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Motivation 
Goals of flighpath 2050: 
 
1. In 2050 technologies and procedures available allow a 75% reduction in CO2 

emissions per passenger kilometre to support the ATAG (Air Transport Action 
Group) target and a 90% reduction in NOx emissions.  

2. The perceived noise emission of flying aircraft is reduced by 65%.  
 

These are relative to the capabilities of typical new aircraft in 2000. 
 
3. Overall, the European air transport system has less than one accident per ten 

million commercial aircraft flights.  

 The future aircraft is ecologically sensitive, low noise, and safe. 

A key element, to design aircrafts ready for the future, is the accurate and 
efficient simulation of fluid flow coupled with other disciplines such as 

aerolastics and aeroacoustics. 



Requirements of a CFD code 

 Reliable tool in a process chain 
 

 Interaction with other components (e.g. structure, mesh deformation, …) 
 

 Accuracy, e.g. prediction of force coefficients up to a certain accuracy 
 
 Evaluation and assessment  of turbulence models 
 
 … 

 Machine accurate solutions (on a given grid, that is a given resolution) 
 

 Mesh converged solutions (in general hard to obtain, in particular in 3D) 
 

 The code needs to run on regular basis without user interaction 

Basic demand: 



How to prepare a CFD code for the future 

 
• Identify the main building blocks 

 
• Disaggregate the code into its building blocks 

 
• Write routines which check the building blocks with respect to correctness 

 
• Design interfaces such that the building blocks can be easily exchanged   

Modular software design 

Requirement: Identification of the main building blocks of a CFD code, to 
create algorithms prepared for demands in fully automatic process 

chains. 
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 Nonlinear operator equation: 
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 Typical convergence behavior for high Reynolds number viscous flows 

Necessity for improvement of solution algorithms 

 Convergence rate deteriorates 
significantly after inital phase 
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 Stiff set of equations 

• anisotropic cells to represent gradients in the boundary layer 
• turbulent flow equations with source terms 
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Structure of solution algorithm 



Structure of solution algorithm 
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Apply preconditioned expl. Runge-Kutta method  

to approximate  W such that  0R(W) ≈

Multigrid smoother: Prec. Runge-Kutta method 
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Apply preconditioned expl. Runge-Kutta method  

to approximate  W such that  0R(W) ≈

Multigrid smoother: Prec. Runge-Kutta method 
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Apply preconditioned expl. Runge-Kutta method  

to approximate  W such that  0R(W) ≈

Multigrid smoother: Prec. Runge-Kutta method 

 Task: Need to approximate efficiently solution of ( )WRP =x
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 Inversion of scalar value is replaced by solving a large scale linear system. 



The conncetion to Newton‘s method 
Outer Loop: Multistage Runge-Kutta method  Choose s = 1, i.e. only one stage 
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• Represents a large scale (in general more than 108 unknowns), ill-
conditioned linear system 
 

• It is not of interest to solve these linear systems, it is of interest to get a 
reasonable update for the outer nonlinear loop 
 

• Krylov subspace methods are a natural choice for a matrix-free 
implementation 
 

• A well suited preconditioner is required  

( )WRP =x

Krylov subspace methods are in general only effective 
in combination with a well suited preconditioner! 



Code design 

•  execute multigrid cycle (until convergence) 
 

• execute preconditioned expl. Runge-Kutta algorithm  
 

•  evaluate residual R 
•  evaluate derivative dR, P = t + dR 
•  solve linear system (P, R) 

• apply preconditioned  Krylov subspace method 
• construct a (further) preconditioner for the linear 

system Px = R 
 

•  update flow variables W 



Construction of Preconditioner (for lin. System) 

Idea: Base preconditioner upon next neighbor stencil 

( )
W

RMPrec
1st

1

∂
∂

+∆=⇒ −t

( ) ( )

W
R

W
R

W,WRW,W,WR
12

)(,
1

)(,)(
2

∂

∂
≈

∂

∂
⇒

≈ ∈∈∈

stnd

iNjji
st

ijNkkiNji
nd

i

Volume i Neighbor of i Neighbor of 
neighbor of i 

i 

 Required: Solution method for  Prec w = b  



Challenge: Find approximate solution of linear system 
bw    Prec =

where Prec is a block sparse matrix of dimension number of mesh points 

=Prec

Anisotropic part Isotropic part 

Point ordering according to lines 
yields (block) tridiagonal systems  



Iterative solution methods for Prec w = z  

(Symmetric) Line (Jacobi) Gauss-Seidel method: 
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 Exploit directions of strongest coupling in iterative solution process  

Mathematical textbook methods for solution of linear systems, e.g 
 

• (Block-) Jacobi method 
• (Block-) Gauss-Seidel method 
• Symmetric (Block-) Gauss-Seidel method 

Methods have been extended: 
 

Algebraic representation  
and implementation of  
geometric data (Lines) 



Code design 

•  execute multigrid cycle (until convergence) 
 

• execute preconditioned expl. Runge-Kutta algorithm  
 

•  evaluate residual R 
•  evaluate derivative dR, P = t + dR 
•  solve linear system (P, R) 

• apply preconditioned  Krylov subspace method 
• construct a (further) preconditioner for the linear 

system Px = R 
• solve Prec w = b to precondition Px = R (by Line 

symmetric Gauss-Seidel method) 
•  update flow variables W 



A historical view on solution methods in CFD 

Multigrid + Low cost smoother     Newton‘s method (expensive smoother) 

Two competitive views 

Low cost smoothers: 
 
1. Expl. Runge-Kutta + local time stepping 

(Jameson) 
2. Point implicit Runge-Kutta (Pierce, Giles, 

Moinier) 
3. Line implicit Runge-Kutta (Mavriplis) 
4. 1.st order approximate Jacobian 

(Swanson, Rossow, Yoon + Jameson 
(LU-SGS)) 
 
 

Preconditioned explicit Runge-Kutta 
smoother 

All well known specific smoothers 
developed throughout the CFD 
literature are specifications of the 
general method shown here 

The suggested methods just differ 
with respect to the approximation of 
the exact Jacobian and the iterative 
solver 



Derivation of low cost smoothers 
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• execute preconditioned expl. Runge-Kutta algorithm  
 

•  evaluate residual R 
•  evaluate derivative dR, P = t + dR 
•  solve linear system (P, R) 

• apply preconditioned  Krylov subspace method 
• construct a (further) preconditioner for the linear 

system Px = R 
• solve Prec w = b to precondition Px = R  

•  update flow variables W 

Smoothing step 
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• execute preconditioned expl. Runge-Kutta algorithm  
 

•  evaluate residual R 
•  evaluate derivative dR, P = t + dR 
•  solve linear system (P, R) 

• apply preconditioned  Krylov subspace method 
• construct a (further) preconditioner for the linear 

system Px = R 
• solve Prec w = b to precondition Px = R  

•  update flow variables W 

Smoothing step 

Simplifications: 
1. Number of Krylov steps = 0 
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• execute preconditioned expl. Runge-Kutta algorithm  
 

•  evaluate residual R 
•  evaluate derivative dR1st, Prec = t + dR1st 

• construct a (further) preconditioner for the linear 
system Px = R 

• solve Prec w = b to precondition Px = R  
•  update flow variables W 

Smoothing step 

Simplifications: 
1. Number of Krylov steps = 0 



Derivation of low cost smoothers 

• execute preconditioned expl. Runge-Kutta algorithm  
 

•  evaluate residual R 
•  evaluate derivative dR1st, Prec = t + dR1st 

• solve Prec w = b  
• update flow variables W 

Smoothing step 

Simplifications: 
1. Number of Krylov steps = 0 

Preconditiong based on 1.st order approximate Jacobian 
(Swanson, Rossow, Yoon + Jameson (LU-SGS)) 
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Derivation of low cost smoothers 

• execute preconditioned expl. Runge-Kutta algorithm  
 

•  evaluate residual R 
•  evaluate derivative dR1st, Prec = t + dR1st ≈ t + (dR1st) 

• solve Prec w = b  
• update flow variables W 

Smoothing step 

Simplifications: 
1. Number of Krylov steps = 0 
2. Simplify dR1st entries by 

spectral radius 

Preconditiong based on 1.st order approximate Jacobian 
(Swanson, Rossow, Yoon + Jameson (LU-SGS) 
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Solve with 1 symmetric Gauss-
Seidel sweep 



Derivation of low cost smoothers 

• execute preconditioned expl. Runge-Kutta algorithm  
 

•  evaluate residual R 
•  evaluate derivative dR1st, Prec = t + dR1st 

• solve Prec w = b  
• update flow variables W 

Smoothing step 

Simplifications: 
1. Number of Krylov steps = 0 
2. Simplify dR1st entries by 

spectral radius 
3. Iterative solver: Line Jacobi 

truncated after one step 
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Derivation of low cost smoothers 

• execute precondtioned expl. Runge-Kutta algorithm  
 

•  evaluate residual R 
•  evaluate derivative dR1st, Prec = t + dR1st 

• solve Prec w = b  
• update flow variables W 

Smoothing step 

Simplifications: 
1. Number of Krylov steps = 0 
2. Simplify dR1st entries by 

spectral radius 
3. Iterative solver: Line Jacobi 

truncated after one step 
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Derivation of low cost smoothers 

• execute precondtioned expl. Runge-Kutta algorithm  
 

•  evaluate residual R 
•  evaluate derivative dR1st, Prec = t + dR1st 

• solve w = tridiag(D) -1b  
• update flow variables W 

Smoothing step 

Simplifications: 
1. Number of Krylov steps = 0 
2. Simplify dR1st entries by 

spectral radius 
3. Iterative solver: Line Jacobi 

truncated after one step 
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Line implicit Runge-Kutta (Mavriplis) 



Derivation of low cost smoothers 

• execute precondtioned expl. Runge-Kutta algorithm  
 

•  evaluate residual R 
•  evaluate derivative dR1st, Prec = t + dR1st 

• solve w = (D) -1b  
• update flow variables W 

Smoothing step 

Simplifications: 
1. Number of Krylov steps = 0 
2. Simplify dR1st entries by 

spectral radius 
3. Iterative solver: Line Jacobi 

truncated after one step 
4. Neglect lines, i.e. perform 

only Jacobi iteration 
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Point implicit Runge-Kutta (Giles, Moinier) 



Derivation of low cost smoothers 

• execute precondtioned expl. Runge-Kutta algorithm  
 

•  evaluate residual R 
•  evaluate derivative dR1st, Prec = t + dR1st 

• solve w = (t / vol)-1 b  
• update flow variables W 

Smoothing step 

Simplifications: 
1. Number of Krylov steps = 0 
2. Simplify dR1st entries by 

spectral radius 
3. Iterative solver: Line Jacobi 

truncated after one step 
4. Neglect lines, i.e. perform only 

Jacobi iteration 
5. Approximate diagonal terms of 

Jacobian by spectral radius  
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 Full hierarchy of solution methods 
Explicit Runge-Kutta (Jameson) 



Main building blocks of a CFD code 

• Data structure for (block) sparse matrices   
 

• Data structure for (block) vectors                 
 

• Algorithms acting on these data structures  
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 Link to a suited, efficient LINEAR ALGEBRA PACKAGE 
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What is a globalization strategy? 

Why do we need it? 

Consider Newton‘s method ( )nnn WR
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Newton‘s method converges only 
  
1. under certain smoothness assumptions  
2. if the initial guess is in a neighborhood of the root 
3. … 

A globalization strategy is the try to construct an algorithm which  
 

1. preserves the nice properties of Newton‘s method 
2. circumvents its shortcomings 



Analysis of schemes: Globalization strategies 

Parameter settings allow for several possible smoothing techniques: 
 
• Number of Runge-Kutta stages 

 
• Number of Gauss-Seidel sweeps 

 
• Number of Krylov subspace steps 

 
• Approximation of Jacobian 

 
• ….. 

 

How to choose a robust and efficient method? 

 Development of an analysis tool to give some guideline 

Newton‘s method 

Explicit Runge-Kutta 



Evaluation of smoother:  
Consider linearized problem 

Nonlinear Problem: Linearized Problem 
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Analysis of schemes: Impact of CFL number 
Analysis for mesh with 5.2e6 points:  
 
Investigation of number of stages for 
• symmetric Line Gauss-Seidel  
• different CFL numbers 

Mesh 

One stage: CFL = 1000    unstable 
One stage: CFL = 100      unstable 
One stage: CFL = 10        stable 
Three stage: CFL = 1000  stable 

Sweeps: 25 
One stage: CFL = 1000  unstable 

Significant reduction 
of CFL necessary for 
one stage schemes 

Additional effort 
does not pay of 
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Spalart-Allmaras 1992  Spalart Allmaras 2012 

1992 model: 
 
• transported variable can become negative such that iteration diverges 
• choice of farfield values not clarified 
• …. 

2012 modification of original model: 
 
• Allows for small negative values of transported variable 
• clarification of choice of farfield values 
• description and recommendations of implementation of several terms 

and details 

 2012 version has been succesfully implemented into the DLR TAU-Code 



CRM of 5th AIAA drag prediction workshop 

Implicit methods have comparable complexity to standard LU-SGS 
method by improved robustness 



• High Reynolds number Aero-Structural Dynamics wind tunnel configuration 
• Ma = 0.8 
• α = 3.0° 
• Re = 14e6 
• Pure hexahedral mesh: 3.3e6 points 

 

Numerical example: HIRENASD 

 Implicit method converges, 
 LU-SGS method stalls 



Configuration from second high-lift 
prediction workshop: Case 2a 

Turbulence model: SA-Neg 
Ma = 0.175, Re = 1.35e6, AoA = 7.0° 

Necessity of Newton-kind algorithms 



NASA Trap Wing, Ma = 0.2, Re = 4.3e6  

• Coarse Mesh: 3.7e6 NDOF 
• Medium Mesh: 11.0e6 NDOF 
• Fine Mesh: 32.4e6 NDOF 

Unstructured mesh results for 
AOA = 13°, 28°, 32°, 34°, 37° 

VGRID Meshes used at High Lift Prediction Workshop 1 



NASA Trap Wing, Ma = 0.2, Re = 4.3e6  
Unstructured mesh results for AOA = 37° 

• Residual has been reduced to machine accuracy using Newton kind methods 
  Steady state could not be found with simplified algorithms 

Flow field at the 60% wing section Convergence history for AoA = 37° 
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• Wing-body configuration 
• Ma = 0.85 
• α = 2.209° 
• Re = 5e6 
• No. of points: 5.1e6 

Numerical examples: DPW5 + kω-model 

Convergence history of residuals Convergence history of lift and drag 



NASA Trap Wing + kω-model 
 Ma = 0.2, Re = 4.3e6, AoA = 28.0°  

Convergence history of residuals Convergence history of lift and drag 



Speed up and parallel efficiency: Strong scaling 

Actual speed up Actual parallel efficiency, 
System effectiveness 

Severe issue with respect to exploitation of modern hardware clusters 



Implicit methods require  
 
significantly more time per iteration than explicit methods 
a fully differentiated code which needs to be kept up to date 
significant more fast memory 
are not straightforward to ensure good parallel scalability 
to outsource and decouple the main work into a suited linear algebra package 
a new framework    Flucs code 

 
 
 

 

Summary 

Implicit methods offer the potential to 
 
improve significantly the observed convergence rates 
find fully (machine accurate) converged solutions of complex flows 
significantly increase robustness (e.g. they work for a broad range of CFL numbers) 
implement the hierarchy of smoothers in one framework 
outsource and decouple the main work into a suited linear algebra package 

 
 
 

 



Thank you! 
Questions? 
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