Should My Vehicle Drive As I Do?

David Käthner, Stefan Griesche

DLR, Braunschweig

Problem Description

situation today: drivers have varrying preferences for implemented automation

behavior

approach: adaptation of the automation to indvidual driving preferences

goal: increase of driving comfort and attractiveness of vehicle

automation

individual driver A: defensive driver B: assertive styles

But should my vehicle drive as I do?

Modelling of Driver Preferences

- 1. situation dependent learning of individual driver behavior
- 2. clustering of inter- and intraindividual differences

development of the tool CONFORM

(**Conflict** rec**o**gnition by image processing **m**ethods)

method: multivariate time series clustering with pattern recognition

Use Case: overtaking on two lane highway

Use Case: overtaking on two lane highway

Simulator experiment: goals

phase 1: How do I drive?

modelling of individual driving styles and clustering

phase 2: Should my vehicle drive as I do?

 drivers' preferences: same driving style, similar, different?

Simulator experiment: automation level

phase 1: How do I drive?

• modelling of individual driving styles and clustering

phase 2: Should my vehicle drive as I do?

automated driving – SAE level 2

Simulator experiment: methods

phase 1: How do I drive?

• dynamic simulator: 41 subjects (34 male, 7 female)

phase 2: Should my vehicle drive as I do?

Simulatorexperiment: Versuchssetting

phase 1: How do I drive?

• dynamic simulator: 41 subjects (34 male, 7 female)

phase 2: Should my vehicle drive as I do?

• dynamic simulator: 35 of the 41 subjects from phase 1

Procedure with subject John Doe

John gets invited to participate in the study at DLR.

Procedure with subject John Doe

simulator training

5 min

Procedure with subject John Doe

simulator training

situation A: 25 times

5 min 15 min

Situation A

Procedure with subject John Doe

Procedure with subject John Doe

Procedure with subject John Doe

analysis and modelling

John Doe has completed the first phase and will be asked to return in 3 months.

... meanwhile, analysis of phase 1

analysis and modelling

goals:

- 1. determine a representative overtaking maneuver for each driver for each situation
- 2. assign drivers to driving style clusters

approach: modelling with CONFORM

determine the input variables:

- lateral deviation to the middle of the right lane
- own velocity
- lateral acceleration

all relativ to the distance between ego vehicle and leading vehicle

analysis: driving data from the overtaking maneuvers

Phase 1: Wie fahre ich?

Analyse: Herleitung des individuellen Fahrstils

analysis: determination of individual driving styles

situation B – left lane car with 140 km/h: trajectories of all 25 overtaking maneuvers of John Doe

Max Mustermann fährt in...

30% der Fälle ähnlich dem roten Fahrstil 70% der Fälle ähnlich dem blauen Fahrstil

result 1: representative driving style for one situation

result 1: representative driving style for one situation

result 2: classification of driving styles

result 2: classification of driving styles

result 2: classification of driving styles

Phase 2: Should my vehicle drive like me?

procedure for John Doe

input from phase 1: "pool" of driving styles

- driving styles A1-A4, B1-B4, C1-C4
- individual driving style of John Doe for situation A-C

Best-Worst-scaling for preference measurement

evaluation after trial 1:

<u>experimenter:</u> "Which overtaking alternative was best / worst?"

<u>John Doe</u>: "Alternative 1 was best, alternative 2 worst."

input from phase 1: "pool" of driving styles

- driving styles A1-A4, B1-B4, C1-C4
- individual driving style of John Doe for situation A-C

Best-Worst-scaling for preference measurement

input from phase 1: "pool" of driving styles

Phase 2: Should my vehicle drive like me?

individual results for John Doe

• maximum count = 35 (subjects) x 6 (alternative ratings) = 210

- one alternative per condition which was rated significantly worse than others
- → alternatives with more lateral acceleration and less safety distance

- subjects rate in all 3 conditions their own driving style as positiv
- extent of preference varies with situation

• intermediate result: my car does not necessarily have to drive like I do

- 1. Should my automation drive similar to me?
- 2. Can we predict preferences from the manual driving data?
- 3. Which benefit has a driver adaptive alternative compared to a standard profile?

1. Should my automated car drive similar to me?

analysis based on driving style clusters

- 2. Can we predict preferences according to manual driving data?
- 3. What benefit has the driver adaptive alternative compared to the baseline?
- 1. use standardized measures of Best-Worst-scaling to gain a better understanding of driver preferences
- 2. define baseline and driver adaptivity

definition of standardised measures = Best-Worst-Scores (BWS)

count rating as best alternative – count rating as worst alternative count of ratings for this alternative

- example: John Doe rates alternative A2 twice as best alternative and once as worst alternative
- -> BWS "Best-Worst" = (2-1)/6 = 1/6

Phase 2: Should my vehicle drive like me?

further questions and results

• <u>definition driver adaptive:</u>

Adaptation of the driving styles based on a predictor function, which estimates the preferred automated driving style based on the manual driving style.

Phase 2: Should my vehicle drive like me?

further questions and results

• <u>definition driver adaptive:</u>

Adaptation of the driving styles based on a predictor function, which estimates the preferred automated driving style based on the manual driving style.

• definition baseline:

The driving style cluster rated best on average for each situation.

- 2. Can we predict preferences based on manual driving data?
- 3. Which benefit has the driver adaptive alternative compared to the baseline?

	baseline: mean standard. "Best-Worst"	driver adaptive: mean standard. "Best-Worst"	increase
situation A	0.41	0.48	17%
situation B	0.23	0.40	74%
situation C	0.23	0.48	110%

Summary and Discussion

Should my car drive like me or similar?

- majority prefers an automation driving style similar to their own style
- two limitations:
 - Some subjects prefer an automation style contrary to their own style ->
 interaction with the automation may be necessary
 - Subjects with high lateral accelerations and short safety distances when driving manually prefer large safety distances and lower lateral accelerations
- driver adaptive alternative received higher ratings compared to the unadpated baseline

Thank you for your attention

David.Kaethner@dlr.de Stefan.Griesche@dlr.de

