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Abstract This paper presents the experimental results of 100Mbps Laser Ethernet Transceivers for 

high-speed communications in a 142Km free-space optical inter-island link. Round-trip times below 

1.6ms and error free transmission at full throughput during several time intervals were demonstrated. 

Introduction 
Free-space optical (FSO) communications are a 
promising solution for systems which are 
required to provide flexible and secure high 
bandwidth communication links. Point to point 
FSO systems guarantee tap-proof links, while 
state of the art optical transmitters, receivers 
and electromechanical devices a the integration 
of reliable mobile solutions. 

FSO systems have to overcome the spurious 

effects introduced by the atmospheric 

turbulence onto the transmitted signal. These 

effects, which are exemplified in Fig. 1, are 

responsible for the loss of entire blocks of 

information 
As seen, they are perceived as optical 
distortions in the received wave front which lead 
to power fluctuations –known as scintillation- on 
the received signal. The strength of the 
scintillation is influenced by the atmospheric 
refractive-index structure constant Cn

2
, which is 

a function of the altitutde and the meteorological 
conditions. The path-weighted integral of Cn

2
 

along the link, together with the orthogonal wind 
speed, defines the strength and duration of  
signal fades and thus of data losses during 
fading. 
In order to reduce the fading, researchers have 
focused their efforts in the fields of adaptive 
optics and error control techniques by means of 
Digital Signal Processing (DSP) systems, both 
of them being complementary and none capable 
of achieving by itself alone a cost effective and 
efficient solution.  

In recent years, the optical communication 
group (OCG) of the Institute of Communication 
and Navigation of DLR has demonstrated novel 
FSO technologies for diverse application 
scenarios

1-4
. As part of these efforts, the DLR 

Transportable Optical Ground Station
5,6

 (TOGS) 
was developed. Furthermore, a set of Laser 
Ethernet Transceivers (LETs) at 100Mbps

7
 and 

1Gbps
8
 have been developed in full compliance 

with the Ethernet Standard 802.3. These 
devices act as media converters between an 
Ethernet network and an FSO link. 
The objective of this paper is to present the 
performance of the LET1G, including FEC, 
operating at 100Mbps as part of the HICLASS-
ROS (HIghly Compact Laser communications 
terminals for Robotics Operation Support) FSO 
inter-island link demonstration. The next 
sections describe the structure of the LET1G 
and discuss the experimental results obtained 
during the HICLASS-ROS experimental 
campaign. 

LET1G

 

Fig. 2: LET1G block diagram and protection chain 

The general block diagram of the LET1G is 
shown in Fig. 2. The data flow is as follows: at 
first the data is received from the Ethernet 
Interface in the form of Ethernet packets, these 
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Fig. 1: Effects of the atmospheric turbulence onto an optical signal 
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are then processed and encapsulated into LET 
Frames by the Framer, whose structure is 
defined by the proprietary FSO protocol devised 
by DLR

8
. These LET Frames are encoded by 

the bit level forward error correction (BLFEC) 
block, which has been implemented as a Reed 
Solomon RS(204,188). Finally, the data is sent 
to the synch & 8b/10b block, where the line 
encoding is applied and the required 
synchronizing symbols are added. These last 
two steps guarantee the DC balance of the line 
as well as the synchronization of the data 
sequence at the receiver side. The receiver 
carries out the inverse operations.  
Regarding the BLFEC, this block is required to 
protect the data against the effects of noise in 
the channel and to provide the system with 
optical power margin to allow error free 
transmission in case of weak fades. 
Furthermore, the RS coding algorithm has been 
selected for implementing the BLFEC because 
of the supported bandwidth (up to 2.5Gbps) of 
its off-the-shelf component (COTS).  

HICLASS-ROS Field Measurement Campaign 
Scenario definition and set up description 

 

Fig. 3: ESA-HICLASS Experimental Set up 

As mentioned, the inter-island experiment was 
performed in the framework of the HICLASS-
ROS project. The goal of the project is to 
demonstrate that free space optical 
communication can meet the antithetic 
requirements for telerobotic space-surface 
control by providing short Round-Trip Times 
(RTT), low Symbol-Error Rates (SER) and 
Packet-Error Rates (PER).  
For the link, the distance between the islands of 
Tenerife and La Palma on Canary Islands has 
been chosen. On La Palma, the Nordic Optical 
Telescope (NOT) within the Observatorio del 
Roque de los Muchachos was hosting DLR’s 
TOGS

5,6
. On Tenerife, the counterpart was 

represented by the Micro Laser Communication 
Terminal (MLT) of ViaLight Communications 
GmbH

9
 (VLC), installed on the Optical Ground 

Station (OGS) at the Observatorio del Teide. 
Fig. 3 shows the inter-island link setup used in 
HiCLASS-ROS, in which the Network 
Performance Testers (NPT) measured the 
Ethernet throughput and RTT and the LET1G 
measured the SER and PER.  

Tab. 1. Technical specifications of the experimental set up  

Parameters TOGS MLT 

Tx power 5W 1W 

Aperture Diameter 60cm 2cm 

Distance 142Km 142Km 

Tx divergence 
(FWHM) 

0.1mrad 0.24mrad 

Channel data rate 136Mbits/s 136Mbits/s 

User data rate 100Mbits/s 100Mbits/s 

In addition to the LET-measurements, received 

power scintillation vectors were recorded and 

analyzed to estimate the channel variations. 

Measurements were taken switching one or both 

of the Tx at TOGS on, varying the transmit 

power. The incoming signal at the counter 

terminal site was received by a 50mm aperture 

and focused onto an InGaAs detector, AD-

converted and recorded. Power scintillation 

index of the measured vectors at different times 

are calculated, which measures fluctuation of 

the signal due to the atmosphere. The run of the 

power scintillation index with 1s-windows as 

measured on one morning for 50 seconds is 

shown in Fig 4. The channel condition was 

challenging with power scintillation index (PSI) 

of up to 1.5. Further experimental results 

presented in the paper were also recorded 

around same time period. It is important to 

notice that the PSI of the actual communication 

link should be slightly higher considering the 

smaller 20mm aperture of the receiver. 

However, the difference does not hinder the 

main purpose of this measurement, which is to 

provide an assessment of the channel condition.  

 

Fig. 4: PSI vs time (mean PSI over 1s window)  

Experimental Results  

Round Trip Time (RTT) 

HICLASS-ROS required a RTT of max 3ms. 

Tab. 2 summarizes the results obtained for the 

minimum and maximum Ethernet packet length 

(EPL) according to the 802.3 Ethernet Standard. 

Jumbo Packets were not considered.  

Tab. 2: User RTT for min and max EPL 

EPL 
(Bytes) 

RTT(ms) 

MIN AVG MAX 

64 1.121220 1.131366 1.140932 

1518  1.573416 1.596853 1.618552 
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Codeword Error Rate (CER)  

HICLASS-ROS required low PER. For this 

experiment the PER has been equated to the 

CER, which for LET1G constitutes the channel 

data packets. Fig. 5 presents the CER 

measured by LET1G at the MLT and TOGS. As 

shown, TOGS presented error free reception 

during several time intervals whereas MLT 

presented a consistent CER in the order of 10
-2

.  

The different CER performance of TOGS and 

MLT is due to their different aperture sizes.  

 

Fig. 5: TOGS CER over 6 minutes measurement 

Ethernet Data Throughput 
The NPTs were configured to transmit Ethernet 
data packets with randomly defined size 
between 64 and 1518 bytes. The effective 
transmitted data rate is 97.5Mbps, which 
corresponds to a 100% throughput according to 
the Ethernet Standard. 

 

Fig. 6: TOGS User data Ethernet throughput at 100Mbit/s 

 

Fig. 7: MLT User data Ethernet throughput at 100Mbit/s 

Fig. 6 and Fig. 7 present the results at TOGS and 

MLT, respectevely. As shown, minimum 

throughput values of 88% and 43% were 

measured at TOGS and MLT, respectively. 

System Limits Measurement 

In order to understand the effects of an eventual 

miniaturization of the system, a stress test was 

performed. Transmission power at MLT was 

reduced to 100mW and TOGS telescope was 

partially masked.  

Tab. 3: Reduction of TOGS aperture diameter by applied 
mask (MLT Tx-Power: 100mW) 

Mask Effective diameter CER 

0% 60cm Error-free 

25% 50cm Error-free 

50% 40cm 1E-06 

Conclusions 

The feasibility of using high speed FSO link for 

telerobotic space-surface control application 

was verified by demonstrating 142Km inter-

island link. An error–free transmission with RTT 

below 1.6ms was achieved. Furthermore, it was 

determined that the aperture size of the current 

system can be decreased by half without 

significant impact on the performance. In order 

to make the system more robust, design and 

implementation of packet level codes for LET1G 

are currently under investigation. 
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