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Abstract/Kurzfassung

Abstract

As energy system analysis faces increasingly complex research questions, energy system
models like REMix (Renewable Energy Mix) deal with difficulties regarding the solvabil-
ity of these models in a reasonable time. This thesis applies a rolling-horizon approach
to REMix with the aim of a reduction in computational time while maintaining the key
modeling features. In order to deal with the issue of modeling time-integral constraints
like seasonal storage, an approach which uses overlapping time periods as well as a
temporal-hierarchical methodology are presented and compared using a reference model.
Through the application of a parameter study, the optimal configuration, i.e. number
of intervals and overlap-sizing, of the rolling-horizon approach is determined for the
reference model. The results show that a decrease in computational time of about
35% can be achieved using the developed temporal-hierarchical approach without a
significant reduction of the modeling features.

Kurzfassung

Durch die fortlaufend steigende Komplexität der Fragestellungen in der Energiesystem-
analyse, stoßen Energiesystemmodelle wie REMix (Renewable Energy Mix) bezogen auf
vertretbare Rechenzeiten an ihre Grenzen. Die vorliegende Forschungsarbeit wendet den
Ansatz der rollierenden Einsatzplanung, mit dem Ziel einer Rechenzeitreduzierung unter
Beibehaltung der essenziellen Modellierungsmerkmale, auf REMix an. Um der Heraus-
forderung der Modellierung zeitintegraler Nebenbedingungen wie saisonaler Speicher
entgegen zu treten, werden zwei Ansätze entwickelt und angewandt. Einerseits die Ver-
wendung von überlappenden Zeitperioden und zum Anderen ein zeitlich-hierarchischer
Ansatz. Weiterhin wird durch eine Parameterstudie die optimale Konfiguration der
Ansätze untersucht indem verschiedene Intervallanzahlen mit unterschiedlichen überlap-
penden Zeitperioden kombiniert werden. Die Auswertung der Ergebnisse zeigt, dass
durch die Anwendung der entwickelten Ansätze eine Rechenzeitreduzierung von bis
zu 35%, ohne einen wesentlichen Verlust an Modellierungsgenauigkeit, erreicht werden
kann.
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1. Introduction

1.1. Motivation

Driven by the aim of a sustainable, secure and affordable energy supply, the European en-
ergy system is currently experiencing a process of transformation. The liberalization and
decentralization of the energy economy as well as the increasing expansion of renewable
energies lead to a growing complexity of this system. To integrate intermittent renewable
energies into the energy network, the system has to be expanded by balancing measures.
Resulting political, technical and economic decisions regarding the future development of
the energy system can be supported by quantitative energy system models like REMix [1].

REMix (Renewable Energy Mix for Sustainable Electricity Supply) is based on a linear,
bottom-up optimization with a high temporal and spatial resolution, as well as a
growing number of technologies. Flexibility options such as grid power transmission
and grid expansion, storage systems or demand-side management further increase the
model complexity and size. This leads to a rising effort in solving the associated linear
optimization problems. System analysis of energy systems needs to address a wide
range of research questions and thus, a big number of different models with growing
complexity need to be solved. Furthermore, additional expansions of the model are
planned for the future. As the computation of the model can reach non reasonable
time and memory usage, options to decrease the mentioned have to be applied. Among
the possibility of model reduction (e.g. lower temporal resolution or node aggregation)
or decomposition approaches, the model can also be solved serially maintaining high
resolution and complexity. This can be achieved by a rolling-horizon (RH) approach
which splits the temporal model horizon into segments solving them iteratively. In
contrast to a perfect-foresight annual optimization the problem size of each segment is
reduced and thus a reduction of the mathematical complexity is achieved. Therefore,
the objective of the present work is to apply a RH approach to REMix and analyze its
effects.
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1.2. Research question

The RH approach has been successfully applied to different kinds of energy system
models mainly in the context of small microgrids and MILP (Mixed-Integer-Linear-
Programming) ([2],[3],[4]). There are two main aims of the implementation in these kinds
of models. On the one hand, reducing computational time by decreasing the number of
integer variables in a model. On the other hand, taking into account the uncertainty of
energy demand and renewable energy production using a rolling forecast. A massive
decrease of computational time ranging from 10 to 100 times could be achieved in these
models [2].
As the mentioned models are focused on dispatch and unit commitment problems (see
[5]) in the context of small energy systems, their structure differs to the structure of
REMix. Thus the following research questions have to be considered in the context
of a large scale, spatially and temporally highly dissolved linear optimization model
including optimal dispatch and capacity expansion:

1. What typical challenges occur in the implementation of a rolling-horizon approach?
2. Is a rolling-horizon approach suitable to reduce computational time?
3. Which configuration (e.g. sizing of the time segments) of the rolling-horizon

approach delivers the best results?
4. How can a rolling-horizon approach be improved to reduce the error compared to

the exact solution?

1.3. Structure of the thesis

The presented work is divided into 5 chapters. First, chapter 2 provides background
information on the structure of REMix as well as an overview on acceleration possibilities
for energy system models. Also, fundamental aspects and challenges regarding the
design of a RH approach are described.
Chapter 3 addresses the method of implementing a rolling-horizon approach. At
first, a test model is developed to identify the needed model adaptions. Using that
knowledge, the rolling-horizon approach is implemented in REMix as a next step. To
improve the quality of the rolling-horizon approach, a hierarchical heuristic focusing on
temporal scaling is developed which enhances the behavior of seasonal storage, capacity
expansion and time-integral restrictions. Besides, relevant indicators for the evaluation
are determined in this chapter.
The results are analyzed and evaluated in chapter 4. This chapter focuses on the answer
of research questions 2 and 3. Therefore the test model, a rolling-horizon approach for
a dispatch model and an improved rolling-horizon approach are evaluated.
The last chapter summarizes and evaluates the results. Possible improvements of the
rolling-horizon approach are discussed.



2. Background

2.1. Energy system model REMix

The energy system model REMix, developed at the German Aerospace Center (DLR), is
a linear bottom–up–model. REMix uses the General Algebraic Modeling System (GAMS
[6]) as a modeling language for mathematical optimization. The prevalent method in
energy system modeling, linear optimization, is used to calculate the least-cost system
configuration and operation using perfect foresight. An in-depth description of the
model’s structure and capability it can be found in [1] and [7]. However, to provide a
better understanding of the functionality of REMix, the linear objective function of the
problem is presented below:

∑
τ,y

(
cinvest(τ, y) +

∑
t

coperation(τ, y, t)
)
→ min, (2.1)

∀ τ ε TEC
∀ y ε Y
∀ t ε T

Where TEC describes the technologies used in the model, T the time intervals contained
by y, which defines the years considered for the calculation. In the following course
of the work, the term dispatch is being used in relationship with coperation(τ, y, t) of
the objective function and respectively the term cinvest(τ, y) is being associated with
capacity expansion.
Some specific features of REMix, necessary for the understanding of this work, are:

• A high resolution of the inputdata (e.g. renewable energy resources)
• The multi-sectoral approach providing electricity for the power, heat and transport

sector
• Ability to model balancing measures like short-term storage systems in hourly

resolution

Figure 2.1 describes the schematic structure of REMix. On the basis of the input-data,
the hourly demand and renewable energy supply is calculated by the Energy Data
Analysis Tool (EnDAT).
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Combined with the technology and sceneraio input, the cost-minimized energy supply
is calculated by the Energy System Optimization Model (OptiMo).

Figure 2.1.: Schematic description of the energy system model REMix [7]

As the rolling-horizon (RH) approach only finds an application in OptiMo, further
remarks are referring to OptiMo. Figure 2.1 shows that OptiMo is composed of many
different technology modules associated to different sectors. Using OptiMo as a tool
for energy system analysis, it is sometimes necessary to consider a great number of
modules, as well as a high temporal (typically 8760 time-steps for a year) and spatial
resolution. Typical research questions for example include the analysis of the influence
of short-term storage on transmission expansion in Europe. The computational time of
the mentioned typical models remain within a range of several days. It is obvious that
the calculation of a linear optimization problem with the mentioned requirements or
even a higher level of detail, can lead to high computational times. Also, technologies
like storage connect every single time step of the optimization horizon. That issue again
makes the optimization problem harder to solve, because it generates equations with a
huge amount of variables. Hence the RH approach addresses those problems by splitting
the horizon into small segments.

2.2. Acceleration strategies for energy system models

Since there are several possibilities to accelerate the computation of energy system
models, this chapter tries to classify the rolling–horizon approach in the context of
different acceleration strategies. In general, there are two main approaches to achieve an
acceleration of energy system models. First, by an adjustment and a parametrization
of the used algorithms. Second, by changing the problem formulation. Since the
RH approach can be seen as an adjusted problem formulation, only this kind of



2.3 Rolling horizon optimization for energy system models 7

acceleration strategy is regarded. The following figure gives an overview of possible
problem formulations with the aim of accelerating energy system models.

Problem 
formulation 

Pure model 
reduction 

… 

Decomposition … 

Meta heuristics 

Others (e.g. Evolutionary 
Algorithms 

Hierarchical approaches 

Rolling time horizons 

Myopic technology expansion 
planning 

Geographical „zooming“ 

Increasing phenomenological 
detail 

Figure 2.2.: Overview of possible problem formulations [8]

Pure model reduction can be used to simplify the model in an easy way. This can
be achieved by reducing the number of technologies or using bigger time steps in the
formulation of the optimization problem. Decomposition (e.g. Benders Decomposition
[9]) uses the approach of dividing the problem into a master- and a sub-problem solving
them iteratively. The RH approach can be classified in the category of meta-heuristics,
since it is not guaranteed that the exact solution of the optimization problem is achieved.
Another characteristic of the rolling-horizon approach is the segmentation of the original
linear program into sub-problems. Problem formulations of the sub-category hierarchical
approaches in figure 2.2 have in common that they solve the problem iteratively by
using solution parts of the preceding linear program.

2.3. Rolling horizon optimization for energy system
models

As mentioned in chapter 1.2, the rolling-horizon approach has been applied to many
different energy system models. The following chapter gives an overview of the functional
principle and difficulties using rolling-horizon in these models. Besides, important terms
used in this work are defined.
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Terminology and fundamental principle

Instead of calculating an optimization problem (with the typical time horizon of one
year) under perfect foresight, the problem is split into I intervals with the respective
interval-size Tinterval. Starting from the first hour of the overall optimization horizon
(T ), the I intervals are solved successively. After solving the optimization problem of an
interval, values of time dependent variables are passed on to the following interval. To
avoid an unrealistic behavior of technologies like seasonal storage, Tinterval can consists
of a foresight-horizon (Toverlap) reaching into the following interval. Therefore Tinterval
is divided into Toverlap and Tstep, representing the time-horizon from the start of the
interval until the next interval. Figure 2.3 clarifies the coherence between the mentioned
terms.

Tstep 

Tinterval 

Toverlap 

Figure 2.3.: Illustration of the used terms for rolling-horizon time-intervals

To get a better understanding of the fundamental principle of the RH approach, a
simple example is given in figure 2.4. It represents an optimization problem with a total
problem size of T divided into 4 intervals (i1...i4).

T 

i1 
i2 
i3 
i4 

t1 t2 t3 

Figure 2.4.: Schematic representation of the rolling-horizon approach



2.3 Rolling horizon optimization for energy system models 9

As a first step, interval i1 with the interval length of Tinterval (t1 to t3) is calculated.
The result of t1 to t2 (Tstep) is later used as a part of the solution while the result of
Toverlap (t2 to t3) is not considered anymore. The resulting variables at t2 (e.g., the
storage level of a seasonal storage) are subsequently passed to the next interval i2 and
used as start values. The described procedure is then repeated for all intervals and the
solution of the total problem T is given by the combination of the results of all time
periods Tstep.
Figure 2.4 shows the following coherence:

T = I ∗ Tstep + Toverlap, (2.2)

with the terms used in figure 2.3, the calculation of the length of a rolling horizon time
interval (Tinterval) can generally be formulated as:

Tinterval = T − Toverlap
I

+ Toverlap (2.3)

Using this calculation of Tinterval, the last interval includes Toverlap. Another approach
would be to let the last interval overlap into the following year.





3. Methodology

3.1. Handling time-integral constraints

A big weakness of the rolling-horizon (RH) approach is that time-integral constraints,
i.e., equations containing variables for each t ε T , cannot be modeled in an adequate
way. Unlike to a model with perfect foresight, the time horizon used to calculate an
interval does not cover the whole time horizon and therefore decision variables can’t
use the entire information of the model. The following example illustrates that issue
using the storage level constraint of long-term storage as a typical example. A simplified
equation to calculate the storage level is:

S(τ, y, t) =
t∑
t=1

Pin(τ, y, t)− Pout(τ, y, t)− Ploss(τ, y, t) (3.1)

∀ τ ε TEC
∀ y ε Y
∀ t ε T

With S(τ, y, t) representing the storage level of a specific storage technology at time
t. The storage level is calculated by adding inflow and subtracting outflow and losses
to the preceding storage level. It is obvious that the equation connects every single
time step of T . Hence, the optimal dispatch of the storage can only be achieved if
the optimization problem is solved considering the full time horizon T . Using rolling
time horizons, and therefore defining equation 2.1 over Tstep instead of T , the optimal
dispatch of the storage cannot be achieved. Instead, the storage will always empty itself
towards the end of Tstep. The next figure illustrates that issue looking at the storage
level in the first interval i1 of a RH example. The storage levels inside i1 are represented
by the solid lines, the storage levels in interval i2/Toverlap are represented by the dotted
lines.
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t1 t2

1
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Temporal model horizon of interval i1
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rolling-horizon
rolling-horizon + overlap
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Figure 3.1.: Example demonstrating the usage of overlaps

As expected, if the RH approach is used without providing an overlap (blue line), the
storage empties itself towards t2. Comparing that behavior with the reference model
(red line), i.e., a model solved over the whole time horizon, fundamental differences
between the storage levels can be observed. A partly solution of that problem is to
use overlaps as described in chapter 2.3. The brown line therefore shows the storage
level using RH with an overlap of 80% of the interval size. It can be observed that the
storage behavior slightly approximates to the reference model.The big disadvantage of
using overlapping time periods is that the problem size, which is tried to be decreased
with the RH approach, has to be increased by calculating more time steps. If and how
overlaps have an influence on the optimal solution, as well as computational time, will
be addressed in chapter 4.
Other time-integral constraints appearing in energy system models are yearly potential
limits. A typical example is the yearly CO2 cap. The sum over all CO2 pollutions emitted
by all conventional power-plants has to be lower than a certain capacity. Regarding the
RH approach, the question of distributing and assigning the CO2 pollution to the single
time-intervals arises. One option is to distribute evenly, whereby a mistake is made
since the same share of possible CO2 pollution is allocated to intervals with different
renewable energy potentials. Other approaches to tackle the problem are explained in
chapter 3.2 and 3.4.

3.2. Development of a test model

The energy system model REMix consists of a highly complex structure with lots
of different sets, variables and equations. An implementation of the rolling-horizon
approach therefore takes a lot of effort making model adaptions and testing the model.
Hence, it is useful to generate a test model with the main characteristics of REMix.
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The test model presented in this section serves two purposes. First, it helps to identify
necessary model adaptions to implement a RH approach (e.g. which equations have to
be modified). Second, such test environment enables to set up a a hypotheses to answer
research questions 2 and 3 (see chapter 1.2).
Features of the test model are:
• Electrical transmission grid of 12 different regions represented through the model

nodes n
• Yearly time series of electrical load and renewable energy (wind and photovoltaic)

input at every node
• 2 different fossil-fired power-plant technologies with different operational costs

and emission outputs
• Storage systems with various converter and storage unit capacities at every node

The following figure shows the structure of the test model.

3 

4 

10 

8 

11 

7 6 

1 

5 

9 

12 

2 

Figure 3.2.: Structure of the simple test model

Two different kinds of grid topologies are represented by the nodes 1-6 (ring network)
and 7-12 (mesh network). To enable an energy exchange between the network, different
renewable energy potentials, power-plant capacities and storage capacities are assigned
to the nodes. In addition, the link between node 6 and 7 ensures an energy exchange
between the networks.
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The objective function, as well as the most important equations regarding the rolling-
horizon approach are illustrated subsequently. Relevant model adaptions deriving
from those equations are described. As the test model does not take into account
capacity expansion, the objective function only consists of operational costs of the
power-plants(pp) (compare chapter 2.1):

∑
t,τ,n

cpp(t, τ, n)→ min, (3.2)

where cpp is a variable associated with the operational costs for each time step t,
technology τ and model node n. Besides the storage equation (2.1) which can be
partially handled by overlaps (compare 2.3), an emission constraint is formulated as:

∑
t,τ,n

Ppp(t, τ, n) ∗ e(τ) ≤ Emax, (3.3)

where Emax defines an upper threshold for electricity related emissions (cap) which may
not to be exceeded in time horizon T . The variable Ppp represents the power output of
a power-plant and eτ the assigned specific emission of the power-plant technology τ .
The simplest way to adjust the equation for the RH approach (distribute the emission
cap evenly) was described in section 3.1. This approach can be formulated by changing
the equation to:

∑
τ,n

t2(i)∑
t=t1(i)

Ppp(t, τ, n) ∗ e(τ) ≤ Tstep
T
∗ Emax (3.4)

Whereby this equation applies for each interval i of the time horizon T . The indices of t
(t1, t2) represent the start and end points of the respective time horizon Tstep (compare
chapter 2.3). If t3, i.e. the end point of the whole time interval including the Toverlap,
would be used as an upper bound of the sum, the result could be infeasible. This
is due to the global constraint on the emission (equation 3.3). Using t3 instead of t2
and Toverlap in place of Tstep, the power-plants could generate too much emission in the
period Tstep and therefore the global emission (sum over all interval emissions) could be
higher than Emax.
Another approach to handle equation 3.3 is described in the following section. Similar
to REMix, the renewable energy potential and electrical load are exogenous model
parameters in the test model. The needed conventional power-plant output and linked
emissions in each interval depend on the renewable energy production and load in this
interval. Hence, the residual load Pres(t) (total load - renewable energy production)
can be used as a parameter to distribute the emission cap to the time intervals. The
resulting equations can be written as:

∑
τ,n

t2(i)∑
t=t1(i)

Ppp(t, τ, n) ∗ e(τ) ≤
∑t2(i)
t=t1(i) Pres(t)∑T
t Pres(t)

∗ Emax, ∀ i ε I (3.5)
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This equation assures that each time interval i receives an emission cap dependent on
the relative residual load. That means that an interval with low residual load, i.e., a
high penetration of renewable energies, is assigned with a small emission cap and an
interval with a high residual load with a bigger emission cap.

3.3. Implementation in REMix

3.3.1. Definition of a reference model

A reference model has to be set up as a basis for the evaluation of the RH approach. This
reference model has to meet several requirements. It has to be solvable in a reasonable
time, because a parameter study will be performed varying the number of intervals and
overlap sizes. To analyze the effects of time-integral constraints (as described in chapter
3.1), technologies like storage systems and biomass power-plants have to be included in
the model. Also, the model should be based on a scenario including capacity expansion.
In this way expansion planning can be provided endogenously by the model to use it as
a foundation for a dispatch model (see chapter 4.2). Yet it can also be used to evaluate
expansion planning and dispatch using the temporal-hierarchical approach presented in
chapter 3.4.
The following table shows the basic configuration of the used model which meets the
described requirements:

Table 3.1.: Profile of the reference model
Model name REMix
Model type Least-cost system configuration and operation
Geographical focus Germany
Technical focus Coverage of the electrical demand
Spatial Resolution 20 regions based on [10]
Temporal resolution 1h steps
Temporal Horizon (T ) 8760h
Considered technologies Conventional power-plants

Wind, solar and run-of-river power-plants
Biomass power-plants
Pumped-storage power-plants

Input parameters and their temporal, technological and spatial dependencies are listed
in the next table. The input parameters listed below are based on [11] representing
data of the scenario year 2050.
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Table 3.2.: Input parameters of the reference model and their dependencies
Input parameter Dependencies

Temporal Technological Spatial
Efficiencies x
Potential limits and technical restrictions x
Operational costs x
Investment costs x
Fuel costs and certificate costs x
Electrical demand and renewable energy profiles x x

The output of the model is on the one hand, the optimal dispatch of the generation
power-plants. On the other hand, if capacity expansion is not predefined, the cost-
optimal expansion of the technologies listed in table 3.1. The presented reference model
matches the earlier defined requirement, since the spatial resolution was chosen in a way
that results in reasonable computing times. Besides, technologies like biomass power-
plants and pumped-storage power-plants are modeled with time-integral constraints.
Furthermore, the conventional power-plants are restricted by emission constraints which
also represent time-integral constraints.

3.3.2. Adjustment of the solve statement

After illustrating the required adjustments of time-integral equations (see 3.1 and 3.2)
further essential model adjustments are presented now. In the case of a RH approach,
it is obvious that the optimization model is not solved using the overall time horizon T .
In a first step Tinterval needs to be generated for every RH interval. This is achieved by
employing equation 2.3 with I and Toverlap as input parameters. With the information
of the time model of each interval i, the solve statement can be formulated as a loop,
calculating the intervals iteratively. The following flow chart demonstrates the adjusted
solve statement:
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Iterate:
∀ i ε I

True?

min(obj f),
∀ t ε Tinterval(i)

fix dispatch
variables(t)
∀ t ε Tstep(i)

calculate
combined
result

yes

no

Figure 3.3.: Rolling-horizon loop flow chart

The main component is a loop over all intervals I. As a first step in the loop, the
model is solved minimizing the objective function (see 2.1) for the current time interval
Tinterval. Afterwards, the results for all decision variables depending on t are fixed over
the time horizon Tstep. It has to be emphasized that the variables are only fixed for
Tstep, since the variables for Toverlap are not used anymore after the iteration. After
the last iteration, the combined result of all intervals is calculated. This is performed
by simply using the fixed variables of the whole time horizon T and calculating the
objective value. It is important to perform the last calculation of the combined result
to check if the global constraints are not violated.

3.4. Temporal-hierarchical approach to improve
rolling-horizon

As described in chapter 3.1, the RH approach is not suited to model time-integral
constraints such as seasonal storage or emission limits. Also, capacity expansion was
not considered until now. A common approach (compare [12]) is to solve the linear
problem with a lower time resolution than 1h (e.g.,12h, 24h, 48h,...) in advance of the
RH approach, important information can be provided. Figure 3.4 outlines the principle
of this "temporal-hierarchical approach":
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Solve model with
low temporal
resolution

1. Supporting points
2. Potential factors
3. Capacity expansion

Rolling-horizon with
high temporal
resolution

Figure 3.4.: Functional principle of the temporal-hierarchical approach

First, the model is solved over the time horizon T with a low temporal resolution.
Information about sampling points, potential factors and capacity expansions are then
passed to the RH approach which solves the model iteratively with a high resolution.
Why and how the passed information (red block) is used, will be described as follows.

1. Supporting points

Supporting points are needed to address the problem of seasonal storage described in
3.1. For every start and end point of a time interval i the values for the storage level are
fixed, employing the result of the model solved with low temporal resolution. Therefore,
the behavior of the the seasonal storage approximates to the global solution with a
high (1h) temporal resolution. The principle of supporting points is illustrated for a
small example in figure 3.5. The diagram shows the normalized storage level (y-axis) of
a seasonal storage. For each, a low resolution result, a high resolution result and the
result of a RH approach with 4 intervals is depicted. The time horizon T (x-axis) is
divided into 4 intervals (i1..i4).
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Figure 3.5.: Principle of supporting points to model seasonal storage

The blue graph, representing the model output of a model with low temporal resolution,
shows the behavior of a step-function.
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This is because the model uses average values dependent on the temporal resolution.
The diagram shows that the intersection between the blue graph and the start and end
values of every interval i are used as supporting points (gray dots). It can be observed
that the result of the RH approach (red line) approximates to the low resolution run
using the supporting points. More importantly, it also approximates the high resolution
dispatch behavior between the sampling points (brown line).

2. Potential factors

Besides the issue of modeling seasonal storage with a RH approach, the problem of
global potential restrictions (see chapter 3.1) has to be solved in an adequate way. For
that reason, potential factors are introduced. With the use of the low resolution result,
these potential factors are calculated for each interval with the goal of distributing the
total potential to the intervals. For the example described in equation 3.3, the potential
factors are calculated as:

ρ(i) =
∑t2(i)
t=t1(i) Ppp(t, τ, n) ∗ e(τ)∑T
t=t1 Ppp(t, τ, n) ∗ e(τ)

(3.6)

∀ t ε Tlowres
∀ i ε I

Inserted in equation 3.7, substituting T
Tstep

, one receives:

∑
τ,n

t2(i)∑
t=t1(i)

Ppp(t, τ, n) ∗ e(τ) ≤ ρ(i) ∗ Emax (3.7)

The described potential factors can also be used for other potential limit constraints
like a limit on yearly biomass for biomass power-plants.

3. Capacity expansion

As mentioned previously, the RH approach is not suitable for capacity expansion planning.
That is because the full time horizon of a model has to be known to perform optimal
investment decisions. Here again, the temporal-hierarchical approach can provide a
rough solution. The expansion of capacity (e.g., power-plants, transmission lines,..)
can be used and set as a lower bound for the RH approach. As a result, additional
investments needed to cover peak loads can be performed in the respective time intervals
of the RH approach.
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3.5. Identifying relevant indicators for the evaluation

The results of the RH parameter study in chapter 4 are compared to the results of the
reference model with a high temporal resolution. In order to compare the quality of the
RH results with the reference model, relevant indicators are needed. The following table
gives an overview on the used indicators and the assertions they make or questions they
try to answer.

Table 3.3.: Indicators to analyze and compare the rolling-horizon with the reference
case

Analysis Indicator
Can a significant reduction in Computation time
computational time be achieved?
First impression of the similarity Objective value
of both results
How big is the deviation in the Total yearly CO2 emissions
operation of technologies
affected by time-integral constraints?
Is the rolling-horizon approach Temporal profile of seasonal storage
capable of modeling seasonal storage?

Since the objective value only represents the investment and operational costs, indicators
like the total CO2 emissions are chosen to compare the RH result with the "global" result.
The presented indicators will also be used to compare the rolling-horizon approach with
the advanced temporal-hierarchical approach.
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Simulation environment

The subsequently presented results are all computed in the same simulation environment.
Hardware settings of the machine are:
• Intel Xeon CPU X5650 @2.67 GHz with 6 cores
• 96 Gb of Ram

IBM ILOG CPLEX ([13]) is used to solve the model generated by GAMS ([6]). CPLEX
is set up using 1 thread and the barrier optimizer, which uses the interior point method
([14]) as a solving algorithm. In the further course of the work, the required time to
generate the model along with the translation of the model to a CPLEX readable code
is referred to as model-generation-time. The time needed by the algorithm to solve the
linear problem is referred to as CPLEX-time and the combination of both, i.e. the total
computation time, is denoted as computational-time.

4.1. Evaluation of the test model

CPLEX-time

One of the objectives of the test model is to estimate the possible reduction of
computational-time in REMix through the application of the RH approach. As the test
model does not use the exact same modeling approach as REMix, only the CPLEX-time
is evaluated in the following parameter study of the test model. The table below
shows the CPLEX-time for RH runs with varying interval-sizes (column entries) and
step-sizes (row entries). Fast values of CPLEX-time are marked in green and slow values
in red respectively. Tinterval and Tstep are presented as hours (h) as well as days (d),
weeks(w) and months(m). As explained in chapter 2.3, Tinterval −Tstep describes Toverlap.
Therefore, diagonal entries of the table represent a model without overlaps. Starting
from a diagonal entry, the overlap-size increases from the bottom to the top. Reading
the table from left to right for a specific row, the overlap-size also increases as Tstep is
fixed and Tinterval increases.
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Table 4.1.: CPLEX-time [s] for different interval and step sizes

Scale:

4 d 7 d 2 w 1 m 6 w 2 m 10 w 3 m
CPLEX-
time [s]

[h] 96 168 336 672 1008 1344 1680 2016 1400
4 d 96 530 534 546 667 873 1144 1295 1342
7 d 168 313 335 396 509 619 794 1262
2 w 336 187 225 266 330 371 499
1 m 672 140 158 170 287 220
6 w 1008 116 126 205 229
2 m 1344 120 126 210
10 w 1680 128 175
3 m 2016 157

100

Tinterval

T
st

ep

Ref:
189

Compared to the reference case (CPLEX-time of 189s), a reduction of the computational
time can only be achieved using Tstep in a range of 672h-2016h, i.e. 5-13 intervals,
without or only with a slight overlap (dark green entries). Ranging from 116s-170s,
these set ups of Tstep and Tinterval reduce the computational time by 10-39%. Using
small step sizes and big interval sizes, i.e. a big Toverlap, the computational times are
multiple times higher than the reference case (dark red area).
The observed results indicate two main circumstances. First, it can be observed that
with the same Tinterval, the CPLEX-time increase along with a decreasing Tstep. This
can be contributed to the increasing problem size related to an increasing Toverlap.
Second, only considering diagonal entries of the table, an optimum in the reduction of
CPLEX-time can be achieved with a Tstep/Tinterval of about 1008h which translates into
a RH setting of 9 intervals.

Objective Value

Besides the primary objective of reducing the computational time, the RH approach
should also deliver a result similar to the reference case. A first indicator for the
similarity is the objective value, which is calculated using equation 3.2. The following
table shows the percentage deviation of the objective value for varying Tstep and Tinterval.
The table can be read the same way as described for the previous table.
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Table 4.2.: Deviation of the objective value to the reference case [%]

Scale:

4 d 7 d 2 w 1 m 6 w 2 m 10 w 3 m
Deviation obj. 

Value [%]

[h] 96 168 336 672 1008 1344 1680 2016 0.5
4 d 96 0.47 0.49 0.40 0.33 0.31 0.31 0.28 0.25
7 d 168 0.35 0.20 0.23 0.22 0.21 0.19 0.17
2 w 336 0.11 0.17 0.16 0.15 0.14 0.12
1 m 672 0.09 0.12 0.12 0.12 0.12
6 w 1008 0.14 0.12 0.12 0.09
2 m 1344 0.10 0.10 0.10
10 w 1680 0.13 0.11
3 m 2016 0.11

0.1

Tinterval

T
st

ep

Table 4.2 shows that the deviation of the objective value is within a range of 0.09% to
0.47% for all RH instances. The best results, i.e. the smallest deviation, is achieved
using a big Tstep (green data at bottom right). Another effect which can be observed
is the tendency of an increasing deviation with decreasing Tstep (increasing Toverlap
respectively).

Overall, the presented results show a negligible deviation of the objective value. This can
be explained through the objective function (equation 3.2) which takes into account the
operational costs of the conventional power-plants. As the emission cap for the mentioned
is distributed to the intervals using equation 3.7, the dispatch of the conventional power-
plants does not have an essential influence on the objective value. The table also shows
the tendency of an increasing deviation along with a decreasing Tstep. This however
suggest that an increasing overlap causes none or a negative influence on the objective
value, although an increasing overlap aims to improve the behavior of model components
like seasonal storage. This is due to the assumed modeling parameters of the storage
in the test model. The storage in the test model are modeled as short-term storage.
Hence, their charge and discharge cycles take place in short time periods, e.g. several
hours or days. The expected positive effect on seasonal-storage therefore cannot be
observed in the table.

4.2. Rolling-Horizon dispatch in REMix

In this section, the implementation of the RH dispatch is evaluated using a parameter
study. Therefore the analysis of the indicators presented in chapter 3.5 is performed for
varying numbers of intervals (2,4,6,8,10,20,30,40,50,60,70,80,100) and relative overlap-
sizes (0%,20%,40%,60%,80%,100%,200%), to figure out the most effective settings of the
RH approach for the evaluated reference model. Only selected results of the parameter
study are evaluated in the following section. The full results of each evaluation are
shown in the appendix (see section A.1).
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4.2.1. Reduction of the computational-time

This section analyzes the dependency of the computational-time to the number of
intervals and overlap-sizes. As the main aim of the RH approach is a reduction of
computational-time, this evaluation helps to filter out relevant parameters for the further
analysis. The following scatter plot shows the relative deviation of the computational-
time to the reference model for different overlap-sizes over the number of intervals.
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Figure 4.1.: Computational time for different rolling-horizon settings as a relative devia-
tion from the reference model

A first glance at the figure shows a similar trend of the data independent of the overlap-
size. Starting from 0 to 100 intervals, an initial decrease of the y-value followed by an
increase can be observed. As the y-axis represents the relative deviation of computational
time to the test model, values above 0 represent an increase of computational-time
whereas values below 0 represent a decrease of computational-time. Hence, the figure
shows that using an overlap-size of 200% leads to an increase in computational time
independent of the number of intervals. Likewise, an overlap of 100% leads to an increase
of computational time for almost any number of intervals. A decrease is only being
achieved for small or no overlap-sizes with a number of intervals ranging from 2-70. The
highest decrease in computational time (the minima of the scatter plots) of about -50%
is achieved using 8 intervals and no overlaps. For the same amount of intervals and an
overlap-size of 40% a reduction 30% is achieved.
The observed data confirms the results of the test-model, since it shows that big
overlaps as well as a big number of intervals lead to an increase of computational-time.
Furthermore, the best result is achieved with a similar amount of 8 intervals (9 intervals
in the test model). As all data points and their related parameters above the x-axis fail
the aim of a reduction of computational-time, they will not be considered in the further
evaluation of the results. The shape of the scatter plots can be attributed to two effects.
First, the effect of increasing computational-time occuring with an increasing number of
intervals after reaching a minimum value, is due to an increasing model-generation-time
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with a growing number of intervals. As a hypothesis, the positions of the minima can
be explained by scaling effects of the solver algorithm. Until a certain point, a decrease
of the problem size, i.e. more intervals, leads to savings in computation time. After
that point (observed minima in figure 4.1) is reached , the decrease of computational
time does not further scale for an increasing amount of intervals.

4.2.2. Deviation of the objective value

The objective value analyzed in this section represents the total operational costs of all
power-plants (compare equation 2.1). Therefore, the objective value of the reference
model provides the information about the optimal dispatch of all power-plants and
storage units within the whole time-horizon T . In order to get a first indication of the
quality of the RH result, a comparison to the objective value gives a rough assessment
of the similarity of both dispatch behaviors. Table 4.3 provides the relative deviation of
the objective value of the RH model to the reference model. Not all parameter values of
the parameter study are shown as some of them are not suitable due to an increase of
computational-time (as described in section 4.2.1).

Table 4.3.: Relative deviation of the rolling-horizon objective value to the reference
model for varying number of intervals and overlap-sizes

2 4 6 8 10 20 30 40 50 60 3
0 0.13 0.98 1.02 1.03 1.48 1.69 2.30 2.76 2.90 3.19

20 0.09 0.06 0.24 0.28 0.32 0.59 1.02 1.17 1.46 1.54
40 0.10 0.05 0.07 0.10 0.12 0.28 0.47 0.64 0.78 0.81
60 0.03 0.04 0.06 0.08 0.10 0.21 0.34 0.52 0.54 0.58
80 0.02 0.04 0.05 0.07 0.09 0.19 0.30 0.38 0.56 0.61

100 0.02 0.03 0.05 0.06 0.07 0.18 0.28 0.30 0.48 0.54
0
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The presented table shows two distinct trends. First, reading the table from left to
right, an increase of the number of intervals goes along with an increasing deviation to
the reference case. Second, reading the table top down, an increase of the overlap-size
achieves an improvement of the accuracy of the objective value. Hence, the relative
deviation ranges from 0.02% (best case, bottom left) to 3.19 % (worst case, top right).
Unlike the results provided by the test model, Table 4.3 shows that the overlap-size
decreases the relative deviation of the objective value. Moreover, it shows that a high
number of intervals, i.e. a small Tinterval, leads to an inaccurate model result. The
observed effects suggest that the dispatch behavior of power-plants and seasonal-storage
units improve with an increasing model horizon due to the greater consideration of
time-integral constraints (compare chapter 3.1). In order to find out in which exact
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way time-integral constraints effect the model results, the subsequent sections deal with
indicators affected by time-integral constraints.

4.2.3. Effects of time-integral constraints

After analyzing the issue of time-integral constraints and suggesting the use of overlaps
as a partial solution in chapter 3.1, this section quantifies the effect of the different
overlap-sizes and numbers of intervals on the constrained variables.

Temporal profile of seasonal storage

As described in chapter 3.1, it is necessary to calculate the storage level of a storage
(equation 2.1) over a sufficiently sized Tinterval to receive an approximate solution to
the reference model. In order to quantify the influence of overlap-sizes and number
of intervals on the temporal profile of the storage, the person correlation coefficient
(PCC) is used as a measurement of linear correlation between the temporal storage
profiles of the RH result and the reference model. In general, the PCC for two data-sets
(X(x1, ..., xn),(Y (y1, ..., yn)) with n values is calculated as:

r(X, Y ) = cov(X, Y )
σX ∗ σY

=
∑n
i=1(xi − x̄)(yi − ȳ)√∑n
i=1(xi − x̄)2(yi − ȳ)2

, (4.1)

with cov(X, Y ) as the covariance of X, Y , σ as the standard deviation and x̄, ȳ as the
mean of the sample value.
In order to compare the temporal profiles (reference model ref and rolling-horizon
model rh) of a specific seasonal storage α, the above equation can be reformulated as:

rα(ref, rh) =
∑T
t=1(Sα,ref (t)− S̄α,ref (t))(Sα,rh(t)− S̄α,rh(t))√∑T
t=1(Sα,ref (t)− S̄α,ref (t))2(Sα,rh(t)− S̄α,rh(t))2

, (4.2)

where Sα,t represents the storage level of a seasonal storage at time-step t. The PCC (r)
can obtain values between -1 and 1. Using the example of equation 4.2, the interpretation
of the value range of r can be formulated as:

• r > 0 represents a positive correlation, i.e. the values of the storage levels tend to
increase and decrease simultaneously
• r < 0 represents a negative correlation, i.e. the values of the storage levels tend to

increase and decrease in the opposite direction
• r = 0 represents no correlation, i.e. the values of the storage levels neither increase

nor decrease together in a certain pattern
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The application of the PCC on the results of the RH parameter study is illustrated using
the figure below. In order to examine the influence of the overlap-size on the temporal
storage profile, the figure shows the normalized storage level over the time-horizon T
for two RH settings using the same number of intervals (8) and different overlap-sizes
(0% and 200%). These results are compared to reference model.
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Figure 4.2.: Normalized storage level over T for different modeling approaches

As described in chapter 3.1 the use of overlaps improves the result as the profile of
the storage (blue line) approximates to the reference model in its behavior. A y-axis
offset between the RH curves and the reference model can be observed. This offset can
be ascribed to the formulation of the storage equation in the reference model, which
constrains the start and end value of the storage level to be identical, independent of
their value. Regardless of the y-axis offset of the reference model, the storage levels
seem to be similar in their profiles. This results in a rα of 0.84 using an overlap-size of
200% (blue line). In contrast, the temporal profile of the RH result with no overlap (red
line) shows the behavior described in chapter 3.1. Towards each end of a time period,
the storage empties itself. Hence, the global course of the graph is not comparable to
the reference model. Still, between the start and end points of the intervals a similar
behavior in comparison to the reference model can be observed (for example the two
significant peaks between 2000h and 4000h). Both mentioned aspects of the observed
behavior result in a rα of 0.56.
The example described above only refers to a single storage unit α of the whole model.
For further analysis, the mean value of all PCCs (r̄) over all seasonal storage in the
model is used:

r̄ =
∑A
α=1 rα
A

, (4.3)

where A represents the number of all storage units in the model. Table 4.4 shows r̄
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for the same parameters of overlap-size and number of intervals as presented in section
4.2.2.

Table 4.4.: Mean correlation coefficient r̄ for a different number of intervals and varying
overlap-sizes

2 4 6 8 10 20 30 40 50 60 1
0 0.66 0.60 0.52 0.53 0.33 0.18 0.24 0.10 0.12 0.13

20 0.88 0.82 0.74 0.66 0.48 0.29 0.28 0.17 0.18 0.16
40 0.90 0.83 0.82 0.72 0.63 0.40 0.34 0.24 0.20 0.20
60 0.92 0.84 0.80 0.75 0.68 0.50 0.36 0.31 0.23 0.22
80 0.92 0.85 0.81 0.75 0.73 0.57 0.42 0.35 0.28 0.25

100 0.92 0.87 0.82 0.79 0.77 0.60 0.47 0.40 0.33 0.27
0
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An increase of intervals (horizontal values) trends to reduce the correlation coefficient
and an increasing overlap-size (vertical values) increases the correlation coefficient. The
overlayed heatmap of the table shows the same pattern as observed in table 4.3 (relative
deviation of the objective value) with r̄ ranging from 0.1 to 0.92. Hence, it can be
concluded that one of the reasons of the observed pattern of the objective value for
varying parameters can be attributed to the suboptimal modeling of seasonal storage
for an increasing number of intervals.

Annual carbon emissions

In order to evaluate the power-plant dispatch for the parameter study, the annual carbon
emissions are assessed. The parameter of carbon-certificate-costs of the reference model
scenario is chosen to be high relative to the operational costs. Since CO2-emissions
certificate costs do not affect the dispatch of biomass power-plants due to their CO2
neutrality, the operational costs of the conventional power-plants exceed the operational
costs of the biomass power-plants. As the mentioned power-plants represent the total
variable generation in the model, a low-cost dispatch manifests in a low usage of
conventional power-plants and a high usage of biomass power-plants. High annual
carbon emissions therefore represent a high ratio of conventional power-plant production
to biomass power-plant production. The following bar chart shows the increase of
carbon emission relative to the reference model for a selected number of intervals and 3
different overlap-sizes.
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Figure 4.3.: Relative increase of carbon-emissions in relation to the reference model for
selected number of intervals and overlap-sizes

The bar chart displays two main parameter relations. First, using an overlap-size of
only 20% or 40% regardless of the number of intervals, a much lower increase of relative
carbon-emission can be observed. Second, similar to the previous evaluations, a decline
of the quality of the result, i.e. relative deviation to the reference model, can be observed
with an increasing amount of intervals.
The mentioned effects can be traced back to the time-integral constraint of the biomass
production limit. In the reference case the energy production of the biomass power-plant
can be distributed optimally over the whole time-horizon T . Hence, an optimal dispatch
resulting in a minimum of carbon-emission can be achieved, since the energy output of
conventional power-plants is minimized and the optimal use of biomass power-plants
is ensured. Increasing the number of intervals and therefore decreasing Tinterval leads
to two limitations of the dispatch behavior. First, a decreasing flexibility of operation
due to a suboptimal balancing of intermittent renewable energy production. Another
important aspect related to the time-integral constraints of the potential limit, is that the
same amount of biomass-potential is assigned to each interval relative to Tstep (compare
equation 3.7). Hence, the same biomass-potential can be assigned to an interval with
a high need of additional biomass-energy or a low need of additional biomass-energy
respectively. A small interval-size therefore leads to a restricted dispatch behavior,
which again results in an increase of carbon-emissions.
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4.3. Rolling-Horizon dispatch using a
temporal-hierarchical approach

The results presented in the previous section revealed that, despite the use of overlaps,
the RH approach is not suitable to handle time-integral constraints for a big number
of intervals. This section evaluates the temporal-hierarchical (TH) approach presented
in section 3.4 using a previous low resolution model result as an input for the RH
approach. The first subsection focuses on the achieved improvement through the
temporal-hierarchical approach especially regarding the results of section 4.2.3. The
second subsection deals with the influence of the temporal resolution of the low resolution
model on the RH results. Therefore the TH approach is applied using 6h, 12h and 24h
as a temporal resolution of the low resolution model.

4.3.1. Improvement of the rolling-horizon result

In order to evaluate the improvement achieved through the temporal-hierarchical
approach, the results of the "regular" RH with no overlap are compared to the TH
approach with a temporal resolution of 12h. The main indicators evaluated in chapter
3.5 are compared for 4, 20 and 40 intervals in the following figures.
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Figure 4.4.: Comparison between the regular RH approach and the TH approach for
main indicators

The figure on the left-hand side shows the deviation of the objective value relative to
the reference model for each, the regular RH approach and the TH approach. It can
be observed that regardless of the number of intervals, the TH approach improves the
result significantly. In the worst case (N = 40) the relative deviation of the objective is
reduced by a factor of 2.6 from 2.76% to 1.08%. For N = 20 and N = 4 a reduction
from 1.69% to 0.74% and 0.98% to 0.37% is achieved.
One of the causes of that reduction can be explained by the middle plot. As demonstrated
in chapter 4.2.3, the increase of CO2-emissions indicates a limited, non-optimal scheduled
dispatch behavior of the power-plants. The TH approach reduces that effect in a similar
way as observed in the left figure. This is due to the improved distribution of potential
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limits to the intervals using the information of the low resolution result (compare
equation 3.6). Hence, a significant absolute reduction of CO2-emissions can be observed
especially for a high number of intervals. For 40 intervals, an absolute reduction of 15.6
percentage points (from 21% to 5.4%) is achieved.
The bar chart on the right-hand side compares the mean correlation coefficient (r̄) of
both approaches. As described in section 3.4 the temporal profile of seasonal storage
is improved using supporting points at the start and end of each interval. Similar to
the evaluation in the previous chapter, the correlation coefficient is used to assess the
storage behavior. The bar chart proves the effect of the supporting points. Regardless
of the number of intervals, the value of r̄ is approximately 1 for the TH approach, while
r̄ decreases for increasing number of intervals for the regular RH approach.

4.3.2. Influence of the temporal resolution

The previous section only analyzed the effect of the temporal-hierarchical approach for
a temporal resolution of the input data of 12h. As the calculation of the low resolution
result goes along with an increase of the total computational time, it has to be evaluated
which temporal resolution is sufficient to improve the RH approach without increasing
the computational time in a non reasonable way. As a first step to assess this issue, the
following table shows the possible reduction of computational-time compared to the
reference model using the TH approach for temporal resolutions of the low resolution of
6h,12h,24h using 8 intervals.

Table 4.5.: Relative reduction of computational-time for the evaluated temporal resolu-
tions of the TH approach

Temporal resolution [h] 6 12 24
Relative reduction of computational-time [%] 35 40 43

Without factoring in the additional time required to calculate the low resolution model,
a relative reduction in computational-time of 46% can be achieved. Table 4.5 shows
that the use of a resolution of 6h decreases the computational-time by 11 percentage
points compared to the possible total reduction of computational-time. For decreasing
temporal resolutions, a convergence towards 46% can be observed. In order to evaluate
the influence of the temporal resolution on the results, the following figures compare the
results of the same indicators as presented in the previous section for varying temporal
resolutions (6h,12h,24h).
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Figure 4.5.: Results of the temporal-hierarchical approach for various temporal
resolutions

The figures show two relevant coherencies between the selection of the temporal resolution
and the improvement for the RH approach. The first one concerns the chart on the left
and the chart in the middle. Both plots show that with the highest temporal resolution
of 6h the best results can be achieved compared to the reference model. Furthermore,
doubling the temporal resolution leads to a strong increase of the indicators, whereas
redoubling the temporal resolution to 24h does not seem to increase the results in a
similar way. The second observation concerns the correlation coefficient. Evaluating
the chart on the right, the TH approach seems the be very effective in modeling the
seasonal storage regardless of the temporal resolution. For each of the resolutions a r̄
between 0.991-0.999 is achieved.
In order to answer the question of the most suitable low temporal resolution, two
statements derive from the results. First, the improvement of the modeling of seasonal
storage seems to be rather independent of the low temporal resolution and delivers a
sufficient result for all temporal resolutions. This suggests that even lower temporal
resolutions, e.g. 48h, 96h, ..., might be suitable to calculate the necessary supporting
points. Hence, the TH approach can be performed with a very low temporal resolution
and therefore does not increase the overall computational time in a considerable way.
Second, the TH approach does not seem to improve the other indicators in the same
manner as r̄. Although the previous section showed that an improvement of those
indicators can be achieved in comparison to the RH without overlaps, an overlap of
20% or 40% achieves the same results as the TH approach (compare section 4.2.2). In
consequence, the use of the TH approach has to be further discussed in the context of a
global optimal reduction of the computational time.
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4.4. Discussion of the results

As an initial step of the analysis of the results, the evaluation of the test model provided
a first hypothesis on the dependency of computational-time and the sizing of the RH
intervals. The results suggest that there is an optimal number of intervals to achieve
a maximum in the reduction of computational time, while other amounts of intervals
even lead to an increase of computational time. This hypothesis could be confirmed
evaluating the reference model in REMix. Without concerning the use of overlaps,
a maximum reduction of computational time of about 50% could be achieved using
8 RH intervals. Therefore, the research question on the possibility of a reduction of
computational time can be approved. However a general statement on the best settings
of the RH, i.e. choice of number of intervals, cannot be derived of the results as they
only apply for the evaluated model size of the reference model.

Further analysis showed that without extending the RH approach with the use of
overlaps or a temporal-hierarchical approach, a large error is made in comparison to
the results of the reference model. This error mainly derives from the issue of modeling
time-integral constraints. The results evaluated in section 4.2 suggest that the use of
small overlaps (20%, 40%) is suitable to improve the modeling of time-integral potential
limits without a significant increase of computational time. The analysis of the temporal
profile of seasonal storage however showed that the use of small overlaps is not sufficient
to model the behavior of long term storage. Though, the TH approach is best suited to
address that issue using supporting points for the seasonal storage. The TH approach
however does not seem to handle the issue of time-integral potential limits for low
temporal resolutions of 12h and 24h. Still, acceptable results could be achieved with a
temporal resolution of 6h resulting in a total reduction of computational-time of 35%.

Regarding the primary objective of the RH approach of reducing computational time
while maintaining a high model quality, a general statement of a preferable approach,
i.e. overlap-sizes or TH approach, cannot be made since they both have the mentioned
advantages and disadvantages. A combination of both approaches, e.g. a TH approach
with a low temporal resolution of 48h combined with a small overlap-size, could deliver
the best result in terms of computational time and model quality. The examination of
that issue has to be carried out in further analysis.





5. Conclusion and Outlook

The intention of this paper was to figure out if and how an implementation of a rolling-
horizon approach is suitable to reduce computational-time of large-scale, linear energy
system models like REMix while maintaining the key modeling features. The results of
the presented work contribute to answer the raised research questions as they implicate
the following conclusions:

1. The main challenge regarding the implementation of a RH approach is the precise
modeling of time-integral constraints.

2. With regard to the evaluated reference model, the rolling-horizon approach is
suitable to reduce computational time by 30-35% without a significant reduction
of the modeling quality.

3. The highest reduction of computational time could be achieved using 8 rolling-
horizon intervals. Though, a general statement on the optimal number of intervals
cannot be derived from the results as they are only valid for the reference model.

4. Referring to 1., the approach of overlap-sizes as well as a the applied temporal-
hierarchical approach are able to improve the modeling of time-integral constraints.

A shortcoming of the presented evaluation is that the optimal settings of the RH
approach are not transferable to all energy system models. Therefore, the practical
application in Energy System Analysis requires further investigation on the dependency
of interval-sizing and model reduction time for various model structures and sizes. This
analysis aims to develop standard-settings for the RH approach for variable model
types.
As the use of overlaps goes along with a strong increase in computational time, the
implementation of that approach needs to be improved. This can be achieved through
an technique used in [12] which uses a small overlap representing an aggregation of
future time steps.
Another improvement of the RH approach can be a parallelization of the solving process.
Using the temporal-hierarchical approach, supporting points and potential factors for
each interval can be provided. Hence, the intervals can be solved independently of
another. Using a parallelizable simulation environment to solve the RH intervals at
once promises further acceleration of the computational-time.
Compared to the application of RH approaches in the literature (mostly Mixed-Integer
models, e.g. [2]), the presented results are not able to show such a large decrease of
computational time (factor 10-100). Regarding the further development of REMix and
the extended modeling of power-plants through discrete variables, the RH approach
promises a strong impact on the reduction of computational-time for these models.
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A. Appendix

A.1. Full results of the dispatch model parametr study

Table A.1.: Deviation of the computational-time relative to the reference model [%] for
a varying number of intervals and overlap-sizes (entire parameter study)

2 4 6 8 10 20 30 40 50 60 70 80 90 100
0 -30 -44 -45 -47 -46 -43 -35 -29 -22 -12 -3 6 13 24

20 -20 -35 -36 -36 -36 -33 -26 -22 -15 -4 4 13 21 29
40 -8 -24 -27 -29 -28 -25 -19 -14 -8 1 9 18 29 36
60 -4 -17 -18 -22 -19 -17 -14 -8 -2 9 16 22 33 41
80 4 -4 -11 -13 -14 -11 -7 0 8 16 22 31 39 48

100 13 7 1 -4 -3 -2 2 8 14 21 29 38 46 54
200 87 72 63 55 55 44 48 50 54 61 71 78 83 88

Number of Intervals
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Table A.2.: Relative deviation of the rolling-horizon objective value to the reference
model for a varying number of intervals and overlap-sizes (entire parameter
study)

2 4 6 8 10 20 30 40 50 60 70 80 90 100
0 0.13 0.98 1.02 1.03 1.48 1.69 2.30 2.76 2.90 3.19 3.33 3.57 3.68 3.87

20 0.09 0.06 0.24 0.28 0.32 0.59 1.02 1.17 1.46 1.54 1.80 1.87 2.15 2.07
40 0.10 0.05 0.07 0.10 0.12 0.28 0.47 0.64 0.78 0.81 1.07 0.99 1.23 1.34
60 0.03 0.04 0.06 0.08 0.10 0.21 0.34 0.52 0.54 0.58 0.74 0.65 0.84 0.95
80 0.02 0.04 0.05 0.07 0.09 0.19 0.30 0.38 0.56 0.61 0.60 0.69 0.84 0.84

100 0.02 0.03 0.05 0.06 0.07 0.18 0.28 0.30 0.48 0.54 0.57 0.62 0.77 0.63
200 0.01 0.03 0.03 0.04 0.05 0.09 0.18 0.21 0.25 0.37 0.41 0.43 0.53 0.50
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]

Number of intervals
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Table A.3.: Mean correlation coefficient r̄ for a varying number of intervals and overlap-
sizes (entire parameter study)

2 4 6 8 10 20 30 40 50 60 70 80 90 100
0 0.66 0.60 0.52 0.53 0.33 0.18 0.24 0.10 0.12 0.13 0.06 0.09 0.06 0.08

20 0.88 0.82 0.74 0.66 0.48 0.29 0.28 0.17 0.18 0.16 0.12 0.13 0.13 0.13
40 0.90 0.83 0.82 0.72 0.63 0.40 0.34 0.24 0.20 0.20 0.20 0.18 0.15 0.19
60 0.92 0.84 0.80 0.75 0.68 0.50 0.36 0.31 0.23 0.22 0.23 0.21 0.19 0.19
80 0.92 0.85 0.81 0.75 0.73 0.57 0.42 0.35 0.28 0.25 0.24 0.22 0.21 0.20

100 0.92 0.87 0.82 0.79 0.77 0.60 0.47 0.40 0.33 0.27 0.28 0.25 0.23 0.21
200 0.93 0.92 0.88 0.85 0.83 0.75 0.65 0.54 0.49 0.45 0.38 0.34 0.31 0.29
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Table A.4.: Increase of carbon emissions [%] for a varying number of intervals and
overlap-sizes (entire parameter study)

2 4 6 8 10 20 30 40 50 60 70 80 90 100
0 1.0 8.3 8.4 8.5 12.2 13.4 17.7 21.0 21.3 22.8 24.1 25.4 25.7 27.6

20 0.7 0.4 1.9 2.1 2.4 3.5 6.7 7.7 9.0 9.8 11.3 11.6 13.3 12.9
40 0.7 0.3 0.4 0.4 0.5 1.1 2.0 3.0 3.3 3.4 4.6 3.9 5.3 5.7
60 0.1 0.2 0.3 0.4 0.4 0.6 1.0 2.0 2.0 1.5 2.1 1.7 2.2 2.5
80 0.1 0.2 0.3 0.4 0.4 0.6 0.8 1.6 2.3 2.0 1.5 2.3 2.7 2.1

100 0.1 0.2 0.3 0.3 0.4 0.6 0.8 1.1 1.8 1.5 2.2 1.9 2.3 1.6
200 0.1 0.1 0.1 0.2 0.2 0.4 0.6 0.7 0.7 1.2 1.5 1.5 2.1 1.5
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