus 

23G  2.5 GPa  
ρ  0.1590  g/mm3 Density 

TX  2290.5 MPa Longitudinal tensile strength 

CX  1051 MPa Longitudinal compression strength 

TY  41.43 MPa Transverse tensile strength 

CY  210 MPa Transverse compression strength 

LS  106.48 MPa Shear strength 

5.2 Reference results 

The present section documents the reference results of the optimized two component model defined in 
the previous section without assembly constraints. Several starting parameters have been tested and the 
same optimization results could be achieved. The starting parameters given in Table 5-3 have been shown 
to be robust in terms of the convergence behaviour. 

Table 5-3: Starting parameters of the optimizer 

Parameter Panel 1 Panel 2 Unit Description 
DAV ,*

2,1  0.1 0.1  Lamination parameters 

T  2.5 2.5 mm Panel thickness 

It is expected that the minimum thickness of panel 1 under compressive load is driven by the failure 
criterion for compression buckling. For a resistance against buckling a higher proportion of ±45° plies is 

required. The corresponding extreme point in the LP domain ( )DD VfV *
1

*
2 =  would be { }1;0 −  as shown in 

Figure 3-7. The minimum thickness of panel 2 under tension load should be driven by the failure criterion 
for strength which causes a higher proportion of °0  plies. The corresponding extreme point in the LP 

domain ( )AA VfV *
1

*
2 =  would be { }1;1  as shown in Figure 3-7. 

The results of the optimized panels without assembly constraints are shown in Table 5-4. It can be seen 
that the expected constraints of the particular panel are active.  
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Table 5-4: Results of the individually optimized panels 

Result Panel 1 Panel 2 Difference 
AV *

1  0.21 0.85 0.64 
AV *

2  -0.59 1.00 1.59 
DV *

1  0.01 0.64 0.63 
DV *

2  -0.98 1.00 1.98 
[ ]mmT  4.00 1.99 2.01 

Active failure constraint Compression buckling Strength  
Structural mass [kg] 14.29  

The mentioned extreme points have not been fully met as shown in Figure 5-2. The reason for that is an 
obstruction of the transverse contraction caused by the transition from tension to compression stresses. 
The resulting deformations in meters are shown in Figure 5-3 for longitudinal (left) and transversal 
direction (right). 

Figure 5-2: LP set of the individually optimized panels 



Application of an example  51  

 
Figure 5-3: Deformation UY in longitudinal direction (left) and UX in transversal direction (right) 

5.3 Results under consideration of assembly constraints 

For the optimization with assembly constraints the same starting parameters are used shown in Table 5-3. 
It is expected that the same constraints for the failure criteria are active namely compression buckling for 
panel 1 and strength in panel 2. Furthermore the two thickness values and the LP sets of the panels 
should be held closely together forced by the assembly constraints. The results of the optimized panels 
with assembly constraints are shown in Table 5-5. The expected constraints of the particular panel are 
active again. Based on the difference values shown in the last column of Table 5-5, it can be observed that 
the design parameters are held close together and do not diverge as it was the case for the optimization 
without assembly constraints (see Table 5-4). This leads to a higher thickness of panel 2 and consequently 
to a structure with 3.5 kg more weight. Both assembly constraints are active, the one for the taper ratio 

as well as the one restricting the feasible domain of the DAV ,*
]2,1[D  parameters.  

Table 5-5: Results of the optimized panels with assembly constraints 

Result Panel 1 Panel 2 Difference 
AV *

1  0.14 0.21 0.07 
AV *

2  0.06 0.39 0.33 
DV *

1  -0.01 0.12 0.13 
DV *

2  -0.70 0.00 0.70 
[ ]mmT  4.09 3.40 0.69 

Active failure constraint Compression buckling Strength  
Active assembly constraint Both  
Structural mass [kg] 17.86  
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Figure 5-4 shows how the optimum LP sets of panel 1 and 2 changes when taken into account the 
assembly constraints. The optimum of panel 1 is shifted from the lower corner of the LP domain (±45° 

plies) in the direction of zero especially visible in the domain ( )AA VfV *
1

*
2 = . This new optimum is taken as 

a reference and a center point to plot the feasible domain of the delta values (green envelope) around it. 
The originally domain based on absolute delta values is mirrored at the vertical and horizontal axis (green 
dotted lines) that goes through the optimum of panel 1 to indicate the permitted positions of the optimal 
panel 2. The optimum of panel 2 is shifted from the upper right corner of the LP domain (black dotted 
line) to the border of the feasible domain of the delta values which confirms the activity of the assembly 
constraint. It has to be noted that Figure 5-4 shows only two-dimensional sectional views of the originally 
four-dimensional feasible domain. The optimal point do not have to touch the border of the domain at all 

hyperplanes simultaneuously. This explains why the corresponding point in the domain ( )DD VfV *
1

*
2 =  is 

not located directly on the border line but only close to it.  

By comparing the feasible domains of the LPs (black dotted line) and the delta values (green envelope) it 
might be surprising that the one of the delta values extends beyond the LP domain. The assembly 
constraint formulation is based on the maximum possible differences and does not take into account the 
absolute position of the LPs. The equations that define the assembly constraints are determined based on 
the material properties and a thickness range before the optimization is started. Therefore the absolute 
positions of the LPs arising during the optimization cannot be considered. The LP sets of the complete 
feasible domain are used instead. The LP constraints for each panel specified in equations (3-20) to (3-38) 
ensure that the feasible domain of the LPs is not violated.  

Figure 5-4: Change in the optimal LPs due to the assembly constraints 
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5.4 Conversion to discrete stacking sequences 

The optimal set of LPs of each panel obtained in the previous sections has to be transformed back to a 
discrete stacking sequence. The detailed optimization process how to find the best matching stackings of 
the two panels is not part of the present thesis. A simplified approach based on the Brute Force method is 
presented in this section.  

The panel thickness is used to determine the total number of plies. In the present case an even number is 

required to guarantee the symmetry of the laminate. With the optimal values AV *
]2,1[  and the material 

invariants the [ ]A -matrix is calculated. Based on the three diagonal values 662211 ,, AAA , the discrete 

number of and 0°, 90° and ±45° plies can be determined by solving the linear system of equations with 3 
equations and the 3 unknowns. 0n  denotes the unknown number of 0° plies and ( )011Q  the reduced 

stiffness of one 0° ply transformed into the global longitudinal direction as already introduced in section 
3.1.  

The resulting numbers 0°, 90° and ±45° plies are floating point numbers and have to be rounded to even 
integer numbers. Thereby the total number of plies has to be fulfilled. Due to the fact that the process of 
rounding is not unique several combinations of even numbers of 0°, 90° and ±45° plies are created. The 
combination that fits best to the [ ]A -matrix of the optimum values is used. Based on the number of 0°, 

90° and ±45° plies all possible stackings are generated. For every stacking the LPs DV *
]2,1[  are determined 

and compared to the optimal values. To have only one value as an indicator how close the LPs of the 
current stacking are, the sum of the absolute difference values are used as shown in the following 
equation. 

The LPs AV *
]2,1[  of the stackings with the 50 smallest sums of the absolute differences are all located around 

the optimum points as shown in the domain ( )DD VfV *
1

*
2 =  of Figure 5-5. It has to be noted that all 

stackings have the same number of 0°, 90° and ±45° plies (as calculated above) and therefor the same LPs 
AV *

]2,1[  plotted in the domain ( )AA VfV *
1

*
2 =  of Figure 5-5. For the pressure loaded panel 1 the point of the 

discrete stacking is on the conservative side oriented in the direction of ±45° plies to prevent compression 
buckling. For the tension loaded panel 2 the conservative side would be right above the optimum in 
direction of the 0° plies. The point of the discrete stacking is located below the optimum which is assessed 
as unproblematic due to the round up to an even number of plies which results in a higher panel 
thickness. 

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )906690456645066066

902290452245022022

901190451145011011
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Figure 5-5: Back-transformation of the optimum LPs to discrete stackings 

Figure 5-6 shows two stackings for the panels that were found among the 50 points that are closest to the 
optimum. It can be seen that all plies of the thinner laminate are also part of the thicker one which 
indicates that the blending rule is fulfilled. The number of continuous plies is 16 which constitutes a 
percentage of 67% with respect to the thicker laminate with 24 plies. The required ply continuity was 
given with 60%.  
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Figure 5‐6: Discrete stacking sequences obtained for the two optimized panels under consideration of assembly constraints 

Figure 5‐7 shows the found stackings for the optimized panels without assembly constraints that match 
the optimum LP set.  It can be observed that neither the ply continuity (only 4 continuous plies) nor the 
blending rule is fulfilled which is obvious when comparing the locations of the optimum LP sets of panel 1 
and 2 shown in Figure 5‐2.  

 
Figure 5‐7: Discrete stacking sequences obtained for the two optimized panels without assembly constraints 

For the optimization with assembly constraints it can be concluded that for both panels discrete stackings 
could be generated matching the optimum LPs with a sufficient precision and fulfilling the selected design 
rules at the same time.    
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6. Conclusion and Outlook 
In the present thesis a design criterion was formulated based on selected design rules in thickness as well 
as in longitudinal direction. Thereby the approaches from Liu et al. [1] and Adams et al. [2] were used to 
combine a required ply continuity with laminate blending between two neighbouring panels. The design 
criterion was used to define assembly constraints for the optimization process VErSO that uses the 
laminate thickness and the lamination parameters as continuous design variables. The assembly 
constraints interrelate the lamination parameters of two adjacent panels with the help of convex hulls for 

the four-dimensional parameter space DAV ,*
]2,1[D . The coefficients that describe the hyperplanes of the 

convex hull are used as linear constraint equations. It turned out that the size of the feasible domain is 
significantly smaller in comparison to the analytical approach developed by Macquart et al. [3]. The 
computational effort of the presented method is higher but needs to be carried out only once and that is 
outside of the optimization process.  

A structure with two panels (optimization regions) was used to compare the results with and without the 
usage of assembly constraints. The boundary and load conditions of the panels were selected deliberately 
to obtain two divergent design parameter sets and different active failure criteria. The reference results 
without assembly constraints showed for the pressure loaded panel 1 an optimized parameter set to 
avoid failure due to compression buckling, whereas the tension loaded panel 2 got an optimized 
parameter set to prevent a failure of the strength. These two optimal points were located at completely 
different positions within the LP domain which correspond to completely different stackings that do not 
fulfill the selected design rules. The manufacturability of the structure is therefore not given. Applying the 
assembly constraints, the optimized parameter sets were significantly closer together. During the back-
transformation of the LPs based on a Brute Force method, two discrete stackings could be obtained that 
fulfill the selected design rules. The manufacturability of the structure is given but with a weight penalty 
that has to be taken into account during performance computations already within the preliminary design 
phase. 

The next logical step is the application of the method on a larger structure like a wind turbine blade or an 
aircraft wing. Due to the discretization of the structure, a high number of optimization regions will occur. 
Therefore it is useful to determine the permitted taper ratio and the allowable step in thickness direction 
of a continuous ply automatically based on the geometrical size of the optimization region. The speed of 
the back-transformation into discrete stackings can be increased with the help of a genetic algorithm. The 
algorithm uses a fitness function that evaluates how close are the parameters of a stacking to the optimal 
found parameter set under consideration of the design rules. 

In the present work analytical LP constraints of Diaconu et al. ([21],[22]) shown in equations (3-20) to 
(3-38) were used. The calculation of the LP constraints and the assembly constraints can be combined in 
the future within the presented method. For a selected material the computation of the feasible domains 
for the LPs and their delta values based on the hyperplane coefficients can be done in one step in advance 
of the optimization. The constraints of Diaconu are restricted to symmetric and balanced laminates with 
0°, 45° and 90° plies. The presented method allows the usage of arbitrary ply angles. Furthermore 
additional design rules in thickness and in longitudinal direction can be easily implemented. 

For the application of structures where the usage of multiaxial fabrics is intended (e.g. wind turbine 
blades) the present process can be adapted quickly. The lamination parameters can be determined in the 
same way by just clustering the corresponding plies to one fabric ply which increases the permitted taper 
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ratio and the allowable step in thickness direction of a continuous ply. The present process is therefore 
fully transferable to multiaxial fabrics. 
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