
Implicit Methods and Globalization Strategies for the
Robust Approximation of Solutions to the Reynolds

Averaged Navier-Stokes equations

Stefan Langer
September 15th, 2016

• Introduction and Motivation – The RANS equations

• Solution algorithms – Multigrid smoothers

• Globalization strategies

• Numerical examples

Outline

Motivation
Goals of flighpath 2050:

1. In 2050 technologies and procedures available allow a 75% reduction in CO2

emissions per passenger kilometre to support the ATAG (Air Transport Action
Group) target and a 90% reduction in NOx emissions.

2. The perceived noise emission of flying aircraft is reduced by 65%.

These are relative to the capabilities of typical new aircraft in 2000.

3. Overall, the European air transport system has less than one accident per ten

million commercial aircraft flights.

 The future aircraft is ecologically sensitive, low noise, and safe.

A key element, to design aircrafts ready for the future, is the accurate and
efficient simulation of fluid flow coupled with other disciplines such as

aerolastics and aeroacoustics.

Requirements of a CFD code

 Reliable tool in a process chain

 Interaction with other components (e.g. structure, mesh deformation, …)

 Accuracy, e.g. prediction of force coefficients up to a certain accuracy

 Evaluation and assessment of turbulence models

 …

 Machine accurate solutions (on a given grid, that is a given resolution)

 Mesh converged solutions (in general hard to obtain, in particular in 3D)

 The code needs to run on regular basis without user interaction

Basic demand:

How to prepare a CFD code for the future

• Identify the main building blocks

• Disaggregate the code into its building blocks

• Write routines which check the building blocks with respect to correctness

• Design interfaces such that the building blocks can be easily exchanged

Modular software design

Requirement: Identification of the main building blocks of a CFD code, to
create algorithms prepared for demands in fully automatic process

chains.

i

j1

j2

j3

j4

j5

j6

Compressible Navier-Stokes equations

()

() ()()∫∫
Ω∂Ω

⋅−−=

=

dsn
dt
d

Eu

vc WgradW,F W grad W,FWdx

,,:W ρρρ

Unstructured Finite volume discretization

flux Viscous :F
flux Convective:F

v

c

 Conservative variables

 Nonlinear operator equation:

() ()()Niidt
d

,,1
1 voldiagM ,WRMW

=
− Ω=−=

Interested in steady state solution: () 0WR =

 Typical convergence behavior for high Reynolds number viscous flows

Necessity for improvement of solution algorithms

 Convergence rate deteriorates
significantly after inital phase

R
es

id
ua

l

R
es

id
ua

l
 No convergence, iteration

stagnates

Iterations Iterations

 Stiff set of equations

• anisotropic cells to represent gradients in the boundary layer
• turbulent flow equations with source terms

y∆

x∆

x

y
10000>

∆
∆

y
x

• Introduction and Motivation – The RANS equations

• Solution algorithms – Multigrid smoothers

• Globalization strategies

• Numerical examples

Outline

Structure of solution algorithm

Structure of solution algorithm

() ()()Niidt
d

,,1
1 voldiagM ,WRMW

=
− Ω=−=

Apply preconditioned expl. Runge-Kutta method

to approximate W such that 0R(W) ≈

Multigrid smoother: Prec. Runge-Kutta method

()

() () ()()
()

()
W
RM :P

W:W

,...,1 , WRPW:W

W:W

1

1

11
,1

0

0

∂
∂

+∆=

=

=−=

=

−

+

−−
+

t

sj

j

s
n

j
jjj

j
n

α

() ()()Niidt
d

,,1
1 voldiagM ,WRMW

=
− Ω=−=

Apply preconditioned expl. Runge-Kutta method

to approximate W such that 0R(W) ≈

Multigrid smoother: Prec. Runge-Kutta method

()

() ()

()
()()

()

() ()
()









∆
Ω

=







Ω
∆

=
∂
∂

+∆=

=

=







Ω
∆

−=

=

−
−

+

−
+

i

i

i

i
j

s
n

j

i

i
jj

j

n

tCFL
tCFLt

sjtCFL

vol
volW

RM :P

W:W

,...,1 , WR
vol

W:W

W:W

1
1

1

1
,1

0

0

α
Explicit Runge
Kutta scheme with
local time stepping

 Requires inversion of a scalar value for each control volume:
() 1

vol
−









∆
Ω

i

i

tCFL

() ()()Niidt
d

,,1
1 voldiagM ,WRMW

=
− Ω=−=

Apply preconditioned expl. Runge-Kutta method

to approximate W such that 0R(W) ≈

Multigrid smoother: Prec. Runge-Kutta method

 Task: Need to approximate efficiently solution of ()WRP =x

()

() () ()()
()

()
W
RM :P

W:W

,...,1 , WRPW:W

W:W

1

1

11
,1

0

0

∂
∂

+∆=

=

=−=

=

−

+

−−
+

t

sj

j

s
n

j
jjj

j
n

α

()() ()()111 WRP WRP −−− =⇔= j
j

j
j xx

 Inversion of scalar value is replaced by solving a large scale linear system.

The conncetion to Newton‘s method
Outer Loop: Multistage Runge-Kutta method  Choose s = 1, i.e. only one stage

()

() () ()()
()s

n

j
jjj

j
n

sj

W:W

,...,1 , WRPW:W

W:W

1

11
,1

0

0

=

=−=

=

+

−−
+α

() WR
W
RW:W

1

1 n

-

nn 






∂
∂

−=+

() ()
∞→→








∆
Ω

=∆ − CFL
tCFL

t
i

i ,0vol1

 The solution method is some kind of generalization of Newton‘s method

() ∞→
∂
∂

=
∂
∂

+∆= CFLt -
j ,

W
R

W
RM :P 1

• Represents a large scale (in general more than 108 unknowns), ill-
conditioned linear system

• It is not of interest to solve these linear systems, it is of interest to get a
reasonable update for the outer nonlinear loop

• Krylov subspace methods are a natural choice for a matrix-free
implementation

• A well suited preconditioner is required

()WRP =x

Krylov subspace methods are in general only effective
in combination with a well suited preconditioner!

Code design

• execute multigrid cycle (until convergence)

• execute preconditioned expl. Runge-Kutta algorithm

• evaluate residual R
• evaluate derivative dR, P = t + dR
• solve linear system (P, R)

• apply preconditioned Krylov subspace method
• construct a (further) preconditioner for the linear

system Px = R

• update flow variables W

Construction of Preconditioner (for lin. System)

Idea: Base preconditioner upon next neighbor stencil

()
W

RMPrec
1st

1

∂
∂

+∆=⇒ −t

() ()

W
R

W
R

W,WRW,W,WR
12

)(,
1

)(,)(
2

∂

∂
≈

∂

∂
⇒

≈ ∈∈∈

stnd

iNjji
st

ijNkkiNji
nd

i

Volume i Neighbor of i Neighbor of
neighbor of i

i

 Required: Solution method for Prec w = b

Challenge: Find approximate solution of linear system
bw Prec =

where Prec is a block sparse matrix of dimension number of mesh points

=Prec

Anisotropic part Isotropic part

Point ordering according to lines
yields (block) tridiagonal systems

Iterative solution methods for Prec w = z

(Symmetric) Line (Jacobi) Gauss-Seidel method:

() PrecPrectridiag
,,,

)(

,,,

)1(1)1(

1111








−−= ∑∑

∉∉∉∈

+−+

−− ii

i

ii

iiii
LjLLj

m
jjL

LjLLj

m
jjLLL

m
L xxbDx



 Exploit directions of strongest coupling in iterative solution process

Mathematical textbook methods for solution of linear systems, e.g

• (Block-) Jacobi method
• (Block-) Gauss-Seidel method
• Symmetric (Block-) Gauss-Seidel method

Methods have been extended:

Algebraic representation
and implementation of
geometric data (Lines)

Code design

• execute multigrid cycle (until convergence)

• execute preconditioned expl. Runge-Kutta algorithm

• evaluate residual R
• evaluate derivative dR, P = t + dR
• solve linear system (P, R)

• apply preconditioned Krylov subspace method
• construct a (further) preconditioner for the linear

system Px = R
• solve Prec w = b to precondition Px = R (by Line

symmetric Gauss-Seidel method)
• update flow variables W

A historical view on solution methods in CFD

Multigrid + Low cost smoother  Newton‘s method (expensive smoother)

Two competitive views

Low cost smoothers:

1. Expl. Runge-Kutta + local time stepping

(Jameson)
2. Point implicit Runge-Kutta (Pierce, Giles,

Moinier)
3. Line implicit Runge-Kutta (Mavriplis)
4. 1.st order approximate Jacobian

(Swanson, Rossow, Yoon + Jameson
(LU-SGS))

Preconditioned explicit Runge-Kutta
smoother

All well known specific smoothers
developed throughout the CFD
literature are specifications of the
general method shown here

The suggested methods just differ
with respect to the approximation of
the exact Jacobian and the iterative
solver

Derivation of low cost smoothers
()

() () ()()
()s

n

j
jjj

j
n

sj

W:W

,...,1 , WRPW:W

W:W

1

11
,1

0

0

=

=−=

=

+

−−
+α

• execute preconditioned expl. Runge-Kutta algorithm

• evaluate residual R
• evaluate derivative dR, P = t + dR
• solve linear system (P, R)

• apply preconditioned Krylov subspace method
• construct a (further) preconditioner for the linear

system Px = R
• solve Prec w = b to precondition Px = R

• update flow variables W

Smoothing step

Derivation of low cost smoothers
()

() () ()()
()s

n

j
jjj

j
n

sj

W:W

,...,1 , WRPW:W

W:W

1

11
,1

0

0

=

=−=

=

+

−−
+α

• execute preconditioned expl. Runge-Kutta algorithm

• evaluate residual R
• evaluate derivative dR, P = t + dR
• solve linear system (P, R)

• apply preconditioned Krylov subspace method
• construct a (further) preconditioner for the linear

system Px = R
• solve Prec w = b to precondition Px = R

• update flow variables W

Smoothing step

Simplifications:
1. Number of Krylov steps = 0

Derivation of low cost smoothers
()

() () ()()
()s

n

j
jjj

j
n

sj

W:W

,...,1 , WRPW:W

W:W

1

11
,1

0

0

=

=−=

=

+

−−
+α

• execute preconditioned expl. Runge-Kutta algorithm

• evaluate residual R
• evaluate derivative dR1st, Prec = t + dR1st

• construct a (further) preconditioner for the linear
system Px = R

• solve Prec w = b to precondition Px = R
• update flow variables W

Smoothing step

Simplifications:
1. Number of Krylov steps = 0

Derivation of low cost smoothers

• execute preconditioned expl. Runge-Kutta algorithm

• evaluate residual R
• evaluate derivative dR1st, Prec = t + dR1st

• solve Prec w = b
• update flow variables W

Smoothing step

Simplifications:
1. Number of Krylov steps = 0

Preconditiong based on 1.st order approximate Jacobian
(Swanson, Rossow, Yoon + Jameson (LU-SGS))

()

() () ()()
()s

n

j
jjj

j
n

sj

W:W

,...,1 , WRPrecW:W

W:W

1

11
,1

0

0

=

=−=

=

+

−−
+α

Derivation of low cost smoothers

• execute preconditioned expl. Runge-Kutta algorithm

• evaluate residual R
• evaluate derivative dR1st, Prec = t + dR1st ≈ t + (dR1st)

• solve Prec w = b
• update flow variables W

Smoothing step

Simplifications:
1. Number of Krylov steps = 0
2. Simplify dR1st entries by

spectral radius

Preconditiong based on 1.st order approximate Jacobian
(Swanson, Rossow, Yoon + Jameson (LU-SGS)

()

() () ()()
()s

n

j
jjj

j
n

sj

W:W

,...,1 , WRPrecW:W

W:W

1

11
,1

0

0

=

=−=

=

+

−−
+α

Solve with 1 symmetric Gauss-
Seidel sweep

Derivation of low cost smoothers

• execute preconditioned expl. Runge-Kutta algorithm

• evaluate residual R
• evaluate derivative dR1st, Prec = t + dR1st

• solve Prec w = b
• update flow variables W

Smoothing step

Simplifications:
1. Number of Krylov steps = 0
2. Simplify dR1st entries by

spectral radius
3. Iterative solver: Line Jacobi

truncated after one step

()

() () ()()
()s

n

j
jjj

j
n

sj

W:W

,...,1 , WRPrecW:W

W:W

1

11
,1

0

0

=

=−=

=

+

−−
+α

() Prectridiag
,,,

)(1)1(

11








−= ∑

∉∉

−+

− ii

iiii
LjLLj

m
jjLLL

m
L xbDx



() 00 =x

Derivation of low cost smoothers

• execute precondtioned expl. Runge-Kutta algorithm

• evaluate residual R
• evaluate derivative dR1st, Prec = t + dR1st

• solve Prec w = b
• update flow variables W

Smoothing step

Simplifications:
1. Number of Krylov steps = 0
2. Simplify dR1st entries by

spectral radius
3. Iterative solver: Line Jacobi

truncated after one step

()

() () ()()
()s

n

j
jjj

j
n

sj

W:W

,...,1 , WRPrecW:W

W:W

1

11
,1

0

0

=

=−=

=

+

−−
+α

() tridiag 1)1(
iii LLL bDx −=

() 00 =x

Derivation of low cost smoothers

• execute precondtioned expl. Runge-Kutta algorithm

• evaluate residual R
• evaluate derivative dR1st, Prec = t + dR1st

• solve w = tridiag(D) -1b
• update flow variables W

Smoothing step

Simplifications:
1. Number of Krylov steps = 0
2. Simplify dR1st entries by

spectral radius
3. Iterative solver: Line Jacobi

truncated after one step

() tridiag 1)1(
iii LLL bDx −=

() 00 =x

()

() ()()
()s

n

j-
Ljj

)(
L

(j)
L

n

kkk
D

W:W

 WRtridiagW:W

W:W

1

11
,1

0

0

=

−=

=

+

−
+α

Line implicit Runge-Kutta (Mavriplis)

Derivation of low cost smoothers

• execute precondtioned expl. Runge-Kutta algorithm

• evaluate residual R
• evaluate derivative dR1st, Prec = t + dR1st

• solve w = (D) -1b
• update flow variables W

Smoothing step

Simplifications:
1. Number of Krylov steps = 0
2. Simplify dR1st entries by

spectral radius
3. Iterative solver: Line Jacobi

truncated after one step
4. Neglect lines, i.e. perform

only Jacobi iteration

() 1)1(
iii bDx −=

() 00 =x

()

() ()()
()s

n

j-
kjj

)(
k

(j)
k

n

D

W:W

 WRW:W

W:W

1

11
,1

0

0

=

−=

=

+

−
+α

Point implicit Runge-Kutta (Giles, Moinier)

Derivation of low cost smoothers

• execute precondtioned expl. Runge-Kutta algorithm

• evaluate residual R
• evaluate derivative dR1st, Prec = t + dR1st

• solve w = (t / vol)-1 b
• update flow variables W

Smoothing step

Simplifications:
1. Number of Krylov steps = 0
2. Simplify dR1st entries by

spectral radius
3. Iterative solver: Line Jacobi

truncated after one step
4. Neglect lines, i.e. perform only

Jacobi iteration
5. Approximate diagonal terms of

Jacobian by spectral radius

()() () i
i

i
iii btbDx

Ω
∆

== −

vol
1)1(ρ

()

()
()()

()s
n

j

k

k
jj

)(
k

(j)
k

n

t

W:W

 WR
vol

W:W

W:W

1

1
,1

0

0

=

Ω
∆

−=

=

+

−
+α

 Full hierarchy of solution methods
Explicit Runge-Kutta (Jameson)

Main building blocks of a CFD code

• Data structure for (block) sparse matrices 

• Data structure for (block) vectors 

• Algorithms acting on these data structures

W
R

∂
∂

()WR

 Link to a suited, efficient LINEAR ALGEBRA PACKAGE

• Introduction and Motivation – The RANS equations

• Solution algorithms – Multigrid smoothers

• Globalization strategies

• Numerical examples

Outline

What is a globalization strategy?

Why do we need it?

Consider Newton‘s method ()nnn WR
W
RWW

1
1

−
+






∂
∂

−=

Newton‘s method converges only

1. under certain smoothness assumptions
2. if the initial guess is in a neighborhood of the root
3. …

A globalization strategy is the try to construct an algorithm which

1. preserves the nice properties of Newton‘s method
2. circumvents its shortcomings

Analysis of schemes: Globalization strategies

Parameter settings allow for several possible smoothing techniques:

• Number of Runge-Kutta stages

• Number of Gauss-Seidel sweeps

• Number of Krylov subspace steps

• Approximation of Jacobian

• …..

How to choose a robust and efficient method?

 Development of an analysis tool to give some guideline

Newton‘s method

Explicit Runge-Kutta

Evaluation of smoother:
Consider linearized problem

Nonlinear Problem: Linearized Problem

()

() () ()

() () ()

() ∑
=

−−+
+

−−
+

+=









∂
∂

=⇔=

∂
∂

−=

=

s

j

j
js

j
js

ns
n

j
jjj

j

n

zzq

q

1

1app,11
1

1app,1
,1

0

0

1

W
W
RPWW:W

W
W
RPW:W

W:W

β

α

Convergence 1
W
RP app,1 <
















∂
∂

⇔ −
jsqρ

()WRM
dt

dW 1−−= () [] 












∆

∂
∂

+−≈
=

− WW
W
RWRM

dt
dW *

stateSteady 0;

*1


()

() () ()()
()s

n

j
jjj

j
n

W:W

 WRPW:W

W:W

1

1app,1
,1

0

0

=

−=

=

+

−−
+α

Analysis of schemes: Impact of CFL number
Analysis for mesh with 5.2e6 points:

Investigation of number of stages for
• symmetric Line Gauss-Seidel
• different CFL numbers

Mesh

One stage: CFL = 1000  unstable
One stage: CFL = 100  unstable
One stage: CFL = 10  stable
Three stage: CFL = 1000  stable

Sweeps: 25
One stage: CFL = 1000  unstable

Significant reduction
of CFL necessary for
one stage schemes

Additional effort
does not pay of

• Introduction and Motivation – The RANS equations

• Solution algorithms – Multigrid smoothers

• Globalization strategies

• Numerical examples
• Spalart-Allmaras (neg.)
• Wilcox (kω)

Outline

Spalart-Allmaras 1992  Spalart Allmaras 2012

1992 model:

• transported variable can become negative such that iteration diverges
• choice of farfield values not clarified
• ….

2012 modification of original model:

• Allows for small negative values of transported variable
• clarification of choice of farfield values
• description and recommendations of implementation of several terms

and details

 2012 version has been succesfully implemented into the DLR TAU-Code

CRM of 5th AIAA drag prediction workshop

Implicit methods have comparable complexity to standard LU-SGS
method by improved robustness

• High Reynolds number Aero-Structural Dynamics wind tunnel configuration
• Ma = 0.8
• α = 3.0°
• Re = 14e6
• Pure hexahedral mesh: 3.3e6 points

Numerical example: HIRENASD

 Implicit method converges,
 LU-SGS method stalls

Configuration from second high-lift
prediction workshop: Case 2a

Turbulence model: SA-Neg
Ma = 0.175, Re = 1.35e6, AoA = 7.0°

Necessity of Newton-kind algorithms

NASA Trap Wing, Ma = 0.2, Re = 4.3e6

• Coarse Mesh: 3.7e6 NDOF
• Medium Mesh: 11.0e6 NDOF
• Fine Mesh: 32.4e6 NDOF

Unstructured mesh results for
AOA = 13°, 28°, 32°, 34°, 37°

VGRID Meshes used at High Lift Prediction Workshop 1

NASA Trap Wing, Ma = 0.2, Re = 4.3e6
Unstructured mesh results for AOA = 37°

• Residual has been reduced to machine accuracy using Newton kind methods
 Steady state could not be found with simplified algorithms

Flow field at the 60% wing section Convergence history for AoA = 37°

• Introduction and Motivation – The RANS equations

• Solution algorithms – Multigrid smoothers

• Best practice considerations

• Numerical examples
• Spalart-Allmaras (neg.)
• Wilcox (kω)

Outline

• Wing-body configuration
• Ma = 0.85
• α = 2.209°
• Re = 5e6
• No. of points: 5.1e6

Numerical examples: DPW5 + kω-model

Convergence history of residuals Convergence history of lift and drag

NASA Trap Wing + kω-model
 Ma = 0.2, Re = 4.3e6, AoA = 28.0°

Convergence history of residuals Convergence history of lift and drag

Speed up and parallel efficiency: Strong scaling

Actual speed up Actual parallel efficiency,
System effectiveness

Severe issue with respect to exploitation of modern hardware clusters

Implicit methods require

significantly more time per iteration than explicit methods
a fully differentiated code which needs to be kept up to date
significant more fast memory
are not straightforward to ensure good parallel scalability
to outsource and decouple the main work into a suited linear algebra package
a new framework  Flucs code

Summary

Implicit methods offer the potential to

improve significantly the observed convergence rates
find fully (machine accurate) converged solutions of complex flows
significantly increase robustness (e.g. they work for a broad range of CFL numbers)
implement the hierarchy of smoothers in one framework
outsource and decouple the main work into a suited linear algebra package

Thank you!
Questions?

	Implicit Methods and Globalization Strategies for the Robust Approximation of Solutions to the Reynolds Averaged Navier-Stokes equations
	Outline
	Motivation
	Requirements of a CFD code
	How to prepare a CFD code for the future
	Foliennummer 6
	 Typical convergence behavior for high Reynolds number viscous flows
	Outline
	Foliennummer 9
	Foliennummer 10
	Foliennummer 11
	Foliennummer 12
	Foliennummer 13
	Foliennummer 14
	Foliennummer 15
	Foliennummer 16
	Construction of Preconditioner (for lin. System)
	Foliennummer 18
	Foliennummer 19
	Foliennummer 20
	A historical view on solution methods in CFD
	Foliennummer 22
	Foliennummer 23
	Foliennummer 24
	Foliennummer 25
	Foliennummer 26
	Foliennummer 27
	Foliennummer 28
	Foliennummer 29
	Foliennummer 30
	Foliennummer 31
	Foliennummer 32
	Outline
	What is a globalization strategy?
	Foliennummer 35
	Foliennummer 36
	Foliennummer 37
	Outline
	Foliennummer 39
	Foliennummer 40
	Numerical example: HIRENASD
	Foliennummer 42
	Foliennummer 43
	Foliennummer 44
	Outline
	Numerical examples: DPW5 + kω-model
	Foliennummer 47
	Foliennummer 48
	Summary
	Foliennummer 50

