Virtual microstructure generation using Voronoi tessellation

Author: Mohammad Rizviul Kabir

Contact:
MR Kabir
Institute of Materials Research
German Aerospace Center
Linder Höhe, 51147 Köln
Email: mohhammad-rizviul.kabir@dlr.de

WF Institute Seminar
19 September, 2016
This item was submitted to DLR ELIB Repository (http://elib.dlr.de/) by the author and is made available under the following Creative Commons License conditions.

For the full text of this license, please go to:
http://creativecommons.org/licenses/by-nc-nd/2.5/
Motivation

- Microstructure modelling are required for a quantitative understanding of microstructure-property correlation

- To achieve this goal, one requires digital microstructures as an input for computational analysis (for example, for FE analysis)

- Digital microstructure can be obtained
 - From 3D computed tomography:
 • (+) meets the reality, captures the microstructural complexity
 • (-) deterministic, not always representative to the macroscopic samples
 • (-) costly and time consuming
Motivation

– An equivalent (or approximated) virtual microstructure from mathematical algorithms:
 • (+) approximated microstructure that meets the real statistics
 • (+) can be representative, flexible to generate, cost and time efficient
 • (-) not all microstructural complexity can be captured
 • (-) requires trials to get the real statistics
• A powerful mathematical tool for microstructure generation is VORONOI cells using those mathematical algorithms. Commonly used for polycrystalline alloys.
• In many cases, these mathematical tools can be used as an alternative to the 3D computed tomography approach
Voronoi based modelling - My history

From year 2007-2010:
Micromechanical Modelling of deformation for TiAl alloy (MTU Project)
 o Using multiscale framework
 o Crystal plasticity constitutive model

From year 2010 – 2015
Developing ideas and providing solutions for
 o Size effect in CPFEM for different lamellar thickness
 o Use of strain gradient plasticity
 o Simulation of Nanoindentation for grain scale property prediction
 o Fracture of TiAl in multiscale framework
 o Using cohesive and XFEM
 o Microstructure modelling of TiAl to simulate CREEP (In MTU’s interest)

How to generate virtual microstructure for TiAl ??
Voronoi based modelling - My history

European Structural Integrity Society (ESIS) Joint Meeting of TC 1 and TC 8
Berlin 14-15 June 2012

Neper polycrystal generator
Open Source (https://sourceforge.net/projects/neper/)

User Guidelines

If you use Neper for your own work, please,

- mention it explicitly in your reports (books, papers, talks, ...).
Basics of Voronoi tessellations
Voronoi Tessellation – Centroidal Voronoi

Voronoi

Centroidal voronoi

Seed Points
Centroids

Lloyd’s Algorithm
Iteration
Voronoi Tessellation – Laguerre Tessellation

- Assign weight to the Seed
- Calculate power-distance of the seeds (Radius of circle at that seed)
- Cut through circle intersections

Seed Points

Voronoi

Laguerre
Neper polycrystal examples

Poisson Voronoi
Seed positions are random

Hardcore Voronoi
Exists a non-zero minimum distance between the seeds.

Centroidal Voronoi
Seeds and centroids coincide
Target microstructure using Neper

Neper Microstructure → My Script → Target Microstructure
Grain Cluster (domain based seeds)

Procedure followed:
- Manipulate seed density
- Mix hardcore and centroidal voronoi
Grain cluster (Bi-modal seed distribution)

Seeds generated using MATLAB by Henning Richter

Procedure followed:
- Replace original seeds by external seeds
- Use Lloyd algorithm to control the distance between seeds and centroids
Lamellar microstructure

Procedure followed:
- Generate cells with random seeds
- For each cell define lamellar thickness and lamellar normal
Duplex microstructure

Procedure followed:
- Generate cells with random seeds
- Only for selected cells define lamellar thickness and lamellar normal
Equiaxed grains (cast/forged microstructure)

Procedure followed:
- Use hardcore voronoi
- Control edge length size
- Define grain aspect ratio
Elongated grains (Extruded Microstructure)

Procedure followed:
- Use hardcore voronoi
- Define grain aspect ratio
- Translate coordinates along x/y/z direction
Martensite approximation with lamellar microstructure-1

SLM Microstructure Ti6Al4V
Fig 4b from Kasperovich et al. Materials and Design 105 (2016) 160–170

- Needlelike structure is approximated as fine lamellae
- Pores are not modelled
Martensite approximation with lamellar microstructure-2

Martensite lamellae in regular grains
Graded Microstructure: Example TBC

Procedure followed:
- Clustered voronoi tessellation

Application: Modelling of
- Mechanical properties of TBC
- Damage and fracture modelling of TBC
- Determination of permeability
- Etc.

- Top coat
- TGO
- Bond coat
- Substrate
Primary and secondary microstructure

Skutterudite Material
Fig 4.3 (a)(b)
Andreas Sesselmann, Thesis 2012

Primary Phase
Secondary Phase
Precipitates

Geometry
Mesh

19 September, 2016
Two-phase microstructure

Voronoi grains

Microstructure approximation

meshing

Metal-Aerogel composite

Fig. 12
Orth et al., Mat Sci and Tech, 2016, p 1-8

- Open channels by selecting grains
- Fine details by selecting mesh at GB
- Pores by deleting elements
Sintered ceramic microstructure

Palmero, Nanomaterials 5, 656

Procedure followed:
- Seed distribution using Dirac distribution
- Use weighted voronoi
Grain boundary modelling (Explicit description of GB)

- GB influenced material behavior:
 - damage and fracture
 - stress corrosion cracking
 - creep behavior
 - Secondary phases
 - transport properties
 - diffusion
 - conductivity etc
Zero-thickness grain boundary

Random Grains

Grain boundaries using zero-thickness element
Grain boundary assisted virtual microstructure
Closed cell foam

μCT of closed cell Polymer foam

Virtual microstructure

http://engineering.jhu.edu/drlab/publications/
Metal matrix composite

Input from Henning Richter
Cellulose microstructure

Cellulose Aerogel
Fig courtesy: Prof. L Ratke

Microfibrils are generated using line elements at the grain boundaries (3D)
Mesh generation for FE analysis
Mesh generation (Using GMESH)

Tetrahedral mesh

Voxel mesh
Graded microstructure with graded mesh

Application in FE model:
- Useful for submodelling at problem zone
- Reduce model size by focusing on the localized area
- Minimize errors at domain boundary strain transfer
Periodic microstructure and periodic mesh
Periodic Microstructure

Features:
- Microstructure is periodic
- Mesh is periodic
- Only voxel mesh
- Periodicity is not guaranteed for tetrahedral mesh

Can be used for homogenization of local properties
- Elastic / Elasto-plastic
- Transport properties etc.
Numerical example

Tensile failure
Using Voronoi grains

2D case
Application: Zero-thickness Grain Boundary for modelling of damage and fracture

Suggested Application areas:
- Influence of grain boundary morphology on fracture and damage behavior
- Strength degradation due to aging
- Mass-diffusion through grain boundaries
- Many more......
Modelling of microstructure sensitive damage and fracture

2D case: Estimation of damage parameters by comparing strain profile with the DIC images

3D case: Estimation of damage parameters by comparing in-Situ synchrotron tomography experiment for crack initiation and propagation
Summary

Virtual microstructure generation using voronoi tessellation is demonstrated.

The presented approach is:

- **Adaptable**: It can be adapted (approximated) for real microstructures with a degree of complexity
- **Robust and flexible**: Model generation is flexible to the variations of microstructural parameters (obtained from experiments)
- **Transferable**: The geometries are meshable and therefore, can be exported to FE tools for micromechanical analysis.
Summary

Application areas:

- **Microstructure-Property correlations**: Analysis type can be micromechanical, thermo-mechanical, thermo-electrical, etc.
- **Effective properties**: Via homogenization theories using periodic unit cell
- **Damage and fracture**: Grain morphology and grain boundary influences on damage and fracture, interface strength, ageing, etc.
- **Multi-physics**: Gas absorption through grain boundary

The presented approach shows a way to **overcome some bottlenecks** in microstructure modelling.
Thank you for your attention

For further details please contact:
Mohammad-rizviul.kabir@dlr.de