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Abstract
The Onboard Computer - Next Generation (OBC-NG) project is initiated by the German Aerospace Center
(DLR) to develop a distributed and reconfigurable onboard computer of Commercial off-the-shelf (COTS)
components. Its goal is to utilize the higher computational power of COTS components and to maintain
high system reliability, which is required for spacecraft. However, COTS have a lower robustness than the
traditional space-qualified components and therefore a higher probability of failures. Thus, a monitoring
system is indispensable. This thesis focuses on the design of a monitoring system, to evaluate the health
status of the distributed components. It shall detect failures before any corrective action, e.g. migrating the
tasks to the other functioning components, can be triggered.

Different monitoring techniques have different trade-offs, in terms of monitoring efficiency and monitoring
overhead. Initially, various monitoring concepts are investigated, in order to qualitatively analyze their
trade-offs and designs. Three monitoring mechanisms, PULL, PUSH and PUSH-PULL, are selected and
modeled. Afterwards, the models are simulated on the discrete event simulator OMNeT++ and tested under
different environment as well as monitoring mechanism settings. The simulation results, which represent
a quantitative investigation of the designed monitoring mechanisms, are used to evaluate and compare
them. The derived verdicts are used to identify the most suitable mechanism and settings for the OBC-NG
system. The results show that PUSH mechanism is more suitable for OBC-NG system than the currently
implemented PULL mechanism.
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Chapter 1

Introduction

The goal of this chapter is to provide an introduction to the topic, and to discuss the motivations as
well as problem statement of this work. The purpose and goals are explained, along with the task
details. The chapter is finalized with the chapter overview.

1.1 Motivation and Problem Statement

As human explore deeper into the space, the complexity of the spacecraft design increases dra-
matically. The size and the amount of collected data grow because better sensors with higher
resolution are used and mission periods are getting longer. However, deep space missions have the
limitation of low telemetry bandwidths and long propagation delays between spacecraft system
and ground control [9]. The bandwidth limits the amount of data to be transmitted and therefore
the preprocessing of data before transmitting is required. Long command delay, which is caused
by the communication latency, is another issue to be concerned of because todays’ space system is
becoming more autonomous and requires faster reaction time [1]. Rosetta spacecraft and its robotic
comet lander, Philae, is a good example for this requirement, since it requires onboard processing
of optical data for navigation as well as for reducing and filtering images before transferring to
ground [10].

1
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Table 1.1: Comparison of the commercial, space and avionics domains [1]
Operational Environment Commercial Space Avionics
Mission duration Years Years Hours
Maintenance intervention Manual Remote After mission
Outage response time Hours Days (Cruise phase) Milliseconds
Resources
- Power
- Spare parts

Unlimited
Unlimited

Minimal
None

Medium
After mission

As shown in table 1.1, the operation environment of space domain makes the system maintenance
harder, compared to other domain. Spacecraft are usually designed with high focus on reliability
to provide the operation under harsh environment for long mission period as months or years
with minimum maintenance [1]. In order to provide reliability, fault avoidance and fault tolerance
techniques are deployed. Radiation-hardened components are one of the solutions to improve the
level of fault avoidance. However, those components are expensive and have limited processing
power. More importantly, faults still occur. In addition, they require one-to-one mapping for warm
and cold redundancy. In contrast, Commercial off-the-shelf (COTS) components, which have lower
costs, are used to provide higher processing power.

The German Aerospace Center (DLR) has initiated the Onboard Computer - Next Generation
(OBC-NG) project to design a distributed and reconfigurable system by utilizing COTS along
with space-qualified components [2]. Unfortunately, current COTS standards lack some of the
dependability guarantee because it is not as robust as the space-qualified components [1]. Their
lower level of robustness comes with a higher probability of component failures. Therefore, OBC-
NG system requires an efficient monitoring system to monitor the state of the overall system. In
case a component failure is detected, a reconfiguration is triggered.

1.2 Purpose and Goals

The main purpose of this work is to investigate the monitoring concepts, design and optimize
monitoring mechanisms for the OBC-NG systems. The efficient monitoring mechanisms can help
decreasing the duration from failure occurrence to failure detection time. The faster the failure is
detected, the faster the system can react. The failure detection time is highly dependent on the
frequency of monitoring. However, the higher monitoring frequency, the more overhead is created.
For this reason, the combination of the mechanisms and their settings should be chosen wisely to
reduce the monitoring overhead, and maintain the system reliability and availability.
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1.3 Task

The task is divided into four phases: Research, Design, Simulation and Implementation, as well as
Evaluation Phase.

1.3.1 Research Phase

In research phase, Onboard Computer (OBC), Onboard Software (OBSW) and spacecraft system
fundamentals are investigated. The requirements of the OBC-NG system are analyzed. Various
monitoring concepts and mechanisms, which are used in different applications of distributed
systems, are collected to analyze their advantages and disadvantages as a qualitative trade-off
analysis.

1.3.2 Design Phase

Base on the gained knowledge from the previous phase. The monitoring concepts are chosen and
modeled along with their settings. In addition, the environment settings are defined in order to
test the model in the next phase.

1.3.3 Simulation and Implementation Phase

In this phase, the OBC-NG system is simulated on a discrete event simulator: OMNeT++. The
monitoring models are implemented and simulated to evaluate their efficiency and measure their
communication overhead. The models are also tested under different scenarios to compare their
monitoring efficiency.

1.3.4 Evaluation Phase

The test results from the previous phase are evaluated according to the specified criteria, such as
monitoring overhead and fault response time. At the end of this phase, the suitable monitoring
mechanisms and their settings, e.g. monitoring frequency and number of observers needed, are
determined in the simulation results analysis.

1.4 Chapter Overview

The structure of this report is as follows: After a brief introduction in this chapter, chapter 2
provides more detailed information of distributed systems and spacecraft design and gives an
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overview of monitoring. In addition, various monitoring mechanisms are investigated in the
related work section. Chapter 3 presents the monitoring requirements and the design concepts.
The details about simulation and implementation are explained in chapter 4. Chapter 5 presents
the simulation results and their evaluation. Finally, chapter 6 concludes the work and provides a
future outlook.



Chapter 2

Background

This chapter contains the basic information for the following chapters. It introduces the concepts,
structure and functionality of the OBC-NG system in section 2.1. In section 2.2, the fundamentals
of the distributed systems design are explained. Afterwards, the basic concepts of monitoring
are described in section 2.3. Finally, the monitoring approaches are investigated at the end of the
chapter in the related work, section 2.4.

2.1 Onboard Computer Next Generation: OBC-NG

This section begins with the overview of the OBC-NG system architecture and software architecture
with the focus on the Middleware layer and its functionality and finally emphasizes its monitoring
and monitoring-related functionality.

2.1.1 System Architecture

OBC-NG Nodes

Figure 2.1 shows an example of OBC-NG system architecture with different types of nodes con-
nected with point-to-point links. The first type, Processing Node (PN), provides the computing
resource for processing data and managing the system. The hardware of a PN consists of Main
Processing Unit, router and optional coprocessor e.g. Field-programmable gate array (FPGA). The
second type is Interface Node (IN). Its hardware components consist of microcontroller, router,
interfaces to periphery and mass storage. It is used to connect the PNs with the peripheries. If it
connects to mass-memory, it has the role of Storage and if it connects to sensors or actuators, it has
the role of Interface [11].

5
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Figure 2.1: An example of OBC-NG system [2]

Peng et al. explained the roles of the PNs as following. The roles of the Master (M) are controlling
and monitoring the other nodes and distributing the tasks. Observers (Os) have the role of
monitoring the Master and higher priority Observer(s) as shown in figure 2.2. The PNs, which
have no management functions of monitoring and managing the tasks, are Workers (Ws). They
perform the data processing tasks assigned by the Master [11]. The roles can be assigned and
re-assigned to the chosen nodes during system runtime because of the reconfigurable characteristic
of OBC-NG nodes. Moreover, more than one role can be assigned to a single node. For example,
the Master can also be assigned to perform other tasks along with the management roles. However,
two management roles, i.e. Master and Observer, or two Observers, cannot be assigned on the
same node because if the node fails, the management roles will not be able to detect each other’s
failure.

Figure 2.2: Monitoring service of different types of nodes
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Software Architecture

Figure 2.3 shows the OBC-NG software architecture, which is the three layers on top of hardware
layer. Our focus is on the Middleware layer, which is between the Application layer and the Operating
System layer. It offers an Application Program Interface (API) for developing applications and
management, monitoring and reconfiguration of application tasks [2]. For the Operating System
(OS), DLR has chosen two OS for OBC-NG project for different purposes; Linux for complex
applications and Realtime Onboard Dependable Operating System (RODOS) for time-critical
applications [2].

Figure 2.3: Basic software architecture of OBC-NG [2]

2.1.2 Middleware

OBC-NG middleware consists of API, Tasking Framework, Management and Network Protocol
layer as can be seen in the figure 2.4 below [2]. The API layer provides the communication service
and passes messages to be handled by the Tasking Framework. The OBC-NG applications run as
tasks within the Tasking Framework. The services, which are related to the monitoring system
design, are monitoring and reconfiguration services in the Management layer and the communication
services in Network protocol layer. All middleware services are provided using message-triggered
and event-triggered mechanisms [2].
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Figure 2.4: Structure of the OBC-NG middleware [2]

Management Layer

Monitoring Service The monitoring function is assigned to PNs to monitor the health of the other
nodes and trigger reconfiguration if a node failure is detected. In the current prototype, the Master
monitors the other PNs as well as INs by sending a small message called a Heartbeat (HB) to them
periodically at a specified interval. The nodes those are alive will send an Acknowledgement (ACK)
back to the Master. An Observer is assigned to monitor the Master, using the same procedure.
In order to increase the reliability of the system, the Observer role is assigned to two PNs as can
be seen in figure 2.2. As explained in subsection 2.1.1 Observer 1 observes Master, and Observer
2 observers Observer 1 and the Master. If Master detects failure, it triggers reconfiguration. If
Observer 1 or Observer 2 detects a failure, it check if there is a healthy higher priority management
role and inform it to reconfigure. If there is no higher priority management node, it triggers the
reconfiguration.

Reconfiguration Service Reconfiguration is categorized into two types: planned reconfiguration
and reconfiguration due to a failure. When the monitoring system detects failure, it triggers the latter
type of reconfiguration. The reconfiguration is triggered by the Master or the highest priority
Observer, in case the Master failed, by broadcasting a reconfiguration message with the highest
priority. The purpose of reconfiguration is either to replace the failed component or to isolate it
from the rest of the system [1]. OBC-NG system redistributes its tasks to the remaining nodes.
During the reconfiguration, nodes stop the message transmission to reduce payload on the network
and reduce the reconfiguration time.

The reconfigurator (the Master or the highest priority Observer) searches the decision graph, as
an example in figure 2.5, for the next configuration to reconfigure itself and the other nodes. The
decision graph contains the specific configurations for each specific failure when it occurs. It
shows the configuration ID and the next configuration of each node failure ID (N-x). The initial
configuration ID is 0 (C0). The configuration is based on the failed node ID, e.g. if N1 (node ID =
1) fails, the next configuration ID is 1 (C1). Each configuration has two types of arrays to specify
how the roles or tasks are distributed to the nodes. The management configuration arrays specify
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the roles of the nodes and application configuration arrays specify the tasks to run on the nodes.
Failed node can be isolated until the last node is left and there is no more productive configuration.
In other words, the configuration is at a leave of the decision graph. In that case, the system enters
safe-mode and is solely handled by the Master.

Figure 2.5: An example of a decision graph [2]

Network Protocol Layer

The Network Protocol functions with the support of the other components in the network layer as
shown in figure 2.6 below. The Network Protocol transmits and receives messages through the
Underlying Protocol via an abstract layer of the Network Connector. The Event Handler handles the
received data and the Timer Service offers timer functionality from hardware.

Figure 2.6: Structure of OBC-NG network layer [2]

Functionality of Network Layer The network layer provides the functionality of reliable, unreli-
able and large-sized messages transmission as well as subscription and broadcasting mechanisms
for communication service among the distributed nodes. Apart from the communication service, it
supports other services in the higher layer, i.e. OBC-NG middleware layer. The acknowledgement,
resend and error notification mechanisms of the reliable message transmission can be utilized in the
monitoring service, such as for sending HB ACK or resending HB request. For the reconfiguration,
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broadcasting service is used to send the reconfiguration messages to all the nodes and the network
layer incorporates the Network Protocol and Timer Service to make the system wait for a specific
time to be sure that all the nodes has finished the reconfiguration.

Message Types and Sizes Messages are categorized into different types and have specific sizes
as listed in the table 2.1. For a reliable message, the receiver sends an ACK to the sender when it
receives the message within a specified time period. If the ACK is missing, the message will be
resent. On the contrary, an unreliable message has no acknowledgement and resend mechanisms.

The maximum size of messages can be specified. The current maximum size is set at 1.05 MB with
the maximum transmission segment of 55400 bytes.

Table 2.1: Transmission message types and sizes

Message type Message size (bytes)

_DATA_RELIABLE 23
_DATA_UNRELIABLE 23
_ACKNOWLEDGE 27
_PULLREQ 23
_PULLRESPONSE 23
_ERROR_NOTIFY 21
_RECONF 22
_HEARTBEAT 18

2.1.3 SpaceWire

SpaceWire is planned to be integrated in OBC-NG system because it is widely used in many
missions in space domain by several space agencies, such as Meteorological Operational Satellite
(MetOp), Rosetta, Mars-Express by The European Space Agency (ESA), Swift Gamma Ray Burst
Explorer (SWIFT), James Webb Space Telescope (JWST), Hubble Robotic Repair Mission by The
National Aeronautics and Space Administration (NASA) and Bepi Colombo, New X-ray Telescope
(NeXT) by The Japan Aerospace Exploration Agency (JAXA) [12].

A SpaceWire network is constructed from point to point links. Each link is a full-duplex, bi-
directional, serial data link, which can operate at the data rates between 2 -200 Mbits/s [3]. Similar
to the OBC-NG requirements, there is no restriction on the topology of a SpaceWire network. In
term of reliability, a crossbar implementation in SpaceWire allows a fully meshed network, with
each router of each node interconnected with each other [12].

SpaceWire is a packet switching network and wormhole routing switches are used to reduce to the



2.2. DISTRIBUTED SYSTEM DESIGN 11

latency of transmission. In addition, wormhole switching minimizes the amount of buffer memory
needed in the routing switches [12]. Fault tolerance can be achieved when more than one link
connects a pair of routing switches using group adaptive routing to with rapid recovery from a
link failure [12]. There is no limit on the size of SpaceWire packets. The packet format in figure 2.7
shows that, apart from destination address and payload, there is the End-of-Packet (EOP) field to
indicate the end of the packet [12]. However, the maximum packet size can be specified to prevent
a blocking for an indefinite time. Packets that exceed a certain maximum payload size are split up
into multiple packets.

Figure 2.7: SpaceWire packet format [3]

For time synchronization, SpaceWire supports the distribution of time information to all nodes
in the network with very low latency of a few microseconds. This feature is important for time
synchronizing of distributed nodes for monitoring and real-time capabilities [13].

2.2 Distributed System Design

In this section, the distributed system design is investigated, focusing on the useful aspects for
designing the monitoring system. Two important dependability attributes, which are in our
concern in this report are, reliability and availability. According to Hamed and Jaber, there are three
principles in high availability distributed system. The first one is to eliminate the single points
of failure by adding redundancy to the system so that a failure of a component does not result in
the failure of the whole system. The second principle is to have a reliable crossover, which is the
ability to switch between components when a component fails. The third one, which is the goal of
monitoring, is failure detection to trigger the crossover or in OBC-NG, a reconfiguration [14].

2.2.1 Reliability

Reliability is the probability that the system functions correctly as expected for a given period of
time under the specified operating conditions [15]. Reliability is defined over an interval of time
rather than a time instant, which is the case for availability [16]. The following equation 2.1 is used
to reliability or R(t). However, reliability is a statistical probability and there are no absolutes or
guarantees.

R(t) = e�t (2.1)
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t is the mission time, or the time the system must execute without an outage
� is the constant failure rate over time (failures/hour)

2.2.2 Availability

Availability represents the probability that the system is available to operate or delivery its service
at a specific time instant [4][16]. Availability of a system can be affected by a failure, a maintenance
and an upgrade of the system, due to the installation of new hardware or software [8]. In space
system, the cause of the second case can be the mission phase changes.

Figure 2.8: Relationship between MTTF, MTTR, and MTBF [4]

In order to assess the availability of the system, Mean Time To Failure (MTTF), Mean Time Between
Failures (MTBF) and Mean Time To Repair (MTTR) have to be specified. Their relationship is
shown in figure 2.8. MTTF is the average time of normal operation before the failure. MTTR is the
average time which is used to repair system and restore to its status. MTBF is the average time
between failures in repairable system, when the system is resumed to normal working state and
repeat the cycle [8].

In a system with constant failure and repair rates, system availability can be calculated using the
following formula 2.2. MTBF is calculated from the sum of MTTF and MTTR. MTBF applies to the
ground based or repairable systems. Otherwise, it can also be defined as the average time to the
first failure [8].

A =
MTTF

MTTF +MTTR
(2.2)

The formula 2.2 shows that high availability can be achieved either by a long MTTF or by a short
MTTR [8]. The focus of this project is to reduce the duration between failure occurrence and failure
detection time within MTTR before the repair or recovery actions are triggered.

For system level prediction, MTTR is calculated by summing the product of the MTTR and failure
rates of each replaceable item. The result is then divided by the sum of all replaceable items’ failure
rates as the formula 2.3 below.

MTTRsystem =
1

�

nX

i=1

�i MTTRi (2.3)
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� is the constant failure rate over time (failures/hour)
�i is the constant failure rate over time of the ith item to be repaired (failures/hour)

� =
nX

i=1

�i (2.4)

2.2.3 Redundancy

Redundancy is duplication of components or repetition of operations to provide alternative
functional channels in case of failure [17]. It can be specified into structural redundancy, which is
referred as a hardware method [16] and functional redundancy, which is achieved by a software
method. Functional redundancy is a system design and operations characteristic that allows
the system to respond to component failures in a way that it is sufficient to meet the mission
requirements [15].

Azambuja et al. categorized redundancy into time and space redundancy. Time redundancy uses the
outputs generated by the same component(s) by comparing the values at two different moments
in time, separated by a fixed delay [18]. For Space redundancy, the outputs generated by different
components at the same time are compared. If there is a mismatch, the failure is detected [19].

For the monitoring design, the redundancy concept will be used to determine the number of
Observers. Hamed and Jaber explained about redundancy simulation in their work with N-x
criteria. N is the total number of components in the system. x represents the number of components
used to stress the system. The (N-1) criteria means the model is stressed by evaluating performance
with all possible combinations where one machine fails. The (N-2) criteria means the model
is stressed by evaluating performance with all possible combinations where two machines fail
simultaneously [14].

2.2.4 Threats

The threat of reliability and availability are failures, errors and faults. As depicted in figure 2.9,
fault is the cause of error and failure. Error is the deviation of component behavior from expected
behavior [16]. Failure is the result of the deviation of the delivered service from the correct service
[4].
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Figure 2.9: Failure, Error and Fault [4]

Failure Rate

Klutke et al. mentioned that a failure rate curve is in the shape of a bathtub curve. At the beginning,
in Infant Mortality Period, the failure rate is high and gradually decreases. In the second period,
Random Failure Period, the failures occur randomly by chance [5]. It is the useful life period and
has constant failure rate, which is required for calculating MTTR because the calculation assumes
a constant failure rate [20]. During Wearout Period, the failure rate raises because of the wearout
failures, which result from the components aging [5].

Figure 2.10: The Bathtub failure rate curve [5]

False Avoidance and False Tolerance

The goal of false avoidance is to ensure a component, subsystem, or system does not fail. Fault
free system is only theoretically possible and still vulnerable to random failures. In false tolerance
system, a component might fail but the system has the ability to maintain the functionality after
random failures occurred. System continues to operate but might produces lower level of service
rather than failing completely. The lower performance is called graceful degradation and might
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be because some failed components are switched off in reconfiguration process [1]. The most
important method supporting fault tolerance is redundancy.

2.2.5 Design Validation: Fault Injection

Fault injection technique is used to evaluate the efficiency of error detection techniques and assess
the fault tolerant systems. Its goal is validate the design with respect to reliability [16]. This report
focuses on the simulation-based fault injection. Fault injection at random time on random node
will be simulated to represent the random failure in the useful period of the failure rate curve.

2.3 Monitoring

According to Joyce et al., the monitoring of distributed systems involves the collection, interpre-
tation, and presentation of the analyzed information about hardware components or software
processes [21]. The monitoring processes are depicted in figure 2.11. Monitoring is essential for the
management of distributed systems, such as debugging and error correction, and can be performed
on a single object or a group of related objects in the same monitoring domain [6].

Figure 2.11: The processes of basic monitoring [6]

Monitors need be constantly aware of the existence and health of the components in system with
high error detection accuracy and high responsiveness [22]. Zou et al. mentioned some other
monitoring requirements in his work, which are to provide redundancy, avoid incorrect judgment
and reduce monitoring cost [23].

2.3.1 Monitoring Mechanism Classifications

Monitoring mechanisms can be classified base on different aspects.
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Base on how a failure is detected, monitoring mechanisms can be categorized into two categories.
In active monitoring, sensors continuously send a small-sized message to show that it is alive
to its control center. In this case, it is an implicit detection because the control centers sense the
communication from the sensors and a missing alive-message after a predetermined timeout
implies failure. The control center has an overview of the health its sensors. In passive monitoring,
control center expects no message from sensors unless there is something wrong. This is an explicit
detection, in which the monitored sensors are able to detect failures and send an alarm to control
center [22].

Base on which kind of monitoring information is obtained, monitoring can be classified into
time-driven monitoring and event-driven monitoring. Time-driven monitoring is based on acquiring
periodic health status information to provide an instantaneous view of the behavior of an object or
a group of objects. The status of an object has a duration in time. For example, a node is alive for a
specific duration. Event-driven monitoring is based on obtaining information about the occurrence
of specific events, which provide a dynamic view of system activity, as only information about the
changes in the system are collected. An event is an atomic entity that reflects a change in the status
of an object and occurs instantaneously. For example, message sent, counter reach threshold [6].

Alternatively, monitoring mechanisms can be categorized base on error detection domain. In the
Design Principles for Distributed Embedded Applications by Hermann Kopetz, he explained that
a real-time operating system must support error detection both temporal domain and value domain
[4]. One of the methods to achieve these requirements is to use the watchdogs. Temporal domain
is used to detect the failure of fail-silent nodes. These nodes have self-checking mechanism and
either function correctly or stop functioning and produce no results after they detect an internal
failure. [24]. A standard technique is the provision of a watchdog signal (heartbeat) that must be
periodically produced by the operating system of the node. If the node has access to the global
time, the watchdog signal should be produced periodically at known absolute points in time. An
outside observer can detect the failure of the node as soon as the watchdog signal disappears. In
contrast to temporal domain, for the value domain error detection, challenge-response protocol is
executed by the error detector node. It provides an input pattern to the node and expects a defined
response pattern within a specified time interval. The functional units required for computing
the response are checked and if the response pattern deviates from the expected result, an error is
detected.

A failure in the system can be detected at different levels of granularity. The current OBC-NG
implementation it is on node level. When a heartbeat of a node is missing, all the tasks are migrated
to other nodes [2]. Theoretically, the detection could be done in a finer grained level, i.e., task level
or subnode level such as FPGA, embedded GPU. When there is a failure, all the tasks will not be
migrated to new node but only the specific task will be moved. Consequently, fewer tasks will be
interrupted and less bandwidth will be needed.
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2.3.2 Fundamental Problems of Distributed System Monitoring

There are a number of fundamental problems associate with the monitoring of distributed systems.
The efficiency of the system can be affected by monitoring system and vice versa.

The effects of overall system on monitoring system

As stated by Mansouri and Sloman, in distributed system, it is difficult to obtain a global view of
all the system components because of the transmission delay. The transferred monitoring messages
from source may already become out of date when it arrives its destination. Moreover, in the
monitoring system that the sequence of information is important, time synchronization to provide
the mean of determining the ordering is necessary [6].

Another issue they mentioned is, the amount of monitoring information generated in a large system
can overburden the monitor and therefore, filtering and processing of monitoring information is
necessary. Moreover, as the monitoring system shares the resource with the observed system, if
they compete for the resources, the monitoring behavior may alter and affects monitoring result
[6].

The effects of monitoring system on overall system

The monitoring system could affect the overall system because of the resource sharing as well.
Monitoring creates overhead and also requires processing power, communication bandwidth and
memory. It increases the application’s executing, workload on the Master and Observer nodes.
Thus, excessive monitoring leads affects system performance [6].

In Wan et al.’s study about heartbeat cycle effect on the high availability performance dual-
controller RAID system, the system contains main and passive controller. An unsuitable heartbeat
cycle leads to wrong fault interpretation of controller status and wrong takeover. They mentioned
that, if the heartbeat cycle is relative short if read and write request is still in the wait queue of
the master controller, the system interpret that main controller has failed. The master control will
start the takeover procedures and transfer request to passive controller. This transfer process takes
time and greatly increases the system response time to the request. The delayed heartbeat leads to
wrong fault takeover when the system works normally. In addition, the frequency of heartbeat
cycle adjustment should also be in consideration when design because it is proved in their work
that the frequent changes of heartbeat cycle results could affect the performance of monitored
system [8].
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2.4 Related Work

Several monitoring techniques from the previous subsection implement the heartbeat monitoring
and watchdog mechanism. Heartbeat is categorized as an active and implicit monitoring because
the monitoring messages are sent and sensed continuously and the missing of the messages implies
failure. The advantages of heartbeat mechanism are, it only needs to maintain few states, low
management is required and overhead on the system is low [22]. Zou et al. have categorized
heartbeat monitoring into traditional and hybrid heartbeat monitoring.

2.4.1 Traditional Heartbeat Monitoring

In traditional heartbeat monitoring, the heartbeat monitor adopts a model which could be PULL
or PUSH models depending on different status realization patterns and which component initiates
the monitoring message [23][25].

PULL model

Rachuri et al. explained that PULL has the concept of querying. The monitor node queries for
the required information on need basis. This is the advantage of PULL because it can be used to
request a specific data at anytime. However, if the query rate is depending on the rate of event
occurrences because the mechanism is not efficient when query rate is low and event occurrence is
high [26].

In term of failure detection, detection nodes in PULL model send request message to detected node.
After detected nodes receive the message, they passively send response message back. Therefore,
there are two way of transmission and with the same monitoring rate, the communication cost is
higher monitoring model with one way communication [23].

In summary, PULL model can be implemented in monitoring system on need basis or periodically.
The current monitoring system design of OBC-NG uses PULL model for periodically monitoring
node’s health status.

PUSH model

PUSH model has the concept of continuous collection and is useful in the system where continuous
sensing is required. In monitoring system, monitored node periodically sending its status to
the monitor [23]. It needs only half of the amount of messages for equivalent failure detection
efficiency because it is pushing one way [25]. However, the period and data to be sent have to be
predetermined. Therefore, it cannot be used to request specific information.
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2.4.2 Hybrid Heartbeat Monitoring

PUSH-PULL Hybrid model

In hybrid heartbeat monitoring, the advantages of the two models can be combined. PUSH model
has high consistency but lower efficiency, while PULL model has lower consistency but higher
efficiency (if PULL model is used on need basis). The switch between PUSH and PULL styles can
be according to user requirements and resource status [27].

Zuo et al. combines these two by setting the period of PULL higher than PUSH. If the monitor
receives PUSH heartbeat messages within the specific period, the timer gets into next period.
Otherwise, monitor activates the timer and adopts PULL model to detect the monitored node if it
is invalid or not. If the monitor does not receive PULL response in time, the module is judged as
invalid [23].

The advantage of this model is, it is more flexible and can be used for specific purposes because
it can sense the occurrence of the events and query when the event occurs [26]. This model
is also implemented on Microsoft Operation Manager, which is a good example of the usage
of PUSH and PULL for different purposes. Figure 2.12 below shows how each mechanism is
implemented. PUSH is used to check the health of the nodes and PULL is used to recheck if the
missing heartbeat is because the node fails or the connection fails [7]. Therefore, two types of
failure can be differentiated, if there is no response to ping, the missing heartbeat is because of the
connection, not a node failure.

Figure 2.12: Heartbeat flow in Microsoft operation manager [7]



20 CHAPTER 2. BACKGROUND

In summary, PUSH-PULL hybrid mechanism can be used for different purposes. First PUSH is
used to periodically sending heartbeat to the monitor and detecting failure. When a failure is
detected, PULL can be used after a missing push heartbeat is detected for retrieving diagnostic
information, such as request the state from specific node, or check the network connection. PULL
can also be used in the resend mechanism for requesting heartbeat to confirm the invalidity or
failure of the node.

PULL-PUSH Hybrid model

On the other hand, Zhao also mentioned PULL-PUSH hybrid model, where both consumers and
suppliers are passive. There is an event channel, which actively requests from the suppliers and
passes the response to the consumers. This model gives the channel more control on how to
coordinate the components because PULL and PUSH can be executed with various frequencies on
each component [28].

Summary of Monitoring Models

In summary, PULL mechanisms have two ways of communications, which increase network
overhead if the querying frequency is high. Therefore, PULL is more suitable for querying data on
need basis as it can be used to request a specific data at anytime.

In contrast, PUSH is useful when continuous sensing is required but the data sent is predetermined
and fixed. It is suitable for checking the health status of the nodes since the message sent can be
predetermined as heartbeat without any system details.

PUSH-PULL hybrid model can be used to differentiate two types of failures, such as node failure
and network failure. In addition, it can be used to confirm the invalidity or failure of the node.
PULL-PUSH hybrid model has passive consumers and producers but the model requires an event
channel.

2.4.3 Dynamic Heartbeat

Heartbeat monitoring can be improved by dynamically adjusting the heartbeat period to adapt
to different network conditions or system status [23]. It can be implemented in other monitoring
models, such as PULL or PUSH. An implementation of dynamic heartbeat is introduced in the
application of the adaptive heartbeat design of high availability RAID dual-controller. As shown
in 2.13, Heartbeat self-test mechanism for detecting internal error of in the controller and mutual
detection between the two controllers are implemented [8]. Heartbeat interaction is made up of
ping to inquire information and acknowledgement (ACK) as a response.
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Figure 2.13: Heartbeat self-test and mutual detection [8]

For dynamic heartbeat, the mechanism called Grade-Heartbeat is implemented to allow the controller
to adapt its heartbeat interval using real-time monitoring module to monitor the read and write
requests frequency. Heartbeat interval is set dynamically according to the previous 20 requests
interval time. Their experiment also shows that frequent changes in heartbeat interval result in the
decline of overall system performance [8].





Chapter 3

Design of OBC-NG Monitoring

This chapter is divided into three sections. Section 3.1 presents the OBC-NG monitoring require-
ments. The monitoring concepts from the related work are analyzed in section 3.2. Finally, the
mechanism settings are listed and explained in section 3.3.

3.1 OBC-NG Monitoring Requirements

General monitoring requirements and fundamental problems of distributed system monitoring
are considered along with the OBC-NG’s specific requirements and combined into the OBC-
NG monitoring system requirements. These requirements are used to specify the performance
indicators in the next chapter.

3.1.1 Reliability and Redundancy in Monitoring System

For the reliability, OBC-NG system requires at least one node to always be responsive to ground
command at all times. Therefore, we need to make sure that there is always a node assigned as a
Master in the system. In the system with only one Observer, if the Master fails and the Observer
fails later before the detection, the Master’s failure will never be discovered and reconfiguration
will never be triggered. Consequently, no node has the Master role and the remaining Worker
nodes in the system are not monitored. In contrast, if there are two Observers and one of the
Observers fails at the same time as Master, the failure will be detected by the other Observer and
reconfiguration will be triggered. Therefore, redundancy is required to provide the reliability.

23
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3.1.2 Availability and MTTR

In a high availability system, MTTR should be low. MTTR of an OBC-NG system is the time
from the failure occurrence to when the system repaired, i.e. reconfigured. MTTR consists of fault
response time and reconfiguration time. As shown in figure 3.1, monitoring frequency and resend
mechanism of the monitoring system influence the first part, which is the fault response time.

Figure 3.1: MTTR components in OBC-NG

3.1.3 Avoiding Incorrect Judgement

Incorrect judgment should be avoided because the false alarms usually have greater effects on
the system efficiency than having an undetected failed node. The reason is, when a failure is
detected, every node in the system is reconfigured. From the investigation of distributed system
monitoring problems in subsection 2.3.2, transmission delay is a significant cause of incorrect
monitoring interpretation and also affects the accuracy of failure detection. Some delayed HBs
maybe misinterpret by the monitor as missing HBs. Network traffic is considered the main cause
of the delay. In addition, clock synchronization is necessary for determining the timeliness of the
monitoring messages [6]. The network layer of OBC-NG system provides the timer service but the
transmission delay has to be estimated and added to the watchdog timer to monitor the arrival
time of monitoring messages.

An obvious trade-off exists between the probability of false alarm and the fault response time. In
order to decrease the response delay, the timeout value needs to be decreased but that leads to a
higher probability of false alarm.

Furthermore, to avoiding incorrect judgment, the monitoring system should be fault tolerant and
remains the level of accuracy after a reconfiguration occurred.
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3.1.4 Reducing Monitoring Cost

The monitoring system should not create too much overhead that it affects the efficiency of other
applications in the system. The number and size of monitoring messages and bandwidth usage
should be measured and compared with the overall bandwidth. The smaller the monitoring
messages, the less data has to be processed. Consequently, the CPU time and the memory
consumption are reduced.

3.2 Monitoring Mechanisms Concepts

This section introduces the currently implemented monitoring mechanism and the other alterna-
tives collected from section 2.4. The PULL, PUSH and PUSH-PULL hybrid models are analyzed
with the same monitoring roles of Master and Observers as the currently implemented model.
PULL is chosen because it is used in the current monitoring system of OBC-NG. PUSH is chosen
because it is suitable for continuous sensing, which is required for nodes’ health status monitoring.
PUSH-PULL is chosen to utilize PUSH for monitoring and PULL for requesting PULL HB when
a PUSH HB is missing. On the other hand, for PULL-PUSH mechanism is not chosen because it
requires an event channel and therefore, it is not suitable for point-to-point topology of OBC-NG.
In addition, if PULL response is missing, PUSH cannot be used for requesting a HB in resending
mechanism.

The OBC-NG system has a Master serving as the monitor of the other nodes and two Observers as
the monitors of the Master, as mentioned in the monitoring service subsection. In this section, the
Master or an Observer is referred to as a monitor.

3.2.1 Current Monitoring Mechanism: PULL Mechanism

After a the first reconfiguration is finished, the monitor waits for the specified HB interval and
initiates the HB mechanism by sending a HB request to its monitored node(s) and starting the
timer. When a monitored node receives the HB request, it sends the HB response (ACK) back to
its monitor. The monitor listens to response, as shown figure 3.2 below. If ACK does not arrive
within the specified duration, the resend mechanism begins. The details of the resend mechanism
are explained in subsection 3.3.3. PULL is a request-response mechanism and therefore, resend
mechanism can be implemented. Moreover, it can also be used as resend mechanism in other
hybrid mechanisms.
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Figure 3.2: Heartbeat flows in PULL mechanism

3.2.2 Alternative 1: PUSH Mechanism

Similar to PULL mechanism, PUSH begins after the reconfiguration is finished but it is initiated
by the monitored node. Each monitored node is set up in a way that it sends a HB message to
its monitor at every specified interval. Therefore, there is just one way of monitoring message
flow for each monitoring pair as can be seen in figure 3.3. Each monitor node sets up a watchdog
timer for its monitored node(s). If the HB arrives within the duration, the watchdog timer is reset.
Otherwise, the resend mechanism begins.

Figure 3.3: Heartbeat flows in PUSH mechanism
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3.2.3 Alternative 2: PUSH-PULL Hybrid Mechanism

PUSH and PULL mechanisms are combined to allow the implementation of the resend mechanism
into the PUSH model. Before the monitor senses a missing HB, the HB mechanism is the same
as PUSH in the previous subsection. After the first missing HB is sensed, the monitor waits
for a specific time duration, then switch to PULL mechanism, in which monitors start sending
HB requests and wait for the responses. Afterwards, if there is no HB response, PULL resend
mechanism begins.

3.3 Monitoring Mechanism Settings

3.3.1 Number of Observers

Number of Observers is determined by the assumption of the simultaneously failure occurrences.
In a system with the mechanism setting of with one Observer, maximum number of monitors that
can fail simultaneously is one (The M or an O). In the design, it is assumed that the maximum
number of failures that could happen at the same time is two. Therefore, the redundancy concept
of N-x criteria from section 2.2.3 is implemented on the monitoring system to specify the number of
monitors in the system and measure the monitoring performance. N is the total number of man-
agement roles (The M and Os) and x is the number of monitor nodes that can fail simultaneously
and can be detected. If there are two Observers, N = 3 (two Os and one M) and x = 2, and two of
them can fail at the same time.

3.3.2 Heartbeat Interval

HB interval effects the fault response time and the monitoring overhead. When a failure occurs,
the monitoring system detects it at the next missing HB, then waits until the timeout and starts
resend mechanism. HB interval is the duration between two HBs. The larger HB interval causes
less monitoring overhead but increases detection time. The smaller HB interval causes higher
overhead but the missing HB is detected faster because the HB is checked more often and the
difference between failure occurrence and the next HB is lower. However, the higher number
of HBs is expected, the higher chance of a missing HB. One possible solution is to increase the
reconfiguration timeout, which is the duration between when a missing HB is detected and when
a reconfiguration starts. If the duration is over without receiving a HB, then the reconfiguration
can be triggered.
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Static Heartbeat Interval

In static HB interval setting, every node periodically sends HBs at the same interval. The advantage
of this setting is, it has less synchronization problem but the disadvantage is, it is not adjustable to
the amount of network traffic. The baseline of HB interval is set at 200 ms and the intervals of 100,
500, 1000 ms are chosen to be tested and compared with the baseline.

Dynamic Heartbeat Interval

There are two options of adjusting the HB interval for dynamic HB mechanism. One option is to
determine if there is a congestion or high traffic in the network by measuring the network, and
readjust the HB interval accordingly. Another option is, to calculate the new HB timeout at the
monitor according to the previous PULL HB response or PUSH HB arrival time.

3.3.3 Resend Mechanism

Resend mechanism affects the fault response time and detection accuracy. It contains two values,
resend timeout and resend threshold, as seen in figure 3.4. Resend timeout is the duration from when
a missing HB is expected to when a HB request is resent. Resend threshold is the maximum counts
of resending HBs (n). If the threshold is reached and there is no response from the monitored
node, the reconfiguration will be initiated. Resend threshold is only implemented in the resend
mechanism of PULL and PUSH-PULL model, when the mechanism switches to PULL because
PULL HB is a reliable message. As mentioned in subsection 2.1.2, if there is no ACK for the reliable
message from the receiver, the message or in this case, a PULL HB, will be resent.

In PUSH mechanism, HB is an unreliable message and is initiated from the monitored node, thus
the monitor cannot resend HB request. However, resend timeout can be used in PUSH mechanism
by setting resend threshold as 0, consequently, the resend timeout will be used as a reconfiguration
timeout. Reconfiguration timeout is the duration from the start of the first resend timeout until the
end of the last one. In other words, it is the duration from the detection of a missing monitoring
message to the reconfiguration.
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Figure 3.4: Resend mechanism with resend timeout and resend threshold





Chapter 4

Simulation Specification and Implementa-
tion

This chapter shows the simulation specifications of monitoring models, which are designed in the
previous chapter. It begins in section 4.1 with the introduction to OMNeT++, which is the simu-
lation tool used for implementing and testing the models. Afterwards, the simulation objectives
and the performance indicators are explained in section 4.2 and 4.3. The details of how OBC-NG
system is simulated are shown in section 4.4. Section 4.5 presents the implementation of monitor-
ing mechanisms on OBC-NG system. The mechanism and environment settings simulation are
explained in section 4.6 and 4.7. Section 4.8 describes how to the simulations are executed. Finally,
the five test suites, which combine each monitoring mechanism, its settings and environment
settings, are explained in the last section.

4.1 Simulation Tool: OMNeT++

OMNeT++ is an object-oriented discrete event network simulation framework. It is not a simulator
but it provides infrastructure, libraries and frameworks for the simulation. Its modular architecture
divides the network models into modular and reusable components. Each active component in the
simulation model is called a simple module, which is a basic unit of other compound modules and
models. The modules are connected via a channel [29]. In addition, it also uses message-triggered
and event-triggered mechanisms as OBC-NG middleware as mention in subsection 2.1.2.

The main functions of the class cSimpleModule are initialize and handleMessage. The first one
is invoked by the simulation kernel once at the beginning and the second one at each message
arrival. Messages, packets and events are all represented by cMessage objects. Most models need
to schedule future events in order to implement timers, timeouts, and delays. It can be done in
simple module by sending a self-message to itself. After the self-message is sent or scheduled, it will
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be held by the simulation kernel until the schedule time is reached then the message is delivered
to the modules via handleMessage [29]. Since the simulation kernel is event based, the event can be
scheduled at different points in real time to the same simulation time. When the simulation time is
reached, it is seen as the events are executed in parallel.

4.1.1 OMNeT++ Components Specifications

The behaviors and designs of the components are specified in different types of files [30].

• .ned file: NED or Network Description is a high-level language that describes the structure of
the modules at every level, from simple module to a model. It also describes the parameters,
gates, and network topology of the model.

• .cc file: The file contains the behaviors of each module, which are specified in C++ language.

• .msg file: The communication between module is via messages. Message Definitions file is
for defining various types of message or packet and specifying data fields. OMNeT++ will
translate message definitions into C++ classes.

• .ini file or a configuration file contains the configurations of the model and different parame-
ters of each simulation run.

4.1.2 OMNeT++ User Interfaces

The simulations can be run using Tkenv or Cmdenv user interfaces. Tkenv is a GUI toolkit
and graphical simulation environment, which links into simulation executables for graphical
interactive simulation execution. It is very useful for model development and verification. Cmdenv
is a command-line user interface for batch execution. It can be used to execute many runs by one
command [29].

4.1.3 Output Formats and Types

The output of simulation can be recorded as vector or scalar. Vector output is recorded during
the simulation into output vector file (.vec). The scalar values are collected during the simulation
in a variable and recorded at the end of the simulation in output scalar file (.sca). Moreover, if
the simulation is run with record event log option, the sequence chart is produced and stored
in event log file (.elog). It contains the graphical view of modules, events and messages sequence
and transmission duration. The first three types of output files can be exported as Scalable Vector
Graphics file (.svg) [30].
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4.2 Simulation Objectives

Two main objectives of the simulation are to evaluate the monitoring efficiency and to measure the
overhead of different monitoring mechanisms and their settings. They are tested under different
environment settings, i.e. high network load and node failures. Fault injection is simulated in
order to see how fast the monitoring system reacts when different type of nodes fail at different
fault injection time. The outcomes of simulation are used to evaluate different monitoring design
options for OBC-NG system.

4.3 Performance Indicators

Performance indicators are used to measure the efficiency of the monitoring models. They are
chosen according to the OBC-NG monitoring requirements from section 3.1 to prevent the funda-
mental problems of distributed system monitoring, which are previously presented in subsection
2.3.2.

4.3.1 Monitoring Overhead

An efficient monitoring system should create as low overhead as possible. The bandwidth con-
sumption is measured to specify the communication overhead and the total number of monitoring
messages sent from each node to measure the workload on different roles. Both HB and ACK
are measured over the simulation time. CPU overhead is not simulated because in the current
implementation, every node in the network is COTS component and therefore it is assumed that
the computing power is sufficient.

4.3.2 Fault Response Time

Fault response time in this work is the duration between fault injection time and when the re-
maining healthy nodes receive reconfiguration messages. It is right before the reconfiguration
mechanism starts and the nodes handle the reconfiguration messages. At the end of each simula-
tion, the difference between the simulation times of those two events is recorded.

4.3.3 Monitoring System Stability

Monitoring system stability is the ability to avoid incorrect judgment and running into a wrong
configuration, when there is high network load in the system. The system starts up in the initial
configuration with configuration ID = 0. In the test without node failure, the reconfiguration
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should not be triggered. If the monitor searches the decision graph for the next configuration and
tries to initiate reconfiguration by sending reconfiguration message with configuration ID 6= 0, the
timestamp is recorded and endSimulation function is called.

4.4 OBC-NG System Simulation

Figure 4.1 shows an OBC-NG system simulation on the OMNeT++ framework. The simulated
network consists of six COTS nodes and each node represents a PN. Each PN is simulated as a
compound module.

Figure 4.1: OBC-NG system simulation on OMNeT++

Each compound module consists of four different simple modules, Manager, userApp, Routing, and
Queue, to perform different functions as shown in figure 4.2.
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Figure 4.2: Structure of OBC-NG node on OMNeT++

The nodes are connected through ports and links (channels). The simulated channel between the
nodes has a channel delay of 3 ms and SpaceWire’s maximum data rate of 200 Mbit/s as shown in
figure 4.3.

Figure 4.3: Channel settings in NED file

4.4.1 Manager Submodule

The Manager submodule provides the functionality of initializing the node according to its roles as
well as handling messages and HBs. It also provides the monitoring and reconfiguration services.
Manager submodule enables the Master and Observers to perform management and monitoring
tasks and the Workers to perform application tasks and sending HBs.

Node Initialization

When a node is initialized, node ID is used to check its role with the management configuration
array. If it is the Master, it broadcasts the reconfiguration messages to configure other nodes when
the system starts. Manager submodule uses node ID to identify the role and status of the node. For
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example, a node with node ID 1 is the Master and it is alive. If the node has no management role,
it is initialized and starts the assigned task as a Worker. The task distribution is specified in the
application configuration array. The fault injection event is also scheduled according to a specific
or a random point in the simulation time in this submodule at the beginning of the run.

Messages Handling

Manager handles its self-message, which is for scheduling events in its module as explained in
section 4.1. If it is an incoming message from other module, the message is handled through
the network protocol. Manager submodule also handles reconfiguration and error notification
messages, which are created in the network protocol.

Heartbeat Sending and Monitoring

To conduct the monitoring, Manager submodule sends PULL HB from the monitor or PUSH HB
from the monitored node. For PULL mechanism, HB ACK is created and monitored by network
protocol as a mechanism of a reliable message. However, in PUSH model, PUSH HB has to be
handled in Manager. The watchdog timeout value is set as an attribute of the node. If the watchdog
timer is over, the reconfiguration is triggered. For PUSH-PULL, if the watchdog timeout is reached,
Manager starts PULL mechanism, which is handled in the network protocol in the same way as
the traditional PULL mechanism.

Selecting New Configuration and Reconfiguration

If the node is the Master or the highest priority Observer (in case the Master fails) and the
reconfiguration needs to be initiated, it searches the decision graph for the next configuration ID,
initiates reconfiguration and broadcasts reconfiguration command via the network protocol.

4.4.2 Application Submodule

Application submodule, userApp in figure 4.1, is used for performing application tasks and in this
work, it is used for traffic generation. The application generates a packet by specifying the source,
destination and size of the packet. The packet size can be fixed or varies in each transmission.
The generated packets are sent out via gate out to the routing module, as seen in figure 4.4. The
application address is set differently from node ID so that Routing submodule, which is explained
in the next subsection, can differentiate them and send the different types of message to the right
submodule. The IDs < 50 are reserved for the management service and application ID starts from
51. The application module schedules applicationEvent to start the application of sending packets at
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the specified time. After a packet is sent, the next applicationEvent is scheduled to send the next
packet in the next interval.

4.4.3 Routing Submodule

Routing submodule connects the Manager and userApp submodules to the Queue submodule as
shown in figure 4.4. It provides the functionality of static shortest-path routing between the parent
modules, i.e. PNs and sets the routing table when the simulation begins [29]. Each node queries
the topology of the network independently. However, the routing table is not updated during
the simulation. Therefore, when a node fails, its routing function still works and can forward
application and other management packets.

Figure 4.4: Routing and connections

4.4.4 Queue Submodule

Queue submodule is for queuing up packets to be sent. It is a point-to-point interface module. As
can be seen in figure 4.4, packets from Routing module that arrive at in gate of Queue submodule
are sent out through line gate, which is connected to the internode connection. If a packet arrives
and there is a packet being transmitted, the arrived packet will be queued up. The size of the
queue is limited by the frame capacity, which can be specified in the submodule’s .ned file. If the
packet queue is over the queue size, the packet will be discarded and drop counts will be recorded
[29]. In the simulation, no limit is set because if the monitoring message got dropped because of
the frame capacity, the monitoring result will change and we want to limit the causes and only
focus on the delayed HB, which is caused by the amount of traffic.
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4.4.5 Packets

In figure 4.5, the Transmission struct is the packet structure of OBC-NG and the packet struct below
is how a packet is simulated on OMNeT++ in .msg file. The parameters of each packet are set
similarly to OBC-NG transmission protocol. However, each simulated packet has no data and
there is no need to specify the maximum data size or data type in the parameter. In the simulation,
data size is set using setByteLength function and it will be used to calculate the transmitting time
from data rate specified in the channel property in .ned file. The packet type is differentiated by a
packet name. The name and size of a packet are set when it is created. The type of a packet created
by the underlying network and transmission protocols is also used to set the packet name using
setName function of OMNeT++.

Figure 4.5: The structure of an OBC-NG packet and a simulated packet

4.5 Monitoring Mechanisms Simulation

Different monitoring mechanisms utilize different types of messages and resend mechanisms.
Consequently, the resend timeout and resend threshold have to be set differently. This section
shows how each monitoring mechanism is simulated.

4.5.1 PULL Model Simulation

Message Type

In PULL mechanism, the HB request of type _HEARTBEAT is a reliable message of size 18 bytes.
The HB response is the ACK of type _ACKNOWLEDGE, which is 27 bytes.
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Heartbeat Creation and Monitoring

After a node gets a reconfiguration message, the first heartbeatEvent is scheduled by the monitor
in handleReconfig function of Manager submodule at the current simulation time + HB interval.
The heartbeatEvent is handled by heartbeatService function of PULL mechanism. The function first
checks the management role of the node in management configuration array to specify the HB
destination, i.e. its monitored node(s). After the HB is sent, the function reschedules the new HB
of the next interval. ACK is the response to the HB and is created and monitored by the network
protocol.

Resend Mechanism

Figure 4.6 shows PULL mechanism and its resend mechanism. If the network protocol senses a
missing ACK, it waits for a specific duration (resend timeout) then resends HB request again until
the resend threshold (n) is reached. The ACK is monitored in the network protocol as well as the
resend mechanism.

Figure 4.6: Monitoring design with PULL mechanism

The reconfiguration timeout can be calculated using equation 4.1 below.

Reconfiguration timeout (ms) = Resend timeout ⇥ (Resend threshold + 1) (4.1)
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4.5.2 PUSH Model Simulation

Message Type

Due to the fact that PUSH HB does not require a request-response mechanism, it should be set as
a new message type so that the network protocol does not send an ACK back when it arrives at
the monitor. PUSH HB messages are simulated as a new message type (_PUSH_HEARTBEAT)
with the same size as _HEARTBEAT (18 bytes) but as an unreliable message instead of a reliable
message.

Heartbeat Creation and Monitoring

Similar to PULL mechanism, after a node gets a reconfiguration message, the first pushHeartbeat-
Event is scheduled in handleReconfig function to the value of current simulation time + HB interval.
However, PUSH HB is created by monitored node and handled in pushHeartbeatService function,
which specifies the node’s monitor address, sends the PUSH HB and reschedules the PUSH HB to
the next interval.

At the monitor, a watchdog timer for each of its monitored node is set and scheduled as an event.
If the PUSH HB arrives, the watchdog timer is rescheduled to next interval and if not, the function
handleDelayedPushHeartbeat is called. In the function, if the node is highest priority monitor, it
searches the decision graph for the new configuration and initiates the reconfiguration. If it is not,
it checks if there is any higher priority monitor, which is alive, and informs it.

Resend Mechanism

As can be seen in figure 4.7, the monitored nodes of PUSH mechanism initiate the monitoring
messages. Consequently, resend mechanism cannot be implemented and the resend threshold is 0.
If the monitor senses a missing HB, it uses the value of the resend timeout as the reconfiguration
timeout as shown in equation 4.2. After the timeout, the reconfiguration is triggered. However, if
the reconfiguration timeout is long enough, monitored nodes have the chance to send the next HB
of the next interval.



4.5. MONITORING MECHANISMS SIMULATION 41

Figure 4.7: Monitoring design with PUSH mechanism

Reconfiguration timeout (ms) = Resend timeout (4.2)

4.5.3 PUSH-PULL Hybrid Model Simulation

Message Type

Three types of messages are used in this model. Before a node failure is detected, each monitored
node sends _PUSH_HEARTBEAT messages to its monitor. When a PUSH HB is missing, the
monitor sends _HEARTBEAT messages to recheck the invalidity of the node. If the monitored
node is healthy, it sends a message of type _ACKNOWLEDGE back.

Heartbeat Creation and Monitoring

PUSH HB is created and monitored the same way as in the traditional PUSH model. However,
when a PUSH HB is missing, the function handleDelayPushHeartbeat at the monitor handles the
situation differently by starting sending a PULL HB.

Resend Mechanism

The resend mechanism is the same as in PULL model. However, the resend threshold should be
reduced by one to get the desired number of HB resends because after the mechanism changes
from PUSH to PULL, the first HB is a normal HB of PULL mechanism. Afterwards, the resend
threshold of PULL starts as seen in figure 4.8.
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Figure 4.8: Monitoring design with PUSH-PULL hybrid mechanism

Reconfiguration timeout of PUSH-PULL can be calculated using the formula 4.3 below.

Reconfiguration timeout (ms) = Resend timeout ⇥ (Resend threshold + 2) (4.3)

4.6 Monitoring Mechanism Settings Simulation

In this section, the settings of the monitoring mechanism are listed. In addition, the details of how
they are simulated in different mechanisms are explained.

4.6.1 Number of Observers

The desired number of Observers is specified in the configuration file (.ini). In Manager submodule,
the monitoring roles and the destinations of monitoring messages are set accordingly. For example,
in the setting with one Observer, Observer 2 in the management configuration array becomes a
Worker and does not have monitoring functionality.

4.6.2 Mechanism Setting: Static Heartbeat Interval

The HB interval parameter is also specified .ini file. After a node get a reconfiguration message,
the first heartbeatEvent or pushHeartbeatEvent is scheduled in handleReconfig function of Manager
submodule at that specified HB interval. When the event is handled, a HB is sent and the event is
rescheduled at the same interval.
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4.6.3 Mechanism Setting: Dynamic Heartbeat Interval

There are two options of simulating dynamic HB. The first approach is to measure network traffic
and adjust HB interval accordingly. In PULL mechanism, the monitor changes the interval of
the HB request, and in PUSH, the monitor sends a message to the monitored node to change the
interval of the next HB to prevent the synchronization issue. The monitor node itself changes the
duration of the watchdog timer to prepare itself for the new interval. The disadvantage of this
approach is, the change occurs at the next HB interval and it might be too late to adapt to the
network traffic.

Another approach is to adjust the watchdog timer according to the previous HB arrival. The new
watchdog timer is set when the HB arrives. The simulation times of the previous and the current
HB arrivals are recorded. The difference between these two values is added with a slack time to
calculate a new watchdog timer. The slack time is calculated using the equation 4.4 below. The
slack factor makes the next interval slightly larger than the actual difference of the HB arrivals to
prepare for higher network traffic. In this case, the monitor can sense the traffic and adjust the
watchdog timer accordingly.

Slack time (ms) = (simulation time of currentHB arrival� previousHB arrival)⇥ slack factor

(4.4)

4.7 Environment Settings Simulation

4.7.1 Fault Injection: Node Failure

Node failure is simulated by scheduling a faultInjectionEvent, which is handled by the chosen
node at the scheduled time. At the chosen node, its isAlive status is updated to false and it will
stop sending HBs. On Tkenv GUI, the node is labeled as dead. The purpose of fault injection is
measuring fault response time of each mechanism.

In the design, a random failure is injected in each simulation randomly because random failures
with constant failure rate are used for calculating MTTR. The duration between fault injection and
fault response time of each mechanism is recorded. However, a fault is supposed to be detected
within the simulation time (5000 ms) so that the fault response time can be recorded. Therefore,
the failures are random in the range of 0 - 4000 ms to make sure that they will be detected in every
HB interval setting.

The random function rand is used with the seed of wall-clock time, which is specified in srand
function as srand(time(NULL)). It is used to generate random number for fault injection time and
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also the failed node ID.

4.7.2 Network Traffic Simulation

Network traffic is generated by userApp submodule in figure 4.2. The traffic is scheduled at the
module initialization at a specific interval. Every node sends a packet to the node with the next
higher application ID and the highest one sends to the lowest, as shown in figure 4.9. As mentioned
in subsection 4.4.2, the application ID is set to a different values from node ID so that the Routing
submodule can distinguish them and send the packet to the correct destination submodule. The
address of the source and the destination is set with setSrcAddr and setDestAddr function.

Figure 4.9: Application packet flows

Message size can be static with the same message size or dynamically increasing. Both types of
message size can be set with setByteLength function. In the case of dynamic size, the size of the
message is increased in each interval and is calculated using the equation 4.5 below. Packet factor
indicates how fast the message size increases. The higher value of packet factor, the steeper the
size increases.

Application packet size (bytes) = current simulation time⇥ packetfactor (4.5)

4.8 Simulation Execution

The input specifications for setting the simulation parameters are explained in subsection 4.8.1.
The combinations of the simulated monitoring mechanisms, mechanism settings and environment
settings are selected and combined into different test suites in section 4.9. The test runs can be
automated as described in subsection 4.8.2 below.
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4.8.1 Input Specifications

Most test settings are specified as parameter values or seeds in the configuration file (.ini). However,
the resend threshold and resend timeout are specified as macros since the resend mechanism is
provided by the underlying network protocol, not an OMNeT++ module.

4.8.2 Automated Tests

Instead of executing each test case manually, automated tests can be performed to execute every
test case in each test suite. The parameter values of each test case settings can be specified
in the configuration file. Then change the run configurations in the Integrated Development
Environment (IDE) to command line and change run number to * to run all the test cases with
every parameter combinations.

4.9 Test Suites

The monitoring system testing is divided into five test suites according to the test objectives. The
first test suite compares the monitoring overhead and the fault response time of the PULL and
PUSH mechanisms without the resend mechanism. The second test suite aims to compare the
settings with different number of Observers. The third and fourth test suites test the monitoring
models under different environment settings, i.e. fault injection and network traffic. Finally, the
fifth test suite verifies the dynamic HB mechanism.

Test suite 1: Monitoring Mechanisms and Observer Roles

General Purpose

This test aims to compare PULL and PUSH mechanisms without resend mechanism by using
the same mechanism settings. Different monitoring roles of the Observers are also tested. The
evaluation focuses on the monitoring overhead, workload of each role, and fault response time.
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General Configurations

Table 4.1: Test suite 1 General configurations

Mechanism PULL, PUSH

Number of Observers (nodes) 2

Heartbeat interval (ms) Static: every 200

Reconfiguration timeout (ms) 30

Resend threshold (times) 0

Node failures See the test case settings below

Application traffic None

Simulation time limit (ms) 5000

Test case settings

Table 4.2: Test suite 1 Test case settings

TestID Node failure Test details

1.1.1
0 node failure

Observer role setting 1: O2 Observes M and O1
1.1.2 Observer role setting 2: O2 Observes only O1
1.2 1 node failure Each role fails at 1000 ms

Test Suite 2: Number of Observers

General Purpose

In the previous test, the default number of Observers (two nodes) is tested with different Observer
role settings. The chosen setting is used in this test and the following tests. The goal of this test is
to compare fault response time of the settings with different number of Observers when the Master
fails.
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General Configurations

Table 4.3: Test suite 2 General configurations

Mechanism PULL, PUSH

Number of Observers (nodes) 1, 2

Heartbeat interval (ms) Static: every 100, 200, 500, 1000

Reconfiguration timeout (ms) 30

Resend threshold (times) 0

Node failures The Master fails at 1000 ms

Application traffic None

Simulation time limit (ms) 5000

Test Suite 3: Fault Injection

General Purpose

The goal of this test is to measure the fault response time of each monitoring mechanism and HB
interval setting with the same reconfiguration timeout of 120 ms. The timeout is calculated from
the baseline setting of the currently implemented mechanism, PULL. As shown in table 4.5, the
resend timeouts and resend thresholds are adapted to different resend mechanisms of PUSH and
PUSH-PULL models. The number of repetitive runs of each test setting is 2000. In each run, a
random node fails at a random time between 0 - 4000 ms to allow the settings with HB interval of
1000 ms to detect the failure before the simulation time limit of 5000 ms.
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General Configurations

Table 4.4: Test suite 3 General configurations

Mechanism PULL, PUSH, PUSH-PULL Hybrid

Number of Observers (nodes) 2

Heartbeat interval (ms) Static: every 100, 200, 500, 1000

Resend timeout (ms)
See the resend mechanism configurations below

Resend threshold (times)

Node failures A random node fails at random time between 0 - 4000 ms

Application traffic None

Number of repetitive runs (runs) 2000

Simulation time limit (ms) 5000

Resend Mechanism Configurations

Table 4.5: Test suite 3 Resend mechanism configurations

Mechanism
Resend timeout (ms) x
Resend threshold (times)

Reconfiguration timeout (ms)

PULL 30 ⇥ 3 120
PUSH 120 ⇥ 0 120
PUSH-PULL 30 ⇥ 2 120

Test Suite 4: Network Traffic

General Purpose

The network traffic is simulated to test the monitoring system because it is the main cause of
transmission delay and incorrect monitoring judgment. The cause of the missing HB needs to be
determined, whether it is because of a node failure or the HB is sent out from a healthy node but
delayed by the network traffic. This test aims to measure the tendency of monitoring mechanisms
to run into a wrong configuration, when there is high application traffic in the network.

In test 4.1, different mechanisms with the same reconfiguration timeout of 120 ms are investigated.
In test 4.2, PULL and PUSH mechanisms without resend mechanism are tested to compare the
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stability of the mechanism. Each run has no simulation time limit and runs until a node get
reconfigured and the simulation ends. The system should not be reconfigured, since there is no
failure injection. End simulation time and the traffic from each node at the point, when the system
run into a reconfiguration, are recorded and compared.

General Settings

Table 4.6: Test suite 4 General configurations

Mechanism PULL, PUSH, PUSH-PULL Hybrid

Number of Observers (nodes) 2

Heartbeat interval (ms) Static: every 100, 200, 500, 1000

Resend timeout (ms)
See the resend mechanism configurations below

Resend threshold (times)

Node failures None

Application traffic
Each node send a packet every 50 ms
Packet size (bytes) = current simulation time ⇥ packet factor
Packet factor = 80, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180

Simulation time limit (ms) -

Test Case Settings

Table 4.7: Test suite 4 Test case settings 4.1

TestID Mechanism
Resend timeout (ms) x
Resend threshold (times)

Reconfiguration timeout (ms)

4.1.1 PULL 30 ⇥ 3 120
4.1.2 PUSH 120 ⇥ 0 120
4.1.3 PUSH-PULL 30 ⇥ 2 120

Table 4.8: Test suite 4 Test case settings 4.2

TestID Mechanism
Resend timeout (ms) x
Resend threshold (times)

Reconfiguration timeout (ms)

4.2.1 PULL 30 ⇥ 0 30
4.2.2 PUSH 30 ⇥ 0 30
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Test Suite 5: Dynamic Heartbeat Interval

General Purpose

The purpose of this test is to measure the efficiency of the dynamic HB monitoring mechanism
under high traffic in the network. Apart from the dynamic HB setting, the other test settings are
the same as test suite 4.

In this mechanism, the monitors adjust the watchdog timers according to the duration between the
simulation time of the previous and the current HB arrivals multiply by a slack factor as explained
in subsection 4.6.3. At the beginning, where there is no previous HB arrival time, the monitor uses
the static HB interval values and the default reconfiguration timeout. In contrast to the previous
test suite, this test suite has a simulation time limit. The limit of 500000 ms has to be set because if
dynamic HB is adjusted appropriately to the network traffic, the simulation will not end and the
result will not be recorded.

General Settings

Table 4.9: Test suite 5 General configurations

Mechanism PUSH

Number of Observers (nodes) 2

Heartbeat interval (ms)
Dynamic: starting at 100, 200, 500, 1000
Slack factor = 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1

Reconfiguration timeout (ms) 120

Resend threshold 0

Node failures None

Application traffic
Each node sends a packet every 50 ms
Packet size (bytes) = current simulation time ⇥ packet factor
Packet factor = 80, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180

Simulation time limit (ms) 500000



Chapter 5

Simulation Results and Evaluation

The first part of this chapter presents the test results from the five test suites in section 4.9 and
the explanation of each test. The second part is the test analysis and the evaluation base on the
OBC-NG monitoring requirements in section 3.1 and the performance indicators in section 4.3.

5.1 Test Results

Test Suite 1 Results: Monitoring Mechanisms and Observer Roles

Test 1.1 Results

Figure 5.1 combines the results of test 1.1.1 and 1.1.2 so that they can be compared to each other.
The graph shows number of monitoring messages sent from each node in two different Observer
role settings. In this configuration, node ID 1 is M, 2 is O1 and 3 is O2. The rest are Ws. In PULL
mechanism, the monitoring messages are HB and ACK and in PUSH is PUSH HB.

In Observer role setting 1, in both PULL and PUSH, the highest monitoring workload is on M.
This is also the case for PULL in Observer role setting 2, M has the highest workload comparing
to the other nodes but lower than in setting 1. In contrast, for PUSH, O2 has highest monitoring
workload instead of M.

51
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Figure 5.1: Number of monitoring messages sent per node in different monitoring mechanisms
and settings

The network overhead of total monitoring messages of all nodes in each Observer role settings
is calculated from the sum of the number monitoring messages multiply by its size as shown in
message size table 2.1 in chapter 2. The HB and PUSH HB are 18 bytes and ACK is 27 bytes. Table
5.1 shows that the network overhead of PULL in Observer role setting 1 is 2.5 times higher than
PUSH. Similarly, in Observer setting 2, the network overhead of PULL is 2.52 times higher than
PUSH.

Table 5.1: Network overhead of PULL and PUSH mechanism with different Observer role settings

Observer role setting
Network overhead (bytes)

Mechanism

PULL PUSH

1 8730 3492
2 7650 3041

In summary, in Observer role setting 2, where O2 observes only O1 and does not observers M,
creates less network overhead and less workload on the M. Therefore, this setting is chosen for the
following tests.
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Test 1.2 Results

Figure 5.2 shows the bar graph of fault response time when each node fails. The x-axis of the
generated graph is the node ID of M after the reconfiguration and y-axis is the fault response time.
As can be seen in the graph, PUSH mechanism always has a higher response time than PULL. In
this test, the average response time of PULL is 56 and PUSH is 66.

Figure 5.2: Fault response time of PULL and PUSH mechanisms when different nodes fail

Test Suite 2 Results: Number of Observers

The monitoring systems with one and two Os are simulated in this test. Table 5.2 and 5.3 below
show that, in both monitoring mechanisms, the number of Observers does not affect the fault
response time. In PULL, mechanism the fault response time of every HB interval are at 59 ms. In
PUSH mechanism, the fault response time of 100, 200, 500 ms HB interval are at 60 ms and slightly
lower in 1000 ms HB interval at 58 ms.
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Table 5.2: Fault response time of PULL mechanism when M fails at 1000 ms

Heartbeat interval (ms)
Fault response time (ms)

Number of Observer (s)

1 2

100 59 59
200 59 59
500 59 59
1000 59 59

Table 5.3: Fault response time of PUSH mechanism when M fails at 1000 ms

Heartbeat interval (ms)
Fault response time (ms)

Number of Observer (s)

1 2

100 60 60
200 60 60
500 60 60
1000 58 58

Test Suite 3 Results: Fault Injection

Figure 5.3 shows an example of random fault injection times between 0 - 4000 ms of PULL
mechanism with 100 ms HB interval. Its second-degree polynomial shows the trend of the graph,
which is relatively flat, as the constant failure rate period of the bathtub curve mentioned in
subsection 2.2.4. The random fault injection times of the other mechanisms and settings in this test
also follow the same fashion since they are generated by the same random mechanism.
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Figure 5.3: An example of random fault injection time of 2000 simulation runs

Figure 5.4 shows the fault response time and its number of occurrences of PULL mechanism with
different HB intervals. The graphs are not flat as the fault injection time graph in figure 5.3 because
the fault response time has lower range and higher number of occurrences than the fault injection.
This is due to the different HB intervals. Comparing the subfigures of 5.4, 5.4(a), which has shortest
HB interval, has the second-degree polynomial line of Gaussian bell curves with the highest height.
The range of fault response time is the lowest and maximum number of occurrences is the highest.
The height of the Gaussian bell decreases, the range of fault response times increases, maximum
number of occurrences lowers in 5.4(b), 5.4(c), and 5.4(d), respectively.

The fault response time graphs of PUSH mechanism in figure 5.5 and PUSH-PULL hybrid graphs
5.6 on the next page also follow the same trend as PULL mechanism, as mentioned previously.
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(a) 100 ms HB interval (b) 200 ms HB interval

(c) 500 ms HB interval (d) 1000 ms HB interval

Figure 5.4: Fault response time and number of occurrences of PULL mechanism

(a) 100 ms HB interval (b) 200 ms HB interval

(c) 500 ms HB interval (d) 1000 ms HB interval

Figure 5.5: Fault response time and number of occurrences of PUSH mechanism
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(a) 100 ms HB interval (b) 200 ms HB interval

(c) 500 ms HB interval (d) 1000 ms HB interval

Figure 5.6: Fault response time and number of occurrences of PUSH-PULL mechanism

Table 5.4 shows detailed results of the test, which includes the minimum, maximum, mean, and
range of the fault response times of different mechanisms and HB interval from 2000 simulation
runs.

Table 5.4: Fault response time of a random failure in different mechanisms and HB intervals (ms)

HB
interval
(ms)

Mechanism

PULL PUSH PUSH-PULL

Min Max Mean Range Min Max Mean Range Min Max Mean Range

100 128 246 181.80 118 125 245 191.62 120 134 250 194.92 116
200 128 349 233.19 221 133 343 242.66 210 133 349 245.86 216
500 130 649 384.20 519 132 645 392.36 513 136 645 395.70 509
1000 129 1151 633.95 1022 127 1143 653.49 1016 137 1145 650 1008

Mean
(ms)

358.29 370.03 371.62
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Minimum Value

The minimum fault response time values of all mechanisms are between 128 -137 ms, which are
slightly higher than the reconfiguration timeout (120 ms). This is because of there is the network
latency of transferring HB, ACK, error notification and reconfiguration messages. From the test,
PUSH-PULL has the highest minimum fault response time. The minimum fault response time is
created when the fault is injected right before the ACK or PUSH HB from the monitored node is
supposed to be sent out.

Maximum Value

From the observation of minimum fault response time, the assumption of the maximum fault
response time is, it is created when the fault is injected right after the ACK or PUSH HB from the
monitored node is sent. The expected fault response time is at the value of the full HB interval
+ reconfiguration timeout + some network latency as mentioned in minimum value analysis.
However, the maximum values are 8 - 22 ms higher than the expected value. This is because, at the
beginning of the simulation, nodes start the setting the timeout to send the first HB after the first
reconfiguration is finished. Thus, if the failure is injected before the node finishes setting up, it
takes longer to be detected since it has longer duration until the first ACK/PUSH HB is expected.

Range

The difference between the fault detection time ranges of each HB interval in the same mechanism
is the approximate value of the HB interval.

Mean

The mean values of fault response time from the lowest to highest are of PULL, PUSH and
PUSH-PULL mechanism. PULL and PUSH have bigger differences than PUSH and PUSH-PULL.

Test Suite 4 Results: Network Traffic

Test 4.1 Results

In figure 5.7, the message size and end simulation time of PULL mechanism with HB interval
of 100 ms is shown to illustrate the application packets generation of the setting, which is the
same as to the other HB interval settings. Each point on the line is, where an application packet
is created, starting from the simulation time of 50 ms. The steepest line has the highest packet
byte factor, as the message size gets larger faster and the line is shorter because it also runs into a



5.1. TEST RESULTS 59

reconfiguration earlier. The other HB interval settings also follow this trend but the end of each
line, which indicates the end simulation time, varies. In this setting, the end simulation time is in
the range of 3133 - 6833 ms, which is earlier than the other two mechanisms.

Figure 5.7: Application packet size and end simulation time of PULL mechanism with 100 ms HB
interval

The three following figures are the results of the packet generation shown above. The end simula-
tion time of the settings with the same packet byte factor of 80 bytes and different HB intervals of
PULL, PUSH and PUSH-PULL hybrid, are presented.

The first figure, 5.8, shows that in PULL mechanism, the simulation of 100, 200, 500 and 1000
HB intervals ends at 6833, 6933, 7133 and 7133 respectively. Therefore, for PULL, the smaller HB
interval, the lower the monitoring system stability.

In contrast to PULL model, figure 5.9 shows that in PUSH model, the settings with larger HB
interval runs into wrong configuration earlier than the smaller HB interval. The simulation time
of 100, 200, 500 and 1000 HB interval ends at 13880, 10588, 9258, and 9176 respectively. Unlike
PULL in the previous test, for PUSH, the smaller the interval, the higher the stability of monitoring
system. Even though both mechanisms have different trends, with the same mechanism settings,
PUSH always have higher end simulation time.
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Figure 5.8: Application packet size and end simulation time of PULL mechanism with packet
factor of 80 bytes

Figure 5.9: Application packet size and end simulation time of PUSH mechanism with packet
factor of 80 bytes
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Figure 5.10 shows that the end simulation time of PUSH-PULL hybrid is similar to PUSH in the
previous figure. The settings with larger HB intervals run into wrong configuration earlier than
the smaller ones. The simulation time of 100, 200, 500 and 1000 HB interval ends at 8592, 8587,
8680 and 7191, respectively and the values are between the values of PULL and PUSH mechanism.

Figure 5.10: Application packet size and end simulation time of PUSH-PULL hybrid mechanism
with packet factor of 80 bytes

The following graphs shows results of PULL, PUSH and PUSH-PULL models with every HB
interval and packet byte factor to compare the packet size that each setting can handle without
running into a wrong monitoring judgment.

Figure 5.11 shows the results of PULL model. The steepest lines, which have the factor of 180, the
simulation ends earliest at 3133 ms. The simulation that run longest has HB interval of 500 and
1000 ms. In this test, no setting reaches 1.05 MB packet size, which is the current maximum data
size of OBC-NG system.

In contrast to PULL, PUSH mechanism has higher end simulation time. Figure 5.12 shows that
there are some settings of PUSH mechanism that reach 1.05 MB packet size before running into a
wrong reconfiguration. Therefore, another graph in figure 5.13 is created with the minimum value
of application packet of 1.05 MB to emphasize the settings that runs over the threshold.
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Figure 5.11: Application packet size and end simulation time of PULL mechanism

Figure 5.12: Application packet size and end simulation time of PUSH mechanism

The test results of PUSH mechanism that have their packet size generated over 1.05 MB before
running into a wrong configuration are shown in figure 5.13 and they all have the 100 ms HB
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interval. From this graph, the approximate simulation time, when packet is generated at the size
of 1.05 MB, are recorded to use for evaluating the results of dynamic HB mechanism in the next
test. For example, for packet factor 80 at the rightmost line, from 13200 ms onwards, the packet
size generated is over 1.05 MB. Table 5.5 shows the record of the approximate values of simulation
time when the packet reaches 1.05 MB.

Figure 5.13: End simulation time of PUSH mechanism with the application packet size over 1.05
MB

Table 5.5: Approximate simulation time when the packet of size reaches 1.05 MB

Packet factor Approximate simulation time (ms)

80 13200
90 11900
100 10600
110 9600
120 8800
130 8200
140 7600
150 7000
160 6600
170 6200
180 6000
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The last figure of test 4.1, figure 5.14, shows the results of PUSH-PULL model. The end simulation
time of each setting is between the value of PULL and PUSH model but does not reach 1.05 MB as
well as PULL model.

Figure 5.14: Application packet size and end simulation time of PUSH-PULL hybrid mechanism

Test 4.1 Summary The table 5.6 presents the average end simulation time of the three mechanisms
with different HB intervals. PULL is more efficient with larger HB intervals. In contrast, PUSH
and PUSH-PULL hybrid are mostly more efficient with smaller HB intervals except the case of
PUSH-PULL with 100 ms HB interval, which has slightly earlier end simulation time than 200 ms
HB interval.

Table 5.6: Average end simulation time of different mechanisms with different HB intervals

Mechanism
Average end simulation time (ms)

Heartbeat interval (ms)

100 200 500 1000

PULL 4451.18 4587.55 4723.73 4951.18
PUSH 9608 7310.64 6517.55 6646.91
PUSH-PULL 5800.64 5862.36 5680.18 5189.09
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Test 4.2 Results

This test compares the end simulation time of PULL and PUSH model without resending mecha-
nism. The result of PULL mechanism shows the same trend as test 4.1, the end simulation time
is higher in higher HB interval. However, in PUSH it also follows the same trend as its result in
test 4.1 with an exception that table HB interval of 100 ms has lower average end simulation time
than 200 ms as seen in 5.7. This is similar to PUSH-PULL in test 4.1. The reason could be that HB
interval of 100 ms is too frequent and the setting has no resend mechanism and reconfiguration
timeout at only 30 ms and therefore the simulation ends early.

Table 5.7: Average end simulation time of PULL and PUSH mechanisms with different HB intervals

Mechanism
Average end simulation time (ms)

Heartbeat interval (ms)

100 200 500 1000

PULL 1221.82 1258.18 1403.64 1585.36
PUSH 5707.18 5768.36 5586.18 5095.09

Test Suite 5 Results: Dynamic Heartbeat Interval

From the previous test results, PUSH mechanism is more stable in high network load and has
lower overhead. Therefore, it is chosen to implement the dynamic HB mechanism. The result
table 5.8 is an example of the recorded output with packet factor of 80. The full table with every
packet factor settings is shown in the appendix A.1. The result shows that dynamic HB mechanism
increases the efficiency of the monitoring mechanism. Several tests, which are marked as ⇤ in the
table, run over 500000 ms simulation time.

In addition, there are also many tests that run over the point in simulation time that the application
packet size reaches 1.05 MB. Those simulation time thresholds vary upon the packet byte factor
and they are identified based on the result of the previous test in the table 5.5. The percentages
of the settings that run over the threshold are recorded in the table 5.9. The table shows that the
percentage of the run over the simulation time threshold in the settings of 200 and 500 are mostly
higher than 100 and 1000 ms HB intervals.
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Table 5.8: End simulation time of PUSH mechanism with packet factor of 80
(⇤ is the end simulation time over 500000 ms)

Packet factor Slack factor
End simulation time (ms)

Heartbeat interval (ms)

100 200 500 1000

80 0 316 616 1516 3016
0.1 3906 4017 8611 9164
0.2 3914 10570 22710 10549
0.3 3922 20628 * *
0.4 21898 * * *
0.5 21915 * * *
0.6 21931 * * *
0.7 29876 * * *
0.8 * * * *
0.9 * * * *

Table 5.9: Percentage of the tests with different packet factors that run over the threshold

Packet factor
Percentage of the simulation runs over the threshold (%)

Heartbeat interval (ms)

100 200 500 1000

80 63.64 72.73 81.82 72.73
90 63.64 81.82 81.82 72.73
100 63.64 81.82 81.82 72.73
110 63.64 81.82 81.82 63.64
120 63.64 81.82 81.82 63.64
130 63.64 81.82 72.73 63.64
140 63.64 81.82 72.73 63.64
150 63.64 81.82 72.73 54.55
160 63.64 72.73 72.73 72.73
170 63.64 63.64 72.73 63.64
180 63.64 72.73 72.73 54.55
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5.2 Result Evaluation

In this section, the results of different test suites in the previous section are summarized and
compared. The analysis and evaluation is based on OBC-NG monitoring requirements and the
performance indicators.

5.2.1 Monitoring Overhead

From the investigation of monitoring concepts in section2.4, PULL mechanism has two ways of
monitoring messages and creates double the amount of overhead. However, the results of test 1.1.1
and 1.1.2 show that in OBC-NG system, PULL mechanism creates about 2.5 times higher overhead
than PUSH mechanism. The reason is, a HB response in PULL is an ACK packet, which has the
size of 27 bytes. Whereas PULL HB request and PUSH HB are 18 bytes. PUSH-PULL mechanism
has the same overhead as PULL except the case that there is a failure and the resend mechanism is
triggered.

Test 1.1.1 and 1.1.2, where O2 has different monitoring roles, are compared. The setting that O2
observes only O1 has less communication overhead. More importantly, monitoring workload of M
in that setting is reduced.

5.2.2 Fault Response Time

The result of test 1.2 shows that the fault response time of PUSH mechanism is slightly higher than
PULL mechanism.

In test 2, the fault response times of the settings with one and two Observers when M fails are
the same. No matter which O detects the failure of M first, the reconfiguration is triggered by
the higher priority O, if it is alive, to prevent race condition. Race condition occurs when two
nodes select the configurations and trigger the reconfigurations at the same time. Even though the
number of Observers does not decrease the fault response time, its redundancy is important for
increasing the reliability of the monitoring system.

Test 3’s result supports test 1.2 that the fault response time of PUSH mechanism is slightly higher
than PULL mechanism. In addition, it gives more detail about the components of fault response
time that it is depending on:

• The duration between fault injection and when the next ACK or PUSH HB is expected from
the monitored node.

• The reconfiguration timeout
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• Network latency to deliver the reconfiguration, error notification, HB and ACK messages.
This is depending on the number of hops between the monitor and the monitored node.

Minimum value of fault response time is from the case that the fault injection occurs right at the
time when a HB or an ACK is expected to be sent out. Therefore, the value is the reconfiguration
timeout plus the network latency. Maximum value, however, includes the time from the failure to
the first reconfiguration is finished if the failure occur before it is finished. The duration is added to
the value of full HB interval + reconfiguration timeout + network latency, which is the case when
fault injection occurs right after the time a HB or an ACK is sent. The range between maximum
and minimum varies upon the HB interval.

Heartbeat Interval and Reconfiguration Timeout The settings with smaller HB interval, which
have higher HB frequency, allow the missing HB to be detected earlier. The reconfiguration timeout
needs to be set up to make sure the monitored node has failed to sent a HB. If the reconfiguration
timeout is too short, the risk of misinterpreting a delayed HB as a node failure is higher. However,
if the reconfiguration timeout is longer, the fault response time increases.

However, small HB intervals are not suitable for PULL mechanism since the monitoring messages
are in two ways (request and response) so it has higher risk of losing one of the messages.

The previous assumption of PUSH mechanism was that the resend mechanism cannot be imple-
mented and in order to implement it, the monitoring systems have to switch to PULL mechanism.
However, the HB interval and reconfiguration timeout of PUSH mechanism can be set up in a way
that it waits for the same amount of PUSH HB as the resend threshold. For example, with 100 ms
HB interval, and 400 ms reconfiguration timeout. After a missing HB, the monitored node passes
three HB intervals before the reconfiguration is triggered.

5.2.3 Monitoring System Stability

In test 4, network traffic is generated to test the monitoring system stability. For static HB interval,
different mechanisms with the same reconfiguration timeout of 120 ms have different the end
simulation time. The result of test 4.1 shows that PULL tends to run into a wrong configuration
and end the simulation earliest because of its two ways of communication. PUSH mechanism has
the higher end simulation time because it has one way of monitoring message and PUSH-PULL
is in the middle because in the end, PULL is implemented as a resend mechanism. To analyze
the mechanisms, PULL and PUSH mechanism without resend mechanisms are simulated in test
4.2 and the results confirm that PUSH mechanism is more stable than PULL, when there is high
network load.

HB interval settings affect the stability differently. From test 4.1 and 4.2, PULL is more stable with
the larger HB intervals and PUSH is more stable with the smaller intervals.



5.2. RESULT EVALUATION 69

The results of dynamic HB interval mechanism in test 5 show that it increases the stability of every
mechanism settings. However, 100 and 1000 ms HB interval shows lower efficiency than 200 and
500. The result of 100 ms HB interval supports the observation grade-heartbeat (dynamic HB)
experiment in subsection 2.4.3 that, frequent changes in HB interval result in the decline of the
monitoring system efficiency. In the case of 1000 ms HB interval, the adjustment is not frequent
enough when packet factor is high and the application packet size increases steeply.





Chapter 6

Conclusion and Future Work

In this work, various monitoring mechanisms of distributed system are investigated to design
the monitoring system of OBC-NG. Three mechanisms, PULL, PUSH and PUSH-PULL hybrid,
are chosen to be tested and analyzed to find the one that has high efficiency, low overhead and
high stability. The monitoring mechanism testing is divided into five test suites and the concluded
results are shown in section 6.1. Finally, section 6.2 presents the future outlook how the designs
and the results could be used for the further development of the OBC-NG system.

6.1 Final Results

Monitoring Mechanism

PULL, PUSH and PUSH-PULL mechanisms are tested with different mechanism settings and
environment settings to compare the monitoring efficiency, overhead and stability. The monitoring
models have been evaluated base on the OBC-NG monitoring requirements.

The monitoring mechanisms and mechanism settings have been analyzed as follows: The currently
implemented model of PULL has the highest monitoring workload on M and the highest network
overhead. Adjusting the role of Observer setting decreases the workload on the M, but the
monitoring network load is still higher than in the other two mechanisms.

PUSH mechanism has the lowest monitoring overhead, 2.5 times lower than PULL. Its fault
response time is slightly higher than PULL but it has a lot higher stability of the monitoring, when
there is high network load.
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Mechanism Settings

The higher number of Observers does not affect the fault response time but the reliability. The
HB interval should be set differently according to the mechanism. Larger HB intervals are more
efficient in PULL model and smaller intervals are better in PUSH and PUSH-PULL models. The
results show the range of the fault response time of each HB interval. However, the exact value
of a HB interval should be mission-specifically configured, using the range of the fault response
time measured from the test and in the mission requirements. Lastly, the higher reconfiguration
timeout decreases the probability of false monitoring judgment without the requirement of resend
mechanism.

Dynamic Heartbeat Mechanism

Base on the test results mentioned above, PUSH has been chosen for implementing dynamic HB
mechanism. The mechanism increases the stability of every HB interval setting and decreases
the false monitoring judgment. However, the default value of HB interval at the beginning and
the slack factor, to calculate the next interval, are important. If the HB interval is too short, the
monitoring efficiency decreases because the frequency of the HB interval adjustments is high. In
contrast to that, if the HB interval is too long, the HB interval adjustments are not frequent enough,
in case of high network traffic in the system. Therefore, the HB frequency and slack factor should
be chosen base on the maximum size of packets and the assumption of the frequency of application
packets.

6.2 Future Work

In the future, PUSH mechanism, which is selected in the final results as the most efficient mecha-
nism can be integrated in the Scalable on-board Computing for Space Avionics (ScOSA) project.
This project is the successor of the OBC-NG and has similar design. It is also a distributed, scalable
system with interconnected nodes, whereas nodes can be COTS as well as radiation-hardened
components.

The traffic sensing mechanism of PUSH dynamic HB, which is used for adjusting the watchdog
timer, implicitly informs the M about the current traffic load on the network. This enables the M to
inform other W nodes that they shall prioritize their output on the network. To derive a correct
verdict, the M needs to be positioned near or in the center of the network.

Heartbeat monitoring used in this work is a mechanism for implicit monitoring and the failure
is detected by the monitor. In the future, explicit monitoring can be integrated in the form of an
agent-based system, in which an application can use an agent service on the node to inform the M
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and the monitoring system about a certain inconsistency. The M and the monitoring system then
might have more time to evaluate the system health and to react in case required.

Moreover, the functionality of the monitor can be increased to evaluate the system health status,
in case a missing HB or other negative symptoms are sensed. After a missing HB, during the
reconfiguration timeout, the monitor has the possibility to prepare itself and the other nodes into a
pre-reconfiguration state. Tasks, such as searching for the next configuration in the decision tree and
the pre-distribution of checkpoint values for warm redundancy, can be conducted.

When a reconfiguration has to be triggered, the current mechanism reconfigures the entire system
including the healthy nodes. In the future, partial reconfiguration can be designed to isolate the
failed node and redistributing its tasks without interrupting the tasks of the healthy nodes.

Furthermore, monitoring can be conducted in a finer grained level, such as task level, instead of
node level. When a failure occurs, a specific task is migrated to another node instead of migrating
all the tasks. This requires a more detailed knowledge of the monitoring system, regarding the
faults, which can be provided by a more sophisticated error messaging.
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Appendix A

Appendix Table

A.1 Test Suite 5 Results

Table A.1: End simulation time of PUSH mechanism with different packet factors and slack factors
(⇤ is the end simulation time over 500000 ms)

Packet factor Slack factor
End simulation time (ms)

Heartbeat interval (ms)

100 200 500 1000

80

0 316 616 1516 3016
0.1 3906 4017 8611 9164
0.2 3914 10570 22710 10549
0.3 3922 20628 * *
0.4 21898 * * *
0.5 21915 * * *
0.6 21931 * * *
0.7 29876 * * *
0.8 * * * *
0.9 * * * *
1 * * * *

90

0 316 616 1516 3016
0.1 3506 3617 8182 8163
0.2 3514 14694 * 9530
0.3 3522 14721 * *
0.4 14563 54947 * *
0.5 14576 * * *

79
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0.6 14590 * * *
0.7 27004 * * *
0.8 * * * *
0.9 * * * *
1 * * * *

100

0 316 616 1516 3016
0.1 3205 3415 7117 8286
0.2 3213 15936 * 8391
0.3 3220 15967 * *
0.4 15939 * * *
0.5 15954 * * *
0.6 15969 * * *
0.7 26587 * * *
0.8 * * * *
0.9 * * * *
1 * * * *

110

0 316 616 1516 3016
0.1 2906 3017 6568 7178
0.2 2914 20440 21748 7280
0.3 2922 20503 * 8877
0.4 15532 * * *
0.5 17238 * * *
0.6 17255 * * *
0.7 20124 * * *
0.8 * * * *
0.9 * * * *
1 * * * *

120

0 316 616 1515 3016
0.1 2705 2817 6069 7344
0.2 2713 14398 14771 7453
0.3 2720 14426 * 7562
0.4 14229 14453 * *
0.5 14241 14481 * *
0.6 14252 * * *
0.7 14263 * * *
0.8 14275 * * *
0.9 14286 * * *
1 14298 * * *
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130

0 316 616 1515 3016
0.1 2506 2617 5614 6173
0.2 2514 12534 6292 6275
0.3 2522 32011 * 7874
0.4 13172 * * *
0.5 13184 * * *
0.6 13195 * * *
0.7 13206 * * *
0.8 13218 * * *
0.9 13229 * * *
1 13241 * * *

140

0 316 616 1514 3016
0.1 2306 2418 5110 6169
0.2 2314 9353 5759 6368
0.3 2322 9379 * 6472
0.4 9357 12616 * *
0.5 9370 12644 * *
0.6 9383 * * *
0.7 18659 * * *
0.8 26521 * * *
0.9 26556 * * *
1 26591 * * *

150

0 316 616 1513 3016
0.1 2205 2415 5077 5173
0.2 2213 8968 5186 6545
0.3 2220 8995 * 6657
0.4 12204 * * 6804
0.5 12221 * * *
0.6 12238 * * *
0.7 17763 * * *
0.8 44916 * * *
0.9 * * * *
1 * * * *

160

0 316 616 1516 3015
0.1 2007 2217 4612 5177
0.2 2015 4457 5287 5279
0.3 4342 8289 * 6896
0.4 8272 * * 7019
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0.5 8285 * * *
0.6 8299 * * *
0.7 14134 * * *
0.8 213941 * * *
0.9 * * * *
1 * * * *

170

0 316 616 1516 3014
0.1 1907 2020 4580 5142
0.2 1915 4494 4688 5301
0.3 4146 5155 * 5404
0.4 9775 10482 * 7386
0.5 9791 10510 * *
0.6 9806 * * *
0.7 10292 * * *
0.8 10303 * * *
0.9 * * * *
1 * * * *

180

0 316 616 1516 3013
0.1 1807 2017 4113 5187
0.2 1815 4065 4778 5392
0.3 3947 9358 * 5497
0.4 9333 * * 5603
0.5 9349 * * *
0.6 9365 * * *
0.7 9687 * * *
0.8 9699 * * *
0.9 * * * *
1 * * * *
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