EDDY CURRENTS for dry carbon fibers – a method for quality assurance in an automated facility

Dipl.-Ing. Christian Bülow

German Aerospace Center (DLR)

Content

- 1. EVo
- 2. Basics Eddy Currents
- 3. Mounting at the Robot
- 4. Coordinate transfer and data combination
- 5. Results
- 6. Conclusion
- 7. Outlook

1. EVo - Endkonturnahe Volumenbauteile

1. EVo - Research Production Line

Ply-Preparation

- Textile-Storage
- Cutter
- Ply-Storage
- Portal-Vacuum-Gripper

Netshape-Preforming

- Draping-Robot
- Consolidation-Press
- Handling-Robot
- Finetrimming-Robot

RTM-Line

- Movable Core-Mold
- 500t-Press
- 2 Component-Injection-Unit
- Curing-Oven

2. Basics - Eddy Currents

Schematic illustration of the generation of eddy currents

Illustration of the electric and capacitive coupling between the fibers

2. Basics – Eddy current pictures

→ 2D illustration of the conductivity of the material

2. Basics - Fiber angle analysis

3. Mounting at the Robot

Drawing of the linear robot

Robot on the way to a measurement

3. Mounting at the Robot

Mounting of the eddy current sensor EddyCus® Integration Kit

Drawing of an absolute sensor

4. Coordinate transfer and data combination

- Robot sends coordinates by ProfiNet to the measurement computer
- Every coordinate contains a timestamp
- Eddy current electronic sends time-stamped data to the measuring computer
- Combination of measurement data (400 Hz) and coordinates (120 Hz)

5. Results - Contact pressure

From left to right: light, middle, strong contact pressure

Results:

- Almost no optical difference
- Analyzed fiber angle shows no significant difference
- → Contact pressure has no significant influence for consolidated material

5. Results – Robot speed

- Measured four frequencies at once with 400 Hz
- Robot speed for accurate pictures: 100 mm/s
- Speed of 200 mm/s still gives acceptable pictures
- Faster measurement is at probes of 200x200mm because of acceleration times not possible

5. Results - Carrier material

carrier material: aluminium isolating carrier material

Results:

- conductivity of the carrier material is not influencing the measurement
- measurements directly on tools are possible

6. Conclusion

- Innovative and precise measurement system
- Potential for industrial application at many tasks in composite production
- carrier material has no influence
- Layer detection also at deeper lying layers

7. Outlook

- Experimental investigation of 3D-parts
- Automation of the fiber angle analysis
- Analysis of the draping of multiaxial fabrics
- Analysis of corners

THANK YOU FOR YOUR ATTENTION!

Dipl.-Ing.

Christian Bülow

German

Aerospace Center

Center for Lightweight Production Technology Institute of Composite Structures and Adaptive Systems

Ottenbecker Damm 12 21684 Stade Germany

Telephone Telefax E-mail Internet

+49 531 295-3724 +49 531 295-3702 christian.buelow@dlr.de www.DLR.de/fa/

