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Abstract— The paradigm of simultaneous and proportional 

myocontrol of hand prostheses is gaining momentum in the 

rehabilitation robotics community. As opposed to the traditional 

surface electromyography classification schema, in simultaneous 

and proportional control the desired force/torque at each degree 

of freedom of the hand/wrist is predicted in real-time, giving to the 

individual a more natural experience, reducing the cognitive effort 

and improving his dexterity in daily-life activities. In this study we 

apply such an approach in a realistic manipulation scenario, using 

ten non-linear incremental regression machines to predict the 

desired torques for each motor of two robotic hands. The 

prediction is enforced using two sets of surface electromyography 

electrodes and an incremental, non-linear machine learning 

technique called Incremental Ridge Regression with Random 

Fourier Features. Nine able-bodied subjects were engaged in a 

functional test with the aim to evaluate the performance of the 

system. The robotic hands were mounted on two hand/wrist 

orthopedic splints worn by healthy subjects and controlled online. 

An average completion rate of more than 95% was achieved in 

single-handed tasks and 84% in bimanual tasks. On average, five 

minutes of retraining were necessary on a total session duration of 

about one hour and forty minutes. This work sets a beginning in 

the study of bimanual manipulation with prostheses and will be 

carried on through experiments in unilateral and bilateral upper 

limb amputees thus increasing its scientific value. 

 

Index Terms—rehabilitation robotics, machine learning, 

adaptive systems. 

I. INTRODUCTION 

ESTORING motor function of the upper limb after 

amputation is one of the major challenges in the 

rehabilitation engineering field. To this aim, researchers have 

spent a significant amount of effort applying machine learning 

techniques to the surface electromyography signals (sEMG). 

The idea of classifying the sEMG patterns to predict the 

subject’s intent and to control an upper limb prosthesis dates 

back at least to 1967 [1]; it was based on the premise that 

amputees can voluntarily generate repeatable and distinct EMG 

signal patterns for each class of motion, which could then be 

mapped to appropriate prosthesis commands. The technique 

held the promise to radically advance myocontrol of hand 

prostheses, with respect to the conventional, two-state 

amplitude- or rate-modulated controllers (the so called 

proportional controllers) [2]. However, although significant 

achievements and results have seen the light in research labs 

[3],[4], these have impacted the clinical procedures in a very 

limited manner [5] and recent surveys reveal that abandonment 

of myo-controlled hand prostheses hovers around 40% [2].  

One of the main drawbacks of conventional classification 

control schemes is that only a finite number of pre-trained 

prehensile patterns can be (mutually exclusively) selected, 

without having the possibility of simultaneous control of 

multiple functions nor of proportional control. This approach is 

neither physiologically appropriate nor dexterous because 

arbitrary movements or hand postures cannot be obtained. In 

addition, classifiers cannot cope with the changes of EMG 

signals with time, like sweat, electrode displacement, contact 

impedance and fatigue [6], if not retrained. 

In order to overcome the above mentioned limitations, we 

hereby follow a different approach called Incremental-Learning 

Myoelectric Control (ILMC) [7]. We propose a non-linear 

incremental learning method in which occasional updates with 

a modest amount of novel training data allow continual 

adaptation to the changes in the signals. In particular an 

incremental variant of the Ridge Regression algorithm (iRR) 

[8] was coupled with Random Fourier Features (RFF) [9] to 

predict simultaneous and proportional control of multiple 

degrees of actuation (DoA) of a hand prosthesis. Other 

approaches aiming at simultaneous and proportional control are 

based upon Nonnegative Matrix Factorization [10], Multi-

Layer Perceptron [11], Support Vector Regression [12] or 

Bayesian theory [13]. These studies focused on wrist 

movements, rather than on intrinsic hand movements.  

The effectiveness of incremental supervised adaptation in 

myocontrol was demonstrated by Sensinger and colleagues 

[14], among the others. In their system samples drawn from 

subsequent training sessions were added incrementally to a 

baseline model obtained by a Linear Discriminant Classifier; 

the adaptive system achieved a reduction of the classification 

error of at least 26%, compared to the non-adaptive one (notice 

that, in that work, no control over the size of the training set was 

enforced, which led to high computational requirements). As a 

further example, Hahne and colleagues demonstrated the 

advantages of exploiting co-adaptation [15]. In their work, both 

able-bodied and congenital amputees achieved better 

myocontrol performance when engaged in a virtual 2D 

trajectory-following task while the machine learning system 

was being trained on the same data.   

In our previous work we preliminary showed that the ILMC 

approach was effective for predicting single-finger forces in 

online tests and for controlling the hand of a humanoid robot to 

grasp and release everyday-life objects [7]. In the present study, 

Online Bimanual Manipulation Using Surface 

Electromyography and Incremental Learning 

Ilaria Strazzulla, Student Member, IEEE, Markus Nowak, Marco Controzzi, Christian Cipriani, Senior 

Member, IEEE and Claudio Castellini, Member, IEEE 

R 



1534-4320 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSRE.2016.2554884, IEEE
Transactions on Neural Systems and Rehabilitation Engineering

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

2 

we rather use ILMC to have able-bodied subjects control two 

dexterous robotic hands (Fig. 1). The subjects were engaged in 

a functional test which involved single-handed or bimanual 

grasping and manipulation of common objects using the 

artificial hands, worn on orthopedic splints (Fig. 2), inspired by 

the Southampton Hand Assessment Procedure (SHAP) [16]. 

Average success ratios of ~93% and ~84% were achieved in 

single-handed tasks and in bimanual tasks, respectively. To our 

knowledge this is the first demonstration of bimanual 

incremental, simultaneous and proportional control of 

dexterous robotic hands. It represents an advancement both 

with respect to conventional proportional myoelectric control 

and to classification, since it enables the individual to control 

two multi-degree hand prostheses, using a continuous 

force/posture configuration domain.  

The experimental protocol was composed by ten tasks, five 

for single hand manipulation and five for bimanual 

manipulation. Each subset of tasks was ordered by increasing 

difficulty of execution. 

The experimental results have been analyzed using statistical 

tests. One of the goals was to assess the amount of needed 

incremental retrainings; a second test was conducted to assess 

the existence of a statistical difference between expert and naïve 

subjects, while the latter two were performed to confront the 

subjects’ performances in terms of manipulation dexterity: 

analysis of the completion times (Tcs) relative to intra- and 

inter-task manipulation. The intra-task manipulation analysis 

was conducted to assess the preference of the dominant or non-

dominant hand to the subjects, while the inter-task manipulation 

was performed to determine a statistical difference between 

tasks in terms of execution speed.  

The experimental results are promising for future clinical 

applications, especially because bimanual manipulation using 

two prostheses was never explored so far, to the best of our 

knowledge; nevertheless, several upper-limb functional 

assessment protocols, such as, e.g., the aforementioned SHAP 

and the ACMC [17] include bimanual tasks. 

II. MATERIALS AND METHODS 

A. Participants 

Nine able-bodied subjects with no known history of 

neuromuscular disorders (eight right-handed, one left-handed, 

24 to 42 years old) participated in this study. Three of the 

participants were expert users (subjects S1, S3, S4 already used 

the ILMC system and were familiar with the experimental 

setup) while six were naïve (subjects S2, S5-S9). Informed 

consent was obtained before the experiment, and formal 

approval for the experiment was obtained from the Ethical 

Committee of the DLR. 

B. Robotic Hands 

In this work a left- and a right-handed IH2 Azzurra robotic 

hand (Prensilia S.r.l., Pisa, Italy, Fig. 2) were used. Such hands 

comprise five DoAs (non-back-drivable electrical motors) 

allowing for flexion/extension of the thumb, index, middle, 

coupled ring+little, and rotation of the thumb (hereafter 

abduction/adduction). Each hand includes encoders on each 

motor axis, current sensors and low level control loops 

implementing current, position and torque controls of the 

DoAs, by receiving reference signals via the serial port.  

C. Incremental-Learning Myoelectric Controller – ILMC 

Incremental Ridge Regression (iRR) with Random Fourier 

Features (RFFs) was used to convert sEMG signals into control 

signals for the robotic hands, i.e., to enforce the myoelectric 

control. iRR is the standard Ridge Regression method (i.e., 

regularized least-squares optimization [8]) in which rank-1 

updates are used to update the model each time a new (sEMG, 

activation) pair is available. As a rank-1 update method we 

employed the Sherman-Morrison formula. RFFs are a non-

linear extension to Ridge Regression, first introduced by 

Rahimi and Recht [18]. iRR with RFFs already proved to be 

effective in myoelectric control of dexterous prosthetic hands 

[7]; we hereby sketch their mathematical foundations without 

giving the details. The interested reader is referred to [7]. 

The input space is represented by 𝑑-dimensional sEMG 

signals 𝒆 directly gathered from the electrodes, whereas the 

output space is represented by 𝑚-dimensional activation values 

𝝉, to be fed to the robotic hand as (normalized) activation 

signals. The activation signals ranged between 0 and 1, where 

0 represents the condition of no current given to the motor and 

1 the maximum current allowed by the motor. The activation 

signals were mapped directly to the PWM signal of the robotic 

hand, influencing the duty cycle, and consequently the current 

in each motor. Given an online training set, that is, a flow of 

(sEMG, activation) pairs, iRR incrementally computes an 

optimal linear model 𝑊 ∈ ℝ𝑚×𝑑 such that 𝝉 = 𝑊𝒆. Since 

myocontrol at the level of single fingers cannot be linearly 

solved [7], we use RFFs to evaluate a non-linear mapping 

𝜙:ℝ𝑑 → ℝ𝐷 and solve the linear regression problem in a 

feature space of dimension 𝐷 > 𝑑, rather than directly in the 

input space. In particular, iRR with RFFs computes an optimal 

non-linear model 𝑊′ ∈ ℝ𝑚×𝐷 such that 

𝝉 = 𝑊′𝜙(𝒆). 
 

Since the feature space induced by 𝜙 is finite-dimensional 

(and its optimal dimension 𝐷 must be found by exhaustive 

search), the approach is strictly bounded in space, making it 

suitable for online learning. In addition, the optimal model 𝑊′ 
can be easily evaluated by direct computation (no optimization 

algorithm is required) and can be updated at a reduced 

computational cost (exactly as it happens for iRR) using the 

selected rank-1 update method. 

 
Fig. 1. Schematic concept of the system used to interface the sEMG signals to 

the control system embedded in the robotic hand. The preprocessing block 

represents the amplification, rectification and filtering performed in hardware 
by the Otto Bock EMG sensors used.  

 

In this work the machine learning algorithm was trained by 
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collecting, for each forearm, 𝑑 = 10 sEMG signals from the 

extrinsic muscles of the hand, associated to 5 grasps/postures; 

and by mapping those signals to 𝑚 = 5 activation vectors for 

each robotic hand. During training, only minimal and maximal 

activation values 𝝉 were collected; nevertheless the predicted 

activations assumed graded values between 0 and 1. This 

approach makes the training shorter, easier and more realistic 

[7]. The predicted 𝝉 were fed online to the current control loop 

of the robotic hand. 

 
TABLE I 

ACTIVITIES OF DAILY LIVING USED IN THE FUNCTION TEST 

No. Name Description 
Single handed 

/bimanual 

Hand configuration 

required 
Failure reasons 

T1 Dial 1973 
 

Dial number 1-9-7-3 on the telephone pad Single Index pointing  Dial wrong number 
 

T2 Pour water 
 

Grasp a bottle and pour water in a mug Single Cylindrical 
Drop the bottle or place 

it outside the target area 
 

T3 Prism Grasp and transport a prism to a target area 
 

Single Tridigital 
Drop the prism or place 
it outside the target area 

T4 Door handle 
 

Turn a door handle Single Cylindrical -- 

T5 Credit card 
 

Remove credit card from slot  Single Lateral Drop the credit card 
 

T6 Tray Grasp and transport a tray to a target area 
 

Bimanual Lateral/ lateral 
Drop the tray or place it 

outside the target area 
 

T7 
Unscrew jar 

lid 

Grasp a jar with one hand and 

unscrew the lid with the other hand 
Bimanual 

Cylindrical/ tridigital 

or  

cylindrical/ cylindrical 
 

Drop the jar/jar lid or 
place the jar outside the 

target area 

T8 Phone call 
Grasp a phone receiver with one hand and 

dial 1-9-7-3 with the other hand 
 

Bimanual 
Cylindrical/ index 

pointing 
Dial wrong number or 

drop the receiver 

T9 Pass prism 
 

Pass a prism from one hand to the other Bimanual Tridigital/ tridigital 
Drop the prism or place 

it outside the target area 
 

T10 Buffet 
Grasp a plate with one hand and 

pick a ball from it with the other hand 
Bimanual Lateral/ tridigital 

Drop the plate 
or the ball 

 

Both the evaluation/update of 𝑊′ and the prediction of 𝝉 

require a few milliseconds on a standard laptop, enabling a 

transparent integration with the rest of the setup, blurring the 

distinction between the training and the prediction phases, 

typical in machine learning systems. A concept schematic of the 

controller is shown in Fig. 1.  

The EMG signals were collected from each forearm using 10 

commercially available sEMG electrodes (model MyoBock 

13E200, Otto Bock, Duderstadt, Germany). They process 

onboard the linear envelope of the raw EMG signal, thus 

providing an output signal which is correlated to the amplitude 

of the EMG signal of the muscles. 

The sEMG signals were acquired at a rate of 12 Hz, digitally 

filtered using a 1st order low-pass Butterworth filter (cutoff 

frequency: 1.5 Hz) and directly fed to the machine learning 

algorithm. At the same rate, the values 𝝉 were predicted, low-

pass filtered (1st order Butterworth filter, cutoff frequency: 1Hz) 

and directly used to control the robotic hands. 

D. Experimental Protocol 

The ability of deploying the ILMC onto a robotic hand in 

order to carry out Activities of Daily Living was evaluated 

using a functional test inspired by the SHAP [16] (Fig. 2). Ten 

tasks were chosen (TABLE I) based on the approximate 

percentage of usage of the main grasps [19], which were the 

cylindrical, lateral, tridigital grasps and the index pointing (Fig. 

2). Five of the ten tasks (T1..T5) required one hand to be 

performed whereas the other five (T6..T10) required bimanual 

manipulation. The subjects were asked to perform the single 

handed tasks (T1..T5) first with the right hand, then with the 

left hand, finally the bimanual tasks (T6..T10). Each task was 

performed in a series of five repetitions (T11..T15, T21..T25, …), 

for a total of 75 tasks. The tasks were ordered with increasing 

difficulty of execution based on pilot tests, conducted by the 

expert subjects before the experimental session. In the pilot test 

each subject performed five repetitions of each task, measuring 

the proper Tcs. At the end of the pilot session the Tcs of the 

subjects were confronted and averaged and a list of tasks was 

redacted based on the decreasing speed of performance.  

The execution time of each task was measured by each 

subject using a self-operated timer [16]. Two metrics were used 

to quantify the quality and performance of grasp: (1) the task-

completion rate (CR), defined as the percentage of correctly 

executed tasks; (2) the task-completion time (Tc), defined as the 

time spent to perform the whole task as measured by the timer. 

A task was considered successful when none of the failure 

reasons occurred.  

Before the experiment started each robotic hand was fixed 

onto an orthopedic splint which allowed reaching and grasping 

by able bodied subjects. The orthopedic splints were firmly 

fastened to the forearms of the subjects by means of three 

Velcro straps, to allow the subjects to perform only isometric 

contractions. The sEMG electrodes were applied on the 

subjects’ forearms, placed uniformly around the forearm in the 

proximal region, about 10 cm below the olecranon, using an 

elastic band (Fig. 2). However, since an exact placement of the 

sEMG electrodes over the muscles was not necessary for the 

correct training of the ILMC system, the electrodes could be 

placed in almost in any position distally to the elbow as long as 

they covered as many different muscles as possible. 

The four chosen grasps/postures (Fig. 2) were visually and 

verbally explained to the subjects, then the ILMC was trained 
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with the muscular activity related to hand relax and to the 

grasps/postures (TABLE II). During the training phase the 

subjects were guided to perform the desired grasps/postures 

according to a visual cue on a computer screen. The hand relax 

was adopted as the rest configuration for the ILMC system 

(corresponding to hand relax in TABLE II), whereas the 

grasps/postures were performed by executing isometric 

contractions relative to the requested movement (cylindrical, 

tridigital, lateral, point finger): the subjects were instructed to 

use a medium/high force range during the maximum 

contraction for each grasp/posture, in order to avoid the effects 

of fatigue for the whole duration of the experimental session. 

Subjects performed this training phase with both hands, in two 

distinct arm configurations, in order to initialize correctly the 

first map of postures of the ILMC.  
 

 
Fig. 2. A) The four grasps/postures used in the experiment: cylindrical, 

tridigital, lateral grasps and index pointing. B) Bimanual manipulation task: the 

subject is engaged in unscrewing the jar lid (T7 in TABLE I). C) 10 sEMG 
Ottobock electrodes set in an elastic band. D) The experimental setup consisted 

in a manually operated timer and ten objects of daily use.  

 

The first configuration was performed with both arms close 

to the body and flexed elbows (~90° deg.), whereas the second 

was performed with both arms extended and forearms pronated; 

the sEMG signals differ consistently in the two configurations, 

adopting this strategy the regression algorithm could converge 

to the right grasp. When performing the training contractions 

for the four grasps/postures, the subjects were instructed to 

contract their muscles at roughly 40% maximal voluntary 

contraction. This value was used as the maximum activation 

level in the ILMC (associated to τ = 1) as it is known that 

comfortable contraction levels fall typically between 10% to 

15% of maximum voluntary contraction [20].  

After training the subjects were allowed to use the system for 

five to ten minutes in order to become familiar with it. Soon 

after the task series commenced. During the task series, the 

subjects were allowed to rest whenever desired, in order to 

make the experience as comfortable as possible. Every time a 

subject and/or the experimenters deemed that the predictor was 

not accurate enough, the system was retrained, only for the 

inaccurate grasps/postures. Such new data was added on-line to 

the current model, which was possible because of the ILMC 

approach. After retraining, the experiment would go on. No 

limitation was placed on the number of retraining phases. The 

retraining phase was enforced whenever the subject and/or the 

experimenters agreed that the task was too hard to be completed 

because of grasp instability, which did not necessarily lead to 

the “failure” of the task. 
 

TABLE II 

VALUES OF  𝜏  DURING THE PREDICTION PHASE 

 
Abduction/ 

Adduction 
Thumb Index Middle 

Ring/ 

Little 

Hand relax 0 0 0 0 0 

Cylindrical 1 1 1 1 1 

Tridigital 1 1 1 1 0 

Lateral 0 1 1 1 1 

Point 1 1 0 1 1 

 

We hypothesized a statistical difference between the two 

groups of subjects (naïve and experts) as measured by the 

completion times (Tc) of the 15 tasks and the means of the 

repetitions. To test this hypothesis a repeated measures 2-way 

ANOVA (ANOVA1) was calculated, to determine if there was 

a statistical difference between the Tcs of expert and naïve 

subjects. A second statistical analysis was performed 

afterwards to assess statistical differences within the groups, 

across subjects [factors: hand dominance (non-dominant and 

dominant hand) and the tasks (5 repetitions per task for each 

hand)]. Two repeated measures 2-way ANOVA tests were 

calculated, the first (ANOVA2) relative to the expert subjects 

(3 subjects) and the second (ANOVA3) relative to the naïve 

subjects (6 subjects). Lastly, four unpaired t-tests were 

calculated to highlight any significant difference in the number 

of retraining phases between naïve and expert subjects. 

III. RESULTS 

To illustrate the experiments, we provided one video clip as 

supplementary material, showing the subjects engaged in the 

experimental session.  

The graphs in Fig. 3 show the acquired sEMG values of the 

right and left forearms associated with acquiring a 

representative task (i.e., T7 — Unscrew jar lid). The graphs also 

show the actual average predictions of the ILMC, the positions 

taken by the controlled DoAs and their motor currents. The 

duration of the window represents the completion time (Tc) of 

the third repetition of task T7 by one subject (S1). The hands 

were controlled in real-time during this task and the finger 

positions followed the prediction signals. 

The completion rates (CR) resulted quite high for single-

handed tasks (right hand 90.7%, left hand 95.6%) and overall 

did not greatly vary across subjects and tasks (from 82% for T5 

to 100% for T4) (Fig. 4). Tasks T1, T3, and T4 were performed 

with CR > 90% with the right hand, whereas T1-T4 were 

performed with CR > 90% with the left hand. The CR was lower 

for bimanual tasks (83.6%), with the lowest CR achieved in the 

case of the buffet task (66.7%).  
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Fig. 3. Representative bimanual task – unscrew jar lid. Acquired sEMG signals 

(in Volts) vs. normalized predictions (output of the ILMC), finger positions and 

motor currents (output of the IH2 hands, averaged across DoAs) during task T7. 
The superimposed striped rectangles delimit the times when the proper grips 

were performed, in order to complete the task, i.e. cylindrical grasp with the 

right hand, and tridigital grasp with the left hand. The graph represents the full 
trial with Tc = 20.12 s. Mean predictions and mean positions are relative to the 

DoFs actuated during the current grasps, i.e. for the cylindrical grasp all the 

finger flexions are considered, for the tridigital grasp the three flexions of 
thumb, index and middle fingers are considered. In the graphs is evident the 

mean values of the fingers positions follow the mean values of the prediction 

signals. 
 

The first two tasks of the experiment resulted with larger Tc 

for both hands when compared to the last three tasks (22.5 

seconds vs. 11.5 seconds with the right hand; 15 seconds vs. 

10.1 seconds with the left hand). The bimanual tasks were the 

most complex and difficult tasks, thus they required more time, 

as reflected from the results (Fig. 4). No clear learning curve 

appears within series.   

If the completion time results are divided based on the 

familiarity with the system, some interesting insights could be 

gained (Fig. 5). The larger Tc seen for tasks 1 and 2 (Fig. 4) can 

be largely attributed to the naïve subjects which completed the 

tasks much slower than the expert ones. This was true for both 

hands. This difference in completion time could not be 

observed with the last three single-handed tasks. On the other 

hand the completion rates (CR) were similar for naïve and 

expert subjects and for this reason were not further analyzed. 

The duration of the experiment, averaged across all subjects, 

was 96.62±22.05 minutes (mean ± standard deviation) of which 

86.72±24.00 minutes employed in the prediction phase, i.e. 

~10% of the total experiment time was spent in training (~5% 

of the time) or retraining (~5% of the time) the ILMC. On 

average 7±4.5 (median ± semi-interquartile range) retraining 

sessions were required by each subject during the experiment, 

each one lasting 39.14±17.16 seconds (0.75% the total average 

prediction time). The proportion of initial training, prediction 

and retraining time remained uniform across all subjects, where 

the prediction phase occupied the vast majority of the total time.  

Considering the distribution of the retraining sessions across 

the nine experiments (Fig. 6), no evident pattern emerges. On 

average, after the initial training session, the four 

grasps/postures were retrained uniformly: in total 2±0.5 

(medians ± semi-interquartile ranges), 1±2, 3±0.5 and 1±0.5 

retraining sessions were required for the cylindrical, tridigital, 

lateral grasps and index pointing, respectively (Fig. 7).  

 

 
Fig. 4. Results. Completion times (Tc), on the y axis, and completion rates (CR, superimposed on the graphs) achieved during the experiment. Mean ± SEM 

(standard error of the mean, represented by the error bars) calculated across all the nine subjects. Task repetitions are showed using different color bars. 
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In total, during the entire experimental session, the retraining 

phase were needed 80 times (in turn 21, 26, 20 and 13  times 

for the cylindrical, tridigital, lateral grasps and index pointing); 

in 57 of these cases no further retraining phases were needed 

for the same pattern immediately after, and the task could be 

successfully completed. This means that, in 71.25% of the 

cases, the retraining of one single pattern (associated to one 

grasp/posture) enabled the subject to carry on with the 

experiment. 
 

 
Fig. 5. Completion times (Tc) of expert vs. naïve subjects. The first block of 
bars refers to the right hand tasks, the second block to the left hand tasks and 

the third block to the bimanual tasks. Mean ± SEM of Tcs of all repetitions of 

the same task calculated separately for expert and naïve subjects. Completion 
rates (CR) values are not shown. 

 

The statistical analysis relative to the ANOVA1 revealed a 

high difference between the two groups (F(1,134)=24.25, 

p<0.001), as expected from the previous analysis and the 

observation of Fig. 5. This result was expected due to the 

different capability of expert and naïve subjects to execute 

naturally the requested tasks. 
 

 
Fig. 6. Durations and temporal synchronization of the experimental phases per 

subject. The black lines denote the exact time of retraining during the 
experiment.  

 

The ANOVA2 analysis results did not reveal a significant 

statistical difference neither for the hand dominance 

(F(1,128)=0.76, p=0.47) nor for the tasks (F(4,128)=2.80, 

p=0.10); also the results for the interactions between the factors 

did not show a significant statistical difference. Similarly the 

ANOVA3 results did not reveal any significant statistical 

difference for the hand dominance (F(1,260)=0.35, p=0.58) 

nor for the tasks (F(4,260)=0.10, p=0.98). The results for the 

interactions between the factors showed a significant statistical 

difference (p<0.05) for the hand dominance with tasks 

(F(5,260)=2.31, p=0.04).  

Lastly, the results of the four unpaired t-tests showed no 

significant statistical difference between expert and naïve 

subjects in the number of retraining phases, calculated for each 

grasp/posture performed (cylindrical: p=0.68; tridigital: 

p=0.23; lateral: p=0.08; point: p=0.16). 

The results of the statistical analysis were expected because 

the system implemented to conduct this experiment was 

symmetrical (no influence of hand dominance) and the ILMC 

control system was realized to make the subject comfortable to 

use it both with their dominant or non-dominant hand.  

These results confirm our hypotheses that the ILMC system 

was easy and very intuitive to use, both in the situations of non-

dominant hand and/or of naïve users.  

The statistical analysis of the completion rates (CRs) was not 

conducted since the values of CRs were similar for naïve and 

expert subjects and for this reason were not further analyzed. 

 
Fig. 7. Required retraining sessions during the functional test per subject.  

IV. DISCUSSION 

In this paper we have demonstrated the applicability of iRR 

with RFFs, an Incremental-Learning Myoelectric Control 

(ILMC) system introduced in [7], to a bimanual manipulation 

task performed by nine able-bodied subjects. This is, to the best 

of our knowledge, the first demonstration of this kind. The 

incrementality of the ILMC is in this case exploited to update 

the myocontrol model (retraining phases) whenever required 

by the subject, due to, e.g., a change in the signal, electrode 

displacement, fatigue, etc. It represents a shift of focus from the 

calibration of a learning machine to reciprocal learning, in 

which a dissatisfied user can learn to better use the prosthesis 

as the model adapts to different conditions. The duration of the 

retraining phase is relatively short and this is due to the 

mathematical and implementative structure of the ILMC 

system: the update of the internal parameters is complete after 

one retraining of the strength patterns relative to the 

grasp/postures (TABLE II). 
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The videoclip attached as supplementary material shows, in 

fact, some of the “tricks” enforced by the subjects during the 

execution of the more complex tasks; for example, shifting an 

object which is found in the way, or keeping an object still with 

one hand while operating on it with the engaged one. During 

the exemplary execution of task T7 (“unscrew jar lid”, from 

2:30 on) in particular, the power grasp enforced by the right 

hand is clearly unstable; nevertheless the subject succeeds in 

performing it, although it requires three successive attempts. 

On-demand model update can counter the adverse, 

destabilizing effects of the changes in the sEMG signals and in 

the subject’s posture, thus dramatically improving the 

reliability of the control system. Since this is the major reason 

for hand prosthesis abandonment [21] we claim that the concept 

of ILMC represents a major advancement with respect to the 

standard “pattern-recognition” myocontrol. In this particular 

experiment, in the vast majority of retraining sessions, 

retraining only once sufficed to enable the subject to carry on 

with the experiment, thus validating the reliability of the ILMC 

control system. 

Further research is required to assess this improvement, 

possibly by conducting the same experiment with and without 

the ILMC, on amputated subjects; so far, our experiments were 

rather aimed at assessing user performance in using the ILMC 

with two robotic hands. The results we have shown confirm the 

subjects’ learning capabilities: at the end of the experiments 

both naïve and expert subjects reached practically the same 

performance in terms of completion rate (CR) and completion 

time (Tc). We argue that this is due, besides the usage of an 

ILMC, to the flexibility offered by the control system, that does 

not implement a stereotypical grasp, but allows a graded control 

of the motor activations by the subject, in a really intuitive 

manner, so that he/she can find his/her own personal way to 

perform a grasp. This position was confirmed by the statistical 

analysis presented, where the same statistical result was found 

for the groups of naïve users and expert ones: no statistical 

difference with respect to the hand dominance or to the task 

executed.  

Bimanual tasks had lower CRs with respect to single-handed 

tasks; this seems reasonable since the former were more 

complex to perform, requiring the coordination of reaching and 

grasping of the two robotic hands. The lowest CR of all (66.7%) 

was achieved with the buffet task, requiring accurate, 

coordinated and graded grasping with both hands (i.e., lateral 

and tridigital). This task was probably the most difficult one to 

execute with the present robotic setup [22]. 

Increased values of Tc for the naïve subjects were observed 

for tasks T1 and T2 (both left- and right-handed, Fig. 5). It is 

reasonable to claim that the naïve subjects needed more time in 

order to learn how to operate the ILMC system, before being 

able to use it comparably with expert users. This seems to be 

confirmed by the fact that the completion times of naïve 

subjects during bimanual tasks are not statistically significantly 

different from those of the experts (Fig. 4, Fig. 5). 

From the completion times data (Fig. 4) it is evident that 

subjects S7 and S9 had globally the worst performance; in 

particular, during the experiment S9 was not able to perform 

any lateral grasp, although several retrains were done to 

improve the subject’s performance.  

Although it seems from Fig. 6 that the retraining had to be 

performed quite often through the session, during the pilot test 

and the experimental session, it was noticed that a continuative 

use of the system improves the ability of the subject to learn 

how to initialize correctly the first map of postures of the ILMC 

during the training phase (TABLE II). This was confirmed by 

the statistical analysis that showed a significant difference 

between expert and naïve subjects’ performances in terms of 

Tcs. This difference of Tcs is mainly attributed to the 

inexperience of the naïve subjects using the ILMC system and 

particularly during the initialization of the map of postures. For 

these reasons the continuative usage of the ILMC will avoid 

frequent retrainings of the system, that are a result of further 

modifications of the muscles movements during the 

grasps/postures. The facility of controlling the prosthetic hands 

movements using the ILMC permits every user to learn easily 

how to work with the system and rapidly improve manipulation 

performances. The lack of statistical difference between the 

number of retraining phases between naïve and expert subjects 

can be due to the ease of use of the ILMC, which was intuitive 

to control even for naïve subjects. 

A final remark to be considered in the next study is to 

increase the number of participants in order to improve the 

robustness of the statistical analysis.  

As a general, final remark, except for S9, every subject was 

able to perform each task (single-hand and bimanual) with no 

particular difficulties; for this reason, we claim that the ILMC 

was easy to use, as we wanted to prove at the beginning of this 

work.  

To sum up, we believe that the usage of an incremental 

machine learning method in myocontrol paves the way to a 

more stable and reliable control of prosthetic hands. iRR with 

RFFs is one such type of control. 
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