

Knowledge for Tomorrow

Implicit Methods and Globalization Strategies for the Robust Approximation of Solutions to the Reynolds Averaged Navier-Stokes equations

Stefan Langer September 15th, 2016

Outline

- Introduction and Motivation The RANS equations
- Solution algorithms Multigrid smoothers
- Globalization strategies
- Numerical examples

Motivation

Goals of flighpath 2050:

- In 2050 technologies and procedures available allow a 75% reduction in CO2 emissions per passenger kilometre to support the ATAG (Air Transport Action Group) target and a 90% reduction in NOx emissions.
- 2. The perceived noise emission of flying aircraft is reduced by 65%.

These are relative to the capabilities of typical new aircraft in 2000.

3. Overall, the European air transport system has less than one accident per ten million commercial aircraft flights.

 \rightarrow The future aircraft is ecologically sensitive, low noise, and safe.

A key element, to design aircrafts ready for the future, is the accurate and efficient simulation of fluid flow coupled with other disciplines such as aerolastics and aeroacoustics.

Requirements of a CFD code

➢ Reliable tool in a process chain

- Interaction with other components (e.g. structure, mesh deformation, ...)
- > Accuracy, e.g. prediction of force coefficients up to a certain accuracy
- Evaluation and assessment of turbulence models

Basic demand:

- Machine accurate solutions (on a given grid, that is a given resolution)
- > Mesh converged solutions (in general hard to obtain, in particular in 3D)
- > The code needs to run on regular basis without user interaction

How to prepare a CFD code for the future

- Identify the main building blocks
- Disaggregate the code into its building blocks
- Write routines which check the building blocks with respect to correctness
- Design interfaces such that the building blocks can be easily exchanged

Modular software design

<u>Requirement</u>: Identification of the main building blocks of a CFD code, to create algorithms prepared for demands in fully automatic process chains.

Compressible Navier-Stokes equations

$$\frac{Compressible Navier-Stokes equations}{W := (\rho, \rho u, \rho E) \Rightarrow Conservative variables}$$

$$\frac{d}{dt} \int_{\Omega} W dx = -\int_{\partial \Omega} (F_c(W, \text{grad } W) - F_v(W, \text{grad } W)) \cdot n \, ds$$

$$F_c : \text{Convective flux}$$

j2

j1

j6

 F_v : Viscous flux

Unstructured Finite volume discretization

 \rightarrow Nonlinear operator equation:

$$\frac{dW}{dt} = -M^{-1}R(W), \quad M = \operatorname{diag}(\operatorname{vol}(\Omega_i)_{i=1,\ldots,N})$$

R(W) = 0Interested in steady state solution:

Necessity for improvement of solution algorithms IGITAL

Typical convergence behavior for high Reynolds number viscous flows

- anisotropic cells to represent gradients in the boundary layer
- turbulent flow equations with source terms

<u>Outline</u>

- Introduction and Motivation The RANS equations
- Solution algorithms Multigrid smoothers
- Globalization strategies
- Numerical examples

Requires: Sequence of meshes, Smoother, Interpolation and Projection operator

Multigrid smoother: Prec. Runge-Kutta method

$$\frac{d\mathbf{W}}{dt} = -\mathbf{M}^{-1}\mathbf{R}(\mathbf{W}), \quad \mathbf{M} = \operatorname{diag}(\operatorname{vol}(\Omega_i)_{i=1,\dots,N})$$

Apply preconditioned expl. Runge-Kutta method

$$W^{(0)} \coloneqq W_n$$

$$W^{(j)} \coloneqq W^{(0)} - \alpha_{j+1,j} P_j^{-1} R(W^{(j-1)}), \quad j = 1,...,s$$

$$W_{n+1} \coloneqq W^{(s)}$$

$$P_j \coloneqq (\Delta t)^{-1} M + \frac{\partial R}{\partial W}$$

to approximate $\,W\,\,$ such that $\,R(W)\thickapprox 0\,$

Multigrid smoother: Prec. Runge-Kutta method

$$\frac{d\mathbf{W}}{dt} = -\mathbf{M}^{-1}\mathbf{R}(\mathbf{W}), \quad \mathbf{M} = \operatorname{diag}(\operatorname{vol}(\Omega_i)_{i=1,\dots,N})$$

Apply preconditioned expl. Runge-Kutta method

Explicit Runge • Kutta scheme with local time stepping

to approximate $\,W\,\,$ such that $\,R(W)\,{\thickapprox}\,0\,$

 \rightarrow Requires inversion of a scalar value for each control volume:

Multigrid smoother: Prec. Runge-Kutta method

$$\frac{d\mathbf{W}}{dt} = -\mathbf{M}^{-1}\mathbf{R}(\mathbf{W}), \quad \mathbf{M} = \operatorname{diag}(\operatorname{vol}(\Omega_i)_{i=1,\dots,N})$$

Apply preconditioned expl. Runge-Kutta method

$$W^{(0)} \coloneqq W_{n}$$

$$W^{(j)} \coloneqq W^{(0)} - \alpha_{j+1,j} \mathbf{P}_{j}^{-1} \mathbf{R} (W^{(j-1)}), \quad j = 1,...,s$$

$$W_{n+1} \coloneqq W^{(s)}$$

$$\mathbf{P}_{j} \coloneqq (\Delta t)^{-1} \mathbf{M} + \frac{\partial \mathbf{R}}{\partial \mathbf{W}}$$

$$x = \mathbf{P}_{j}^{-1} \mathbf{R} (W^{(j-1)}) \Leftrightarrow \mathbf{P}_{j} x = \mathbf{R} (W^{(j-1)})$$

to approximate W such that $R(W) \approx 0$ \Rightarrow Task: Need to approximate efficiently solution of Px = R(W)

 \rightarrow Inversion of scalar value is replaced by solving a large scale linear system.

The conncetion to Newton's method

Outer Loop: Multistage Runge-Kutta method \rightarrow Choose s = 1, i.e. only one stage

$$W^{(0)} \coloneqq W_{n}$$

$$W^{(j)} \coloneqq W^{(0)} - \alpha_{j+1,j} P_{j}^{-1} R(W^{(j-1)}), \quad j = 1,...,s$$

$$W_{n+1} \coloneqq W^{(s)}$$

$$P_{j} \coloneqq (\Delta t)^{-1} M + \frac{\partial R}{\partial W} = \frac{\partial R}{\partial W}, \quad CFL \to \infty$$

$$(\Delta t)^{-1} = \left(\frac{\operatorname{vol}(\Omega_{i})}{CFL\Delta t_{i}}\right) \to 0, \quad CFL \to \infty$$

→ The solution method is some kind of generalization of Newton's method

Px = R(W)

- Represents a large scale (in general more than 10⁸ unknowns), illconditioned linear system
- It is not of interest to solve these linear systems, it is of interest to get a reasonable update for the outer nonlinear loop
- Krylov subspace methods are a natural choice for a matrix-free implementation
- A well suited **preconditioner** is required

Krylov subspace methods are in general only effective in combination with a well suited preconditioner!

<u>Code design</u>

- execute multigrid cycle (until convergence)
 - execute preconditioned expl. Runge-Kutta algorithm
 - evaluate residual R
 - evaluate derivative dR, $P = \Delta t + dR$
 - solve linear system (P, R)
 - apply preconditioned Krylov subspace method
 - construct a (further) preconditioner for the linear system Px = R
 - update flow variables W

Construction of Preconditioner (for lin. System)

Idea: Base preconditioner upon next neighbor stencil

$$\frac{R_{i}^{2nd}(W_{i}, W_{j\in N(i)}, W_{k,k\in N(j)}) \approx R_{i}^{1st}(W_{i}, W_{j,j\in N(i)})}{\partial W} \approx \frac{\partial R^{1st}}{\partial W} \implies \operatorname{Prec} = (\Delta t)^{-1}M + \frac{\partial R^{1st}}{\partial W}$$

 \rightarrow Required: Solution method for **Prec w = b**

<u>Challenge:</u> Find approximate solution of linear system $\frac{Prec \ w = b}{Prec \ w = b}$

where Prec is a block sparse matrix of dimension number of mesh points

Iterative solution methods for Prec w = z

Mathematical textbook methods for solution of linear systems, e.g

- (Block-) Jacobi method
- (Block-) Gauss-Seidel method
- Symmetric (Block-) Gauss-Seidel method

Methods have been extended:

→ Exploit *directions of strongest coupling* in iterative solution process

(Symmetric) Line (Jacobi) Gauss-Seidel method:

$$x_{L_{i}}^{(m+1)} = \operatorname{tridiag}(D_{L_{i}})^{-1} \left(b_{L_{i}} - \sum_{j \in L_{1}, \dots, L_{i-1}, j \notin L_{i}} \operatorname{Prec}_{L_{i}j} x_{j}^{(m+1)} - \sum_{j \notin L_{1}, \dots, L_{i-1}, j \notin L_{i}} \operatorname{Prec}_{L_{i}j} x_{j}^{(m)} \right)$$
Algebraic representation and implementation of geometric data (Lines)

<u>Code design</u>

- execute multigrid cycle (until convergence)
 - execute preconditioned expl. Runge-Kutta algorithm
 - evaluate residual R
 - evaluate derivative dR, $P = \Delta t + dR$
 - solve linear system (P, R)
 - apply preconditioned Krylov subspace method
 - construct a (further) preconditioner for the linear system Px = R
 - solve Prec w = b to precondition Px = R (by Line symmetric Gauss-Seidel method)
 - update flow variables W

A historical view on solution methods in CFD

Two competitive views

<u>Multigrid + Low cost smoother $\leftarrow \rightarrow$ Newton's method (expensive smoother)</u>

Low cost smoothers:

- 1. Expl. Runge-Kutta + local time stepping (Jameson)
- 2. Point implicit Runge-Kutta (Pierce, Giles, Moinier)
- 3. Line implicit Runge-Kutta (Mavriplis)
- 4. 1.st order approximate Jacobian (Swanson, Rossow, Yoon + Jameson (LU-SGS))

Preconditioned explicit Runge-Kutta smoother

All well known specific smoothers developed throughout the CFD literature are specifications of the general method shown here

The suggested methods just differ with respect to the *approximation of the exact Jacobian* and the *iterative solver*

$$\mathbf{W}^{(0)} \coloneqq \mathbf{W}_{n}$$
$$\mathbf{W}^{(j)} \coloneqq \mathbf{W}^{(0)} - \boldsymbol{\alpha}_{j+1,j} \mathbf{P}_{j}^{-1} \mathbf{R} (\mathbf{W}^{(j-1)}), \quad j = 1, \dots, s$$
$$\mathbf{W}_{n+1} \coloneqq \mathbf{W}^{(s)}$$

Smoothing step

- execute preconditioned expl. Runge-Kutta algorithm
 - evaluate residual R
 - evaluate derivative dR, $P = \Delta t + dR$
 - solve linear system (P, R)
 - apply preconditioned Krylov subspace method
 - construct a (further) preconditioner for the linear system Px = R
 - solve Prec w = b to precondition Px = R
 - update flow variables W

$$\mathbf{W}^{(0)} \coloneqq \mathbf{W}_{n}$$
$$\mathbf{W}^{(j)} \coloneqq \mathbf{W}^{(0)} - \boldsymbol{\alpha}_{j+1,j} \mathbf{P}_{j}^{-1} \mathbf{R} \left(\mathbf{W}^{(j-1)} \right), \quad j = 1, \dots, s$$
$$\mathbf{W}_{n+1} \coloneqq \mathbf{W}^{(s)}$$

Smoothing step

- execute preconditioned expl. Runge-Kutta a gorithm
 - evaluate residual R
 - evaluate derivative dR, $P = \Delta t + dR$
 - solve linear system (P, R)
 - apply preconditioned Krylov subspace method
 - construct a (further) preconditioner for the linear system Px = R
 - solve Prec w = b to precondition Px = R
 - update flow variables W

Simplifications: 1. Number of Krylov steps = 0

$$\mathbf{W}^{(0)} \coloneqq \mathbf{W}_{n}$$
$$\mathbf{W}^{(j)} \coloneqq \mathbf{W}^{(0)} - \boldsymbol{\alpha}_{j+1,j} \mathbf{P}_{j}^{-1} \mathbf{R} \left(\mathbf{W}^{(j-1)} \right), \quad j = 1, \dots, s$$
$$\mathbf{W}_{n+1} \coloneqq \mathbf{W}^{(s)}$$

Simplifications:

1. Number of Krylov steps = 0

Smoothing step

- execute preconditioned expl. Runge-Kutta algorithm
 - evaluate residual R
 - evaluate derivative dR^{1st}, $Prec = \Delta t + dR^{1st}$
 - construct a (further) preconditioner for the linear
 - system Px = R
 - solve Prec w = b to precondition Px = R
 - update flow variables W

$$W^{(0)} := W_n$$

$$W^{(j)} := W^{(0)} - \alpha_{j+1,j} \operatorname{Prec}_j^{-1} \mathbb{R}(W^{(j-1)}), \quad j = 1, \dots, s$$

$$W_{n+1} := W^{(s)}$$

Simplifications:

1. Number of Krylov steps = 0

Smoothing step

- execute preconditioned expl. Runge-Kutta algorithm
 - evaluate residual R
 - evaluate derivative dR^{1st}, $Prec = \Delta t + dR^{1st}$
 - solve Prec w = b
 - update flow variables W

Preconditiong based on 1.st order approximate Jacobian (Swanson, Rossow, Yoon + Jameson (LU-SGS))

Derivation of low cost smoothers DIGITAL $W^{(0)} \coloneqq W_n$ Simplifications: $\mathbf{W}^{(j)} \coloneqq \mathbf{W}^{(0)} - \boldsymbol{\alpha}_{j+1,j} \mathbf{Prec}_{j}^{-1} \mathbf{R} \left(\mathbf{W}^{(j-1)} \right), \quad j = 1, \dots, s$ 1. Number of Krylov steps = 02. Simplify dR^{1st} entries by $W_{n+1} \coloneqq W^{(s)}$ spectral radius **Smoothing step** execute preconditioned expl. Runge-Kutta algorithm evaluate residual R evaluate derivative dR^{1st}, Prec = Δt + dR^{1st} $\approx \Delta t$ + ρ (dR^{1st}) • solve Prec $w = b \longleftarrow$ Solve with 1 symmetric Gauss- update flow variables W Seidel sweep Yoon + Jameson (LU-SGS)

$$W^{(0)} \coloneqq W_n$$
$$W^{(j)} \coloneqq W^{(0)} - \alpha_{j+1,j} \operatorname{Prec}_j^{-1} \mathbb{R}(W^{(j-1)}), \quad j = 1, \dots, s$$
$$W_{n+1} \coloneqq W^{(s)}$$

Smoothing step

 $x^{(0)}$

Simplifications:

- 1. Number of Krylov steps = 0
- Simplify dR^{1st} entries by spectral radius
- 3. Iterative solver: Line Jacobi truncated after one step
- execute preconditioned expl. Runge-Kutta algorithm
 - evaluate residual R
 - evaluate derivative dR^{1st}, $Prec = \Delta t + dR^{1st}$
 - solve Prec w = b
 - update flow variables W

$$x_{L_{i}}^{(m+1)} = \operatorname{tridiag}(D_{L_{i}})^{-1} \left(b_{L_{i}} - \sum_{j \notin L_{1}, \dots, L_{i-1}, j \notin L_{i}} \operatorname{Prec}_{L_{i}j} x_{j}^{(m)} \right)$$

$$W^{(0)} \coloneqq W_n$$
$$W^{(j)} \coloneqq W^{(0)} - \alpha_{j+1,j} \operatorname{Prec}_j^{-1} \mathbb{R}(W^{(j-1)}), \quad j = 1, \dots, s$$
$$W_{n+1} \coloneqq W^{(s)}$$

Smoothing step

 $x^{(0)}$

Simplifications:

- 1. Number of Krylov steps = 0
- Simplify dR^{1st} entries by spectral radius
- 3. Iterative solver: Line Jacobi truncated after one step
- execute precondtioned expl. Runge-Kutta algorithm
 - evaluate residual R
 - evaluate derivative dR^{1st}, $Prec = \Delta t + dR^{1st}$
 - solve Prec w = b
 - update flow variables W

 $x_{L_i}^{(1)} = \text{tridiag}(D_{L_i})^{-1}b_{L_i}$

$$W^{(0)} := W_{n}$$

$$W^{(j)}_{L_{k}} := W^{(0)}_{L_{k}} - \alpha_{j+1,j} \operatorname{tridiag}(D_{L_{k}}) R(W^{(j-1)})$$

$$W_{n+1} := W^{(s)}$$

Smoothing step

 $x^{(0)}$

Simplifications:

- 1. Number of Krylov steps = 0
- Simplify dR^{1st} entries by spectral radius
- 3. Iterative solver: Line Jacobi truncated after one step
- execute precondtioned expl. Runge-Kutta algorithm
 - evaluate residual R
 - evaluate derivative dR^{1st}, $Prec = \Delta t + dR^{1st}$
 - solve $w = tridiag(D)^{-1}b$
 - update flow variables W

Line implicit Runge-Kutta (Mavriplis)

 $x_{L_{i}}^{(1)} = \text{tridiag}(D_{L_{i}})^{-1}b_{L_{i}}$

$$W^{(0)} := W_n$$

$$W_k^{(j)} := W_k^{(0)} - \alpha_{j+1,j} \left(D_k \right)^{-1} R\left(W^{(j-1)} \right)$$

$$W_{n+1} := W^{(s)}$$

Smoothing step

 $x^{(0)}$

Simplifications:

- 1. Number of Krylov steps = 0
- Simplify dR^{1st} entries by spectral radius
- 3. Iterative solver: Line Jacobi truncated after one step
- 4. Neglect lines, i.e. perform only Jacobi iteration
- execute precondtioned expl. Runge-Kutta algorithm
 - evaluate residual R
 - evaluate derivative dR^{1st}, $Prec = \Delta t + dR^{1st}$
 - solve w = (D) ⁻¹b <
 - update flow variables W

Point implicit Runge-Kutta (Giles, Moinier)

 $x_i^{(1)} = (D_i)^{-1} b_i$

$$\mathbf{W}^{(s)} \coloneqq \mathbf{W}_{k}^{(j)} \coloneqq \mathbf{W}_{k}^{(0)} - \alpha_{j+1,j} \underbrace{\frac{\Delta t_{k}}{\operatorname{vol}(\Omega_{k})}}_{\mathbf{W}_{n+1}} \mathbf{R}(\mathbf{W}^{(j-1)})$$

$$\mathbf{W}_{n+1} \coloneqq \mathbf{W}^{(s)}$$

Smoothing step

Simplifications:

DIGITAI

- Simplify dR^{1st} entries by spectral radius
- 3. Iterative solver: Line Jacobi truncated after one step
- 4. Neglect lines, i.e. perform only Jacobi iteration
- 5. Approximate diagonal terms of Jacobian by spectral radius
- execute precondtioned expl. Runge-Kutta algorithm
 - evaluate residual R
 - evaluate derivative dR^{1st} , $Prec = \Delta t + dR^{1st}$
 - solve $w = (\Delta t / vol)^{-1} b_{\clubsuit}$
 - update flow variables W

Explicit Runge-Kutta (Jameson)

→ Full hierarchy of solution methods

 $x_i^{(1)} = (\rho(D_i))^{-1} b_i = \frac{\Delta t_i}{vol(\Omega_i)}$

Main building blocks of a CFD code

- Data structure for (block) sparse matrices \rightarrow
- Data structure for (block) vectors
- Algorithms acting on these data structures

→ Link to a suited, efficient LINEAR ALGEBRA PACKAGE

 $\partial \mathbf{R}$ $\rightarrow R$

Outline

- Introduction and Motivation The RANS equations
- Solution algorithms Multigrid smoothers
- Globalization strategies
- Numerical examples

What is a globalization strategy?DigitalConsider Newton's method $W^{n+1} = W^n - \left[\frac{\partial R}{\partial W}\right]^{-1} R(W^n)$

A globalization strategy is the try to construct an algorithm which

- preserves the nice properties of Newton's method 1.
- 2. circumvents its shortcomings

Why do we need it?

Newton's method converges only

- under certain smoothness assumptions 1.
- if the initial guess is in a neighborhood of the root 2.
- 3.

Analysis of schemes: Globalization strategies

Parameter settings allow for several possible smoothing techniques:

- Number of Runge-Kutta stages
- Number of Gauss-Seidel sweeps
- Number of Krylov subspace steps
- Approximation of Jacobian

Explicit Runge-Kutta

How to choose a robust and efficient method?

 \rightarrow Development of an analysis tool to give some guideline

Newton's method

Evaluation of smoother: Consider linearized problem

Nonlinear Problem:	Linearized Problem
$\frac{\mathrm{dW}}{\mathrm{dt}} = -\mathbf{M}^{-1}\mathbf{R}(\mathbf{W})$	$\frac{\mathrm{d}W}{\mathrm{d}t} \approx -\mathrm{M}^{-1} \left(\underbrace{\mathrm{R}(\mathrm{W}^*)}_{=0;\mathrm{Steadystate}} + \frac{\partial \mathrm{R}}{\partial \mathrm{W}} \left[\mathrm{W}^* \right] \Delta \mathrm{W} \right)$
$W^{(0)} \coloneqq W_{n}$ $W^{(j)} \coloneqq W^{(0)} - \alpha_{j+1,j} P_{j}^{-1, \operatorname{app}} R(W^{(j-1)})$ $W_{n+1} \coloneqq W^{(s)}$	$W^{(0)} \coloneqq W_{n}$ $W^{(j)} \coloneqq W^{(0)} - \alpha_{j+1,j} P_{j}^{-1, \text{app}} \frac{\partial R}{\partial W} W^{(j-1)}$ $W_{n+1} \coloneqq W^{(s)} \Leftrightarrow W^{(n+1)} = q_{s} \left(P_{j}^{-1, \text{app}} \frac{\partial R}{\partial W} \right) W^{(j-1)}$ $q_{s}(z) = 1 + \sum_{j=1}^{s} \beta_{j} z^{j}$
	$\frac{\text{Convergence}}{\text{Convergence}} \Leftrightarrow \rho \left(q_s \left(\mathbf{P}_j^{-1, \text{app}} \frac{\partial \mathbf{R}}{\partial \mathbf{W}} \right) \right) < 1$

Analysis of schemes: Impact of CFL number

DIGITAL

<u>Outline</u>

- Introduction and Motivation The RANS equations
- Solution algorithms Multigrid smoothers
- Globalization strategies
- Numerical examples
 - Spalart-Allmaras (neg.)
 - Wilcox (kω)

Spalart-Allmaras 1992 $\leftarrow \rightarrow$ Spalart Allmaras 2012 DIGITAL

1992 model:

- transported variable can become negative such that iteration diverges
- choice of farfield values not clarified

2012 modification of original model:

- Allows for small negative values of transported variable
- clarification of choice of farfield values
- description and recommendations of implementation of several terms and details

 \rightarrow 2012 version has been succesfully implemented into the DLR TAU-Code

CRM of 5th AIAA drag prediction workshop

Implicit methods have comparable complexity to standard LU-SGS method by improved robustness

Numerical example: HIRENASD

- High Reynolds number Aero-Structural Dynamics wind tunnel configuration
- Ma = 0.8
- α = 3.0°
- Re = 14e6
- Pure hexahedral mesh: 3.3e6 points

→ Implicit method converges,
 → LU-SGS method stalls

Configuration from second high-lift prediction workshop: Case 2a

Necessity of Newton-kind algorithms

Turbulence model: SA-Neg Ma = 0.175, Re = 1.35e6, AoA = 7.0°

NASA Trap Wing, Ma = 0.2, Re = 4.3e6

Unstructured mesh results for AOA = 13°, 28°, 32°, 34°, 37°

- Coarse Mesh: 3.7e6 NDOF
- Medium Mesh: 11.0e6 NDOF
- Fine Mesh: 32.4e6 NDOF

VGRID Meshes used at High Lift Prediction Workshop 1

NASA Trap Wing, Ma = 0.2, Re = 4.3e6

Unstructured mesh results for AOA = 37°

- Residual has been reduced to machine accuracy using Newton kind methods
- → Steady state could not be found with simplified algorithms

Flow field at the 60% wing section

Convergence history for $AoA = 37^{\circ}$

<u>Outline</u>

- Introduction and Motivation The RANS equations
- Solution algorithms Multigrid smoothers
- Best practice considerations
- Numerical examples
 - Spalart-Allmaras (neg.)
 - Wilcox (kω)

<u>Numerical examples: DPW5 + kω-model</u>

- Wing-body configuration
- Ma = 0.85
- $\alpha = 2.209^{\circ}$
- Re = 5e6

10

10°

10

Residual

 10^{-8}

10⁻¹⁰

10-12

10-1

1000

• No. of points: 5.1e6

Convergence history of residuals

2000

3000

MG-Cycles

4000

DPW5 CRM

L3, Hybrid, No. of points: 5.1e06Re = 5.0e6, AoA = 2.2° , Ma = 0.85

> density residual k-residual w-residual

> > 5000

Convergence history of lift and drag

NASA Trap Wing + <mark>kω-model</mark> Ma = 0.2, Re = 4.3e6, AoA = 28.0°

Convergence history of residuals

Convergence history of lift and drag

Speed up and parallel efficiency: Strong scaling DIGITAL X

Actual speed up

Actual parallel efficiency, System effectiveness

→Severe issue with respect to exploitation of modern hardware clusters

Summary

Implicit methods offer the potential to

improve significantly the observed convergence rates
 find fully (machine accurate) converged solutions of complex flows
 significantly increase robustness (e.g. they work for a broad range of CFL numbers)
 implement the hierarchy of smoothers in one framework
 outsource and decouple the main work into a suited linear algebra package

Implicit methods require

significantly more time per iteration than explicit methods
 a fully differentiated code which needs to be kept up to date
 significant more fast memory
 are not straightforward to ensure good parallel scalability

➢ to outsource and decouple the main work into a suited linear algebra package
 ➢ a new framework → Flucs code

Thank you! Questions?