Towards Wake-Resistant Aircraft for Safer and Greener Aviation

Jana Schwithal, Nicolas Fezans, Johann-Albrecht Focking
DLR (German Aerospace Center), Braunschweig

Greener Aviation 2016
October 13th 2016
Brussels, Belgium
Introduction

• Wake vortices are an inevitable, undesired side product of lift generation
• Wake vortex encounters can cause dangerous aircraft reactions
 • e.g. sudden rapid roll motion
 ➔ safety threat
• Wake vortex based separation minima assure safe flight
 ➔ capacity limiting

Source: FAA Advisory Circular, Subject: Aircraft Wake Turbulence, AC No: 90-23G, 2/10/14
Motivation

• If wake-induced aircraft reaction could be reduced

 ➔ Safety increase
 • Lower pilot workload
 • Reduced risk of injuries

 ➔ Reduced separation minima possible with the same safety standards
 • Capacity gain
Motivation

• If wake-induced aircraft reaction could be reduced
 ➔ Safety increase
 • Lower pilot workload
 • Reduced risk of injuries
 ➔ Reduced separation minima possible with the same safety standards
 • Capacity gain

IS THIS GAIN NOTICEABLE?
Very Simple Analysis of Possible Capacity Gain

- Analysis of possible capacity gain of reduced separation minima compared to ICAO standard
 - for reduction by 0.25 NM, 0.5 NM, 0.75 NM and 1 NM
 - for 20%, 40%, 60%, 80%, and 100% of aircraft equipped with a wake impact alleviation system

- Assessment of the capacity increase based on M/M/1 queueing model
Underlying Assumptions for the Capacity Gain Analysis

- M/M/1 queueing model
- Runway operated in segregated mode for landing only
- Random aircraft pairings based on traffic mix corresponding
- ICAO separation minima are used as reference (assuming 2.5 NM for minimum radar separation)
- Separation distance is never reduced below minimum radar separation
- Delay of 200 s is assumed in case of ICAO separation minima (derived from average delay at highly frequented airport Gatwick)
Resulting Capacity Gain

Chart 7

- 0.25 NM
- 0.5 NM
- 0.75 NM
- 1 NM

Percentage of aircraft equipped with wake impact alleviation system

Capacity [1/h]

20% 40% 60% 80% 100%

-0.25 NM -0.5 NM -0.75 NM -1 NM ICAO
Exploiting a Capacity Gain

- Capacity increase can be used for
 - Increase in traffic flow
 - Reduction of delay (i.e. time spent in holding)
 - Combination of higher traffic flow and shorter delay

Reachable situations with benefits on the delay and on the traffic flow
Resulting Mean Delay Reduction

-0.25 NM -0.5 NM -0.75 NM -1 NM

Delay reduction [s]

Percentage of aircraft with reduced separation minima (as followers)

20% 40% 60% 80% 100%
Motivation

- If wake-induced aircraft reaction could be reduced

 ➔ Safety increase
 • Lower pilot workload
 • Reduced risk of injuries

 ➔ Reduced separation minima possible with the same safety standards
 • Capacity gain ➔ reduced delay and/or increased traffic flow
 ➔ lower emissions (fuel burn and noise)
 ➔ lower costs for airlines
 ➔ increased income for airports
Motivation

• If wake-induced aircraft reaction could be reduced

 ➔ Safety increase
 • Lower pilot workload
 • Reduced risk of injuries

 ➔ Reduced separation minima possible with the same safety standards
 • Capacity gain ➔ reduced delay and/or increased traffic flow
 ➔ lower emissions (fuel burn and noise)
 ➔ lower costs for airlines
 ➔ increased income for airports

• Approach to mitigate aircraft reaction during encounter

 ➔ Wake impact alleviation control system

HOW?
Considerations for an Active Wake Impact Alleviation System

- Modification of feedback control laws could be considered but might be undesirable from the loads perspective if higher gains are used all the time.
 - detection or prediction (WEPS-P / WEAA) of the wake vortex required

- Forward-looking Doppler LIDAR sensor could be used for detection and for triggering a gain scheduling (not considered here)

- Sensor information about disturbance also allows feedforward disturbance rejection
Remote Wind Sensing Using a Doppler LIDAR Sensor (LIDAR = Light Detection and Ranging) measures relative wind velocity in line-of-sight direction ahead of the aircraft.

Online Wake Identification (OWI) estimates parameters of wake vortex model on the basis of the LIDAR measurements.

Wake Impact Alleviation Control (WIAC) determines the wake-induced disturbance moments resulting from detected wake vortex model and commands control surface deflections which compensate this disturbance.
Remote Wind Sensing

Wind field (possibly containing wake vortex) → LIDAR sensor → Online wake identification → Control command generation → Δ control commands

Wake impact alleviation control
LIDAR Sensor

- LIDAR sensor measures wind velocities at different locations at short distances (60 – 90 m) ahead of the aircraft.

- Due to line-of-sight (LoS) measurement most information about wake vortex velocities is lost.
Online Wake Identification

- Wind field (possibly containing wake vortex)
- LIDAR sensor
- Online wake identification
- Wake impact alleviation control
- Control command generation
- Δ control commands
Purpose of Online Wake Identification

- Pure line-of-sight measurement contains very little information about relevant vertical wind velocity

- Wake identification algorithm is used to reconstruct the missing information about the disturbance (based on DLR Patent EP 2 340 438 B1)

- Maximum likelihood problem: minimization of error between line-of-sight wind velocities measured by LIDAR and reconstructed by wake vortex model with estimated parameters

- OWI provides wake vortex model with estimated parameters as basis for wake impact alleviation control command generation
Online Wake Identification

[Diagram of wake identification system]

- ADS-B
- Wake vortex model
- LiDAR sensor model
- Optimization
- Final WV parameters
- Initialization
- Wake parameters
- Tipto-point update rate [Hz]
- Measurement buffer
- Δ control surface commands

Activation

Plausibility check?
Wake Impact Alleviation Control Command Generation

Wind field (possibly containing wake vortex) → LIDAR sensor → Online wake identification → Control command generation → Δ control commands

Wake impact alleviation control
Wake Impact Alleviation Control Command Generation

From OWI: Wake Parameters

From AC Air Data and Inertial Reference Systems

Prediction of strip positions at time “now + total time delay”

Wind velocity at future strip positions (Burnham-Hallock)

Force and moment contribution of each strip

Total induced forces and moments

Roll and yaw allocation

Pitch allocation

Control allocation

Δ Control surface commands

Determination of wind velocity at strips

Aerodynamic Interaction Model
Performance of Wake Impact Alleviation

- A320 encountering wake of A340 during approach
- Encounter angles: 10° lateral, 0° vertical

- Wake-induced aircraft reaction is significantly reduced
- 80% reduction of maximum bank angle during encounter

Just one illustrative example here! Please see other publications of the authors (AIAA Aviation 2014, CEAS EuroGNC2015, DLRK 2015 / CEAS Journal, …)
Conclusions

• A wake impact alleviation system can be used to significantly reduce the aircraft response during wake encounters
 • The LIDAR-based online wake identification and impact alleviation system OWIDIA is a promising approach for the mitigation of wake-induced aircraft reactions
 • Bank angle reduction of 80% is possible

• The wake impact alleviation system could be used to reduce separation minima
 • Simple estimations of possible achievements in terms of capacity gain suggest capacity increases of approximately 1.5 aircraft per hour (for 80% of aircraft at airport equipped with alleviation system) corresponding to approximately
 • 16 s maximum delay reduction
 • 1.5 aircraft per hour maximum traffic flow increase

BUT based on a reduction of the separation minima of 1 NM

The alleviation performance found in simulation leads to hope for a reduction of the separation minima even larger than 1 NM!
Conclusions

The alleviation performance found in simulation leads to hope for a reduction of the separation minima even larger than 1 NM!
What You Should Remember…

• Mitigation of wake-induced aircraft response… (for the follower)
 → enables the same safety standard for shorter distances between generator and follower aircraft

• The proposed wake impact alleviation system…
 → would enable relaxation of separation minima for the equipped follower aircraft

• Magnitude of acceptable reduction of separation minima still needs further research

• Use case and business case still not very precisely defined

• The maturation of such a system is strongly connected to aircraft system technologies considered in CleanSky and CleanSky2 but most wake vortex activities are rather linked to SESAR and SESAR2020

 → Onboard technologies (→CleanSky2) for wake vortices impact alleviation do not seem to be included in the current programme. Unfortunately?
Thank you for your attention!