
Automatic Layout of Scilab/Xcos Diagrams

Chenfeng Zhu1, Umut Durak2, Sven Hartmann1, Clément David3

1Clausthal University of Technology, Department of Informatics
2German Aerospace Center (DLR), Institute of Flight Systems

3Scilab Enterprises
chenfeng.zhu@tu-clausthal.de

Scilab/Xcos is a graphical modeling and simulation environment for hybrid dynamic systems. It provides
a graphical editor which allows representing models with block diagrams. While each block represents a
computational function, links specify the data and event flow. However, as the number of the blocks and
the links increases, the Xcos schema can quickly become messy and difficult to read. In this paper, we
present an approach for automatically updating the layout of an Xcos schema by manipulating the links and
the split blocks, so that the diagrams can be kept well-presented and readable. In this approach, we update
the link styles with an optimal route and then, rearrange the positions of blocks. The proposed approach
is exemplified with sample Xcos models. In addition to providing the automatic layout capability to the
Scilab/Xcos user, an application programming interface is also specified for the Scilab/Xcos developer
who want to further enhance the provided feature set.

1 Introduction

Scilab is a free and open source software about numer-
ical computation for engineering and scientific appli-
cations [1]. Xcos is the graphical modeling environ-
ment of Scilab for modeling and simulation of hybrid
dynamical systems [2].

When using Xcos to create models, we often create
blocks to implement computational functions and use
links to connect them for data and event flow. They are
all well-organized at the beginning as we start build-
ing up the model. However, as the model becomes
more and more complex, and the number of blocks
increases, we require layout rearrangements more fre-
quently; we start moving the blocks or links every now
and then. But manual layouting is hard, labor inten-
sive and error prone. Such an effort usually ends up
with a model in a messed up layout, which makes the
diagram ugly and difficult for modification. Thus the
readability and the maintainability of the model is de-
creased. Figure 1.1 is an example of a disordered Xcos
diagram.

A constant manual work for relocating the blocks
and rearranging the links between blocks is required
in order to maintain the model readability. While
block positioning is relatively straight forward and

Figure 1.1: A Sample Xcos Model

even may be more efficient manually, the link rear-
rangements are hard and cumbersome. This effort is
about developing the capability for automatically im-
proving the model layout by manipulating the links
and split blocks that connect the links to each other,
thereby keeping the model readable. The Optimal
Link Style (OLS) that is introduced in the Section
4 proposes an optimal route for a link which could
make the link clear in the diagram. In the Section 5,
the Split Block Automatic Position (SBAP) that re-
arranges split blocks in better positions is presented.
Lastly in Section 6, the conclusion is presented and
we discuss future work for a better automatic Xcos
layout-ing.

- 1 -



Automatic Layout of Scilab/Xcos Diagrams

2 Related Work

2.1 Graph Theory

For finding the optimal link between two blocks, one
can apply a graph search based approach. The ap-
proaches from the graph theory to find the shortest
route with the minimum cost are already quite ma-
ture. The Dijkstra’s algorithm is an algorithm for
finding the shortest paths between nodes in a graph,
which was conceived by computer scientist Edsger
W. Dijkstra in 1956 and published three years later
[3, 4]. The Bellman–Ford algorithm is an algorithm
that computes shortest paths from a single source ver-
tex to all of the other vertices in a weighted digraph
[5]. The Floyd–Warshall algorithm is an algorithm for
finding shortest paths in a weighted graph with posi-
tive or negative edge weights (but with no negative cy-
cles) [6, 7]. These theories are practical and useful for
solving the shortest path problem which could also be
extended to solve the minimum-cost problem. How-
ever, in modeling graphical model, there are always
more than one alternative for the connection which
look good. And sometimes, some links which look
good and readable are not the shortest ones.

As to the problem about the positions of split blocks,
we could use some basic graph drawing theories to
re-order blocks. For instance, pseudo hierarchical
tree and vertical or horizontal aligned layout would
be helpful to make diagrams easy to read and clear
to maintain. But for both cases, our approach to the
problem was to develop heuristics that capture user
insight for readability.

2.2 Layouting in MATLAB/Simulink

Other graphical modeling environments such as MAT-
LAB/Simulink also provide capabilities for format-
ting the layout of their own diagrams. Simulink is
also a graphical editor for Model-Based Design which
provides customizable block libraries, and solvers for
modeling and simulating dynamic systems [8]. Com-
pared to the automatic layout-ing of other graphical
modeling environments, Simulink achieves quite an
outstanding work about this. It not only provides the
beautiful layout, but also could implement the dy-
namic features. Simulink can automatically find the
"optimal path" so that the new signal line is as short
as possible, has minimal 90 degree turns, and does not
overlap other blocks and text. Moreover, as you draw

the signal line, Simulink lets you know exactly what
the path is going to look like before you release the
mouse button [9]. Additionally, Simulink provides
one-click to beautify the model diagrams and auto-
arrangement the blocks and lines when building new
functionalities [10].

2.3 Layouting in Scilab/Xcos

In fact, even in Scilab/Xcos, it is possible to improve
the general look of a diagram in using the blocks
alignment options and the links style [11]. Besides
Straight style and the free style with control points,
there are only other 2 types of link styles provided for
auto layout: Vertical and Horizontal, as Figure 2.1 and
Figure 2.2 show respectively.

Figure 2.1: Vertical Link Style

Figure 2.2: Horizontal Link Style

When the diagram becomes too complicate, the results
are obviously unsatisfying. So, the effort presented in
this paper targets at rearranging the blocks by putting
the blocks in some new reasonable positions and to
find optimal routes for the connection. After this au-
tomated process, the layout of a diagram should be
enhanced and beautified for readability and maintain-
ability.

3 Technical Solution

3.1 Overview on Scilab/Xcos

Scilab/Xcos palette provides varieties of predefined
blocks such as signal processing, mathematical opera-
tions and discrete and continuous system blocks while

- 2 -



Automatic Layout of Scilab/Xcos Diagrams

it is also possible to develop user-defined blocks. De-
spite of different types of blocks, when it comes to
representation, they all belong to BasicBlock. We can
abstract an Xcos diagram as shown in Figure 3.1.

Figure 3.1: Basic Structure of Xcos Diagram

Normally, every block from palette is a BasicBlock.
Every block owns its port(s) of input or output as its
children (BasicPort) which belongs to four types: In-
putPort (subclasses: ExplicitInputPort or ImplicitIn-
putPort) or OutputPort (subclass: ExplicitOutputPort
or ImplicitOutputPort), ControlPort or CommandPort.
Ports can be connected with links (BasicLink). Ex-
plicitLink/ImplicitLink can be used to connect Input-
Port and OutPutPort, and CommandControlLink can
only be used to connect CommandPort and Control-
Port. And there are also other classes implementing
other functionality such as graph, palette and utilities.

All the Java codes of the Xcos program are in the
"org.scilab.modules.xcos" package. The structure is
shown in Figure 3.2.

Figure 3.2: Structure of Xcos Java program

Scilab/Xcos code base consist of various types of files,
such as C codes, Java codes, xml files for help docu-

ments, image resources and files for locales. The user
interface is generated by using Java. So, in order to
implement an automatic layouting for Xcos, we need
to conduct the implementation in Java.

3.2 JGraphX

JGraphX [12] is the underlying graphics framework
of Scilab/Xcos. Aligned with that, the implementa-
tion of the technical solution encompasses utilization
of JGraphX for the development of autmatic layout-
ing features. JGraphX is a Java Swing diagramming
(graph visualization) library licensed under the BSD
license. The library is strong and easy to extend and
inherit. The documentation and Application Program-
ming Interface (API) is quite mature. JGraphX not
only provides functionality for visualization and inter-
action with node-edge graphs, but also includes func-
tionality like XML support which would help save the
current layout of the diagram avoiding that the layout
needs to be recalculated every time it is opened. Be-
sides the features about graph interaction and graph
layouts which are being used in Xcos, JGraphX pro-
vides an analysis package which includes a range of
analysis functions which provided us with a number
efficient building blocks for the automatic layouting.

The core architecture of JGraphX includes the
JGraphX model, the transactional model and mxCell.
The JGraphX model (mxGraph) is the core model that
describes the structure of the graph. The class called
mxGraphModel is the underlying object that stores the
data structure of the graph [12]. The graph class Scil-
abGraph in Scilab extends mxGraph. The transac-
tional model is a transaction of models update which
contains a series of actions. Transaction starts with
beginUpdate and ends with endUpdate. With the help
of transactional model, a set of events for the com-
pound changes could be fired together after transac-
tion. The mxCell is the cell object for both vertices
and edges [12]. The three key attributes for an mxCell
is its value, its style and its geometry. The Scilab-
GraphUniqueObject extends mxCell and it is also the
ancestor of BasicBlock and BasicLink.

We use the geometry to change the position of blocks
and use the style to change the routes of links in Xcos.
And we need to save all the states of Xcos diagram in-
cluding the positions of blocks and the styles of links
so that we do not need to re-calculate the layout every
time re-opening an Xcos file.

- 3 -



Automatic Layout of Scilab/Xcos Diagrams

4 Optimal Link Style

Optimal Link Style (OLS) is to find a route with more
blank padding and with less turning and to use it as
the style of a link.

4.1 The Functional Flow

The design of the functional flow can be briefed as
below:

1. Change the style of the selected links one by one
in a loop in one transaction.

2. Check whether the two points of the ports are
aligned and make sure that there are no blocks
between them. If so, make the link with straight
style, e.g. connect them directly.

3. Otherwise, use two new points each of which is
a distance away from its corresponding port (if it
was SplitBlock, use its center directly instead of
its port).

4. Then start with these two new points, try to find
the new route with one single turning point or 2
turning points. Otherwise, get another new point
away from the starting point and use this to find
a route with the same method. This could be re-
cursed in several times.

5. Remove the unnecessary points and get the final
optimal route for the link.

We modify the source files and create the classes listed
in Table 4.1 to implement the functionality:

Class Description
StyleOptimalAction Action events

XcosRoute Compute route

XcosRouteUtils Common utilities
Table 4.1: Classes Created

4.2 The Methods

Here, we would like to introduce the methods and and
underlying mathematical model for OLS. The method
signatures are declared at the beginning of each sec-
tion. Thus, the reader is informed about the applica-
tion programming interface for that particular method.

4.2.1 Get the position of a cell

Method:
mxPoint getCenterPoint(mxICell cell, XcosDiagram
graph)

This method is used to get the position of a cell where
a link will connect to. There are three situations ac-
cording to this cell:

(a) If it is a Port and its parent is a SplitBlock, use
the center point of its parent.

(b) If it is a Port and its parent is not a
SplitBlock, use the state of this cell
(graph.getView().getState(cell)) to get port’s
mxCellState to get the point.

(c) If it is a BasicBlock, use the center point accord-
ing to its geometry attribute.

4.2.2 Check if a point is in a line segment

Method:
boolean pointInLineSegment(double x1, double y1,
double x2, double y2, double x3, double y3)

This method is used to check P1 in Segment (P2, P3)
which is shown in Figure 4.1.

Figure 4.1: Point in Line Segment

If it is, then P2P1 and P2P3 must have the same direc-
tion and P1 is between P2 and P3.

For the same direction:

∠ ~P2P1 = ∠ ~P2P3 (4.1)

y1 − y2

x1 − x2
=

y3 − y2

x3 − x2
(4.2)

(y1 − y2)(x3 − x2) = (y3 − y2)(x1 − x2) (4.3)

For P1 between two points:

min(x2,x3)≤ x1 ≤ max(x2,x3) (4.4)

min(y2,y3)≤ y1 ≤ max(y2,y3) (4.5)

- 4 -



Automatic Layout of Scilab/Xcos Diagrams

4.2.3 Check superimposition

Method:
boolean linesCoincide(double x1, double y1, double
x2, double y2, double x3, double y3, double x4, double
y4)

These two methods are used to check whether two
lines coincide or not. The second one is to check strict
superimposition of two line segments. In the first one,
the lines would move parallel and then check all of
them. This could avoid that two line segments are be
too close.

Segment A (P1, P2) and Segment B (P3, P4) will coin-
cide in these situations:

(a) Segment A is inside Segment B, e.g. both P1,
and P2 are in Segment B;

(b) Segment B is inside Segment A, e.g. both P3,
and P4 are in Segment B;

(c) Segment A and Segment B are parallel and one
of the endpoints of one segment is in the other
segment.

If lines are parallel,

(x1 − x2)(y3 − y4) = (x3 − x4)(y1 − y2) (4.6)

4.2.4 Check obstacles

Method:
boolean checkObstacle(double x1, double y1, double
x2, double y2, Object[] allCells)

This method is used to detect whether there are obsta-
cles between two points.

The definition of obstacles is: All top blocks and links
and all the ports of blocks. EXCEPT: itself (link), its
Source and Target (i.e. port) and SplitBlock.

If any of the below situations happens, it means that
there is an obstacle between two points:

(a) If it is a Link,
- Check lines superimposition.
- Check whether points are in the link.

(b) If it is a Block,
- Use mxRectangle.intersectLine to get an inter-
section if it exists according to its geometry.

4.2.5 Get orientation of ports

Method:
Orientation getPortRelativeOrientation (BasicPort

port, XcosDiagram graph) Orientation getNewOrien-
tation(mxICell cell, double cx, double cy, mxICell oth-
erCell, double ox, double oy, XcosDiagram graph)

These two methods are used to get the current orienta-
tion of a port according to its relative position to parent
block.

We also consider the ports of different blocks, because
the ports of a SplitBlock are not visible or the target
point has no parent blocks.

(a) If its parent is a normal Block, calculate orienta-
tion according to the relative position of the port
to its parent block as Figure 4.2 shows. For in-
stance, the orientation of the port will be EAST
if this port in the EAST zone of its parent block.

(b) If its parent is a SplitBlock, get the orientation of
the InputPort of the SplitBlock according to the
relative position of link’s source (it is the same
mathematical model in the first case); get the ori-
entation of one OutputPort of the SplitBlock ac-
cording to the orientation of the InputPort and
the positions of both OutputPorts. For instance,
when one of the OUT target is on NORTHEAST
to IN source, its orientation will be NORTH if
the other out target is on its right side and the ori-
entation of IN is not north; its orientation will be
EAST if the other out target is on its left side.

Figure 4.2: Orientation in Zones

4.2.6 Get a point away from port

Method:
mxPoint getPointAwayPort(mxICell port, double
portX, double portY, Orientation orien, Object[]
allCells, XcosDiagram graph)

This method is used to get a new point away from a
port according to the orientation of this Port as Fig-
ure 4.3 shows. If there are obstacles between the Port
and the new point, reduce the distance and try another
new point. Then use the new Point as the start/end
point to compute the route.

- 5 -



Automatic Layout of Scilab/Xcos Diagrams

Figure 4.3: Get a New Point away from Port

4.2.7 Choose an optimal line

Method:
double choosePoint(List<Double> list, double p1,
double p2)

This method is used to choose a better line (which
is the average number in the widest range in a cer-
tain density) from the discrete numbers as Figure 4.4
shows. Consider the points between p1 and p2 as a
priority as Figure 4.5 shows.

Figure 4.4: Choose an Optimal Line I

Figure 4.5: Choose an Optimal Line II

4.3 Implementation in Detail

Firstly, we get the position of the source and the
target cell. If two points are aligned (boolean is-
StrictlyAligned(double, double, double, double)) and
there are no obstacles between them (see 4.2.4), then
we connect two points directly and we do not need to
do the steps further.

Then, we create a point away from the port according
to the orientation of each port (see 4.2.6). Using these
two new points as the new starting point and the end-
ing point, find a simple route with 2 turning points.
If the source is EAST/WEST orientation, we try the
point(x2, y1) as the turning point and check the ob-
stacles among the new source point, this point and the
new target point. In this case, the away point for the
source is unnecessary. Otherwise, we try point(x1, y2)
and check the obstacles among the new source point,
this point and the new target point. In this case, the
away point for the source is necessary. The away point

for the target is similar. This is shown in Figure 4.6. If
the source is SOUTH/NORTH orientation, we try the
point(x1, y2) and check the obstacles among them. In
this case, the away point for the source is necessary.
Try the point(x2, y1) and check the obstacles among
them. In this case, the away point for the source is un-
necessary. The away point for the target is also similar.
This is shown in Figure 4.7. If we could get a route,
we do not need to do the steps further.

Figure 4.6: Single Turning I

Figure 4.7: Single Turning II

At the third step, we check all the possible horizontal
or vertical connections of the points whose y or x is
between the two points as Figure 4.8 shows ("possi-
ble" means no obstacles between points). In case that
it is full of obstacles between two blocks, we extend
the range of the detection. If the orientation is hori-
zontal, we check x firstly (the left one in the figure).
Otherwise, check y firstly (the right one in the figure).
If more than one optimal route is found, choose the
optimal one (see 4.2.7).

Figure 4.8: Simple Routes

Finally, if there is no optimal solution in simple mode
which is introduced above, we get new away points of
the start point in 3 directions and use the new points
to find a simple route. Otherwise, we try to find a
complex route in a recursion.

- 6 -



Automatic Layout of Scilab/Xcos Diagrams

4.4 A Sample Application

In this example case, Figure 4.9 is the original diagram
in a mess. Figure 4.10 is the diagram which we used
OLS to format the links.

Figure 4.9: The Diagram in Original Version

Figure 4.10: The Diagram after Using OLS

It looks better than previous layout and the links were
clear for users to read. But it does not work well when
there are split blocks. So we need to do some opti-
mizations to make it more beautiful.

5 Split Block Auto Position

Split Block Auto Position (SBAP) is to find a position
for split block where the links which connect to it look
clearer in the optimal routes.

5.1 The Functional Flow

The design of functional flow can be introduced as be-
low:

1. In the whole connection where the split block is,
get one of the normal blocks as the source and all
other blocks as the targets.

2. Compute their optimal routes separately.
3. Choose the conjunct point of the routes to be the

new position of every split block.

4. Update the orientations of ports in the split block
according to the routes.

5. After getting new position(s) and new orienta-
tions, update the links.

We modified the source files and created the classes
listed in Table 5.1 to implement this functionality:

Class Description
AutoPositionSplitBlockAction Action events

BlockAutoPositionUtils Calculate position
Table 5.1: Classes Created

5.2 The Methods

We will explain the methodology which is used for
Split Block Auto Position. In this section, the meth-
ods and and underlying mathematical model for SBAP
will be presented. As it was for the OSL, the method
signatures are declared at the beginning of each sub-
section in order to reveal the application programming
interface for that particular method.

5.2.1 Get the root split block

Method:
SplitBlock getRootSplitBlock(SplitBlock splitblock)

This method is used to get the root split block when
there are multiple split blocks in the whole connec-
tion.

1. Check if the block which connects to the IN port
of this split block is a normal block.

2. If it is a normal block, this split block is the root
split block.

3. If it is a split block, then check as step 1 again and
start this loop until find the normal block. Then
the split block is the root one.

5.2.2 Adjust routes

Method:
void adjustRoutes(List<List<mxPoint» listRoutes,
Object[] allObstacles, List<mxICell> listPorts)

This method is used to adjust routes after getting the
optimal routes (using OLS). As shown in Figure 5.1,
some segments in two links might be parallel (simi-
lar to 4.2.3). We move segments to make them su-
perimposed if there are no obstacles. Then there will

- 7 -



Automatic Layout of Scilab/Xcos Diagrams

be more superimpositions between routes and the last
conjunct point of routes will be more meaningful.

Figure 5.1: Adjusting Routes

5.2.3 Get the last conjunct point

Method:
mxPoint getSplitPoint(List<List<mxPoint» listRoutes)

This methods is used to get the last conjunct point of
all routes. After the routes are adjusted, there are dif-
ferent last conjunct points between every 2 routes. We
choose the one which is in all routes.

5.2.4 Update orientation of port

Method:
void updatePortOrientation(SplitBlock split,
List<List<mxPoint» listRoutes, XcosDiagram
graph, BasicPort input)
Orientation getInputOrientation(List<List<mxPoint»
list, mxPoint startPoint, mxPoint splitPoint)
Orientation getPortOrientation(List<mxPoint> list,
mxPoint splitPoint)

These methods are used to get the orientation of ports
in a split block according to the relative routes and
update them. There are routes passing the split block.
As shown in Figure 5.2,

1. For the IN port, from the split block point to the
previous turning point is the orientation.

2. For the OUT port, there are 2 cases. If the split
block is in the turning point, then from the turn-
ing point to next turning point is the orientation.
Otherwise, from the previous turning point to the
next turning point is the orientation.

Figure 5.2: Get and Update Orientation

5.3 Implementation in Detail

When a link is split, there will be one split block gen-
erated. When the link is split several times, there will

be several split blocks. Then one split block must have
one IN port and two OUT ports.

1. Calculate the number of split blocks in this whole
part of linking.

2. If there is only one split block,

(a) Get the port which connects to the IN port
of the split block as a source. And get the
ports which connect to the two OUT ports
of the split block as targets.

(b) Find the optimal routes for the source to
each target.

(c) Use the last conjunct point in both routes as
the new position of split block as shown in
Figure 5.3.

Figure 5.3: New Position of SplitBlock

(d) Find the orientations for each ports in the
split block according to optimal routes.

3. If there are more than one split blocks,

(a) Get the root split block. Get the port which
connects to the IN port of this root split
block as a source.

(b) And get the ports of all basic blocks which
connect to all other children split block as
targets.

(c) Find the optimal routes for the source to
each target.

(d) Use the last conjunct point in different
routes as the new position of split blocks.

(e) Find the orientations for each ports in the
split blocks according to optimal routes.

4. After getting new position(s) and new orienta-
tions, update the links.

5.4 A Sample Application

In the case study, Figure 1.1 is the original diagram.
Figure 5.4 is the diagram which we use SBAP and
OLS to format.

Now, the layout is much better. The diagram is easy
to read and maintain.

- 8 -



Automatic Layout of Scilab/Xcos Diagrams

Figure 5.4: The Diagram after Using SBAP and OLS

6 Conclusion and Future Work

The paper presents Optimal Link Style and Split
Block Auto Position for automatic layouting
Scilab/Xcos diagrams. Optimal Link Style focuses
on the link styles which format the link, while Split
Block Auto Position concentrates mainly on position
changing of split blocks. According to his needs, user
can decide in modeling time which one to apply.

Every project or every team has its own standards or
criteria about the format of the diagrams. It is not easy
to decide which layout is really perfect or fulfills the
needs of users. What we have tried to achieve was not
only providing an automatic layout, but also giving
some options for users to make their own decisions
about the final layout which they would like to main-
tain. On the other hand, user therefore needs to se-
lect the blocks or the links which he wants to change
and click some buttons to make them in an optimal
layout. That means that our automatic layout is still
static instead of dynamic. And we could not get a
preview of the automatic layout while we are drawing
our diagrams or get a direct result about this automatic
feature. Sometimes, users would like to draw a link
with the optimal route when creating the connection
between blocks. They would also like to format the
layout of the links after they move some blocks with-
out clicking some buttons.

Based on the previous paragraph, the future work
includes improving the user experience. While the
application programming interface for the layouting
methods provides a baseline, it is necessary to experi-
ment various user interaction scenarios.

References

[1] S.L. Champbell, J.P. Chancelier, and R.
Nikoukhah. Modeling and Simulation in
Scilab/Scicos. Springer Science and Business
Media, Inc., 2006.

[2] Scilab Enterprise, Xcos Features.
Retrieved July 30, 2016 from
www.scilab.org/scilab/features/xcos.

[3] P. Frana. An Interview with Edsger W. Dijkstra.
Communications of the ACM 53 (8): 41–47,
2010.

[4] E. W. Dijkstra. A note on two problems in con-
nexion with graphs. Numerische Mathematik 1:
269–271, 1959.

[5] J. Bang-Jensen, and G. Gutin. The Bellman-
Ford-Moore algorithm. Digraphs: Theory, Algo-
rithms and Applications, Springer Science and
Business Media, 2000.

[6] T.H. Cormen, C.E. Leiserson, and R.L. Rivest.
Introduction to Algorithms (1st ed.). MIT Press
and McGraw-Hill, 1990.

[7] K.H. Rosen. Discrete Mathematics and Its Ap-
plications, 5th Edition. Addison Wesley.2003.

[8] MathWorks, Simulation and Model-Based
Design. Retrieved July 30, 2016 from
http://www.mathworks.com/products/simulink/.

[9] G. Roulaeu. Smart Signal Rout-
ing. Retrieved July 30, 2016 from
http://blogs.mathworks.com/simulink/2012/10/11/
smart-signal-routing/.

[10] L.K. Klauske, and C. Dziobek. Improving
Modeling Usability: Automatic Layouting
for Simulink. Retrieved July 30, 2016 from
http://www.mathworks.com/videos/improving-
modeling-usability-automatic-layouting-for-
simulink-93139.html.

[11] Scilab Enterprise. Xcos for Very Be-
ginners. Retrieved July 30, 2016 from
http://www.scilab.org/community/news/20130830.

[12] JJGraph Ltd. GraphX (JGraph 6) User
Manual. Retrieved July 30, 2016 from
https://jgraph.github.io/.

- 9 -


	1 Introduction
	2 Related Work
	2.1 Graph Theory
	2.2 Layouting in MATLAB/Simulink
	2.3 Layouting in Scilab/Xcos

	3 Technical Solution
	3.1 Overview on Scilab/Xcos
	3.2 JGraphX

	4 Optimal Link Style
	4.1 The Functional Flow
	4.2 The Methods
	4.2.1 Get the position of a cell
	4.2.2 Check if a point is in a line segment
	4.2.3 Check superimposition
	4.2.4 Check obstacles
	4.2.5 Get orientation of ports
	4.2.6 Get a point away from port
	4.2.7 Choose an optimal line

	4.3 Implementation in Detail
	4.4 A Sample Application

	5 Split Block Auto Position
	5.1 The Functional Flow
	5.2 The Methods
	5.2.1 Get the root split block
	5.2.2 Adjust routes
	5.2.3 Get the last conjunct point
	5.2.4 Update orientation of port

	5.3 Implementation in Detail
	5.4 A Sample Application

	6 Conclusion and Future Work
	References

