The Python Programming
Language as a Focal Point
for Converging Research
and DevOps Processes in
the IDL Infrastructure

IT- and Software Engineering
Tools and Methods Analysis

ILT /-
Institut fiir
D L R Lufttransportsysteme

Institutsbericht
IB-328-2016-25

TITEL
The Python Programming Language as a Focal Point
for Converging Research and DevOps Processes
in the IDL Infrastructure

AUTOR
Arne Bachmann M.A.
DLR Lufttransportsysteme

Hamburg
12 Seiten
Deutsches Zentrum fir Luft- und Raumfahrt e.V.
Institut fir Lufttransportsysteme
Abteilung Integrierter Luftfahrzeugentwurf
Freigabestufe: A - Offentlich
Hamburg, 27. Oktober 2016
Unterschriften:

Institutsdirektor: Prof. Dr.-Ing. V. Gollnick

Abteilungsleiter : Dipl.-Ing. Bjérn Nagel

Verfasser: Arne Bachmann M.A.

The Python Programming Language as a Focal Point for
Converging Research and DevOps in the IDL Infrastructure

Arne Bachmann, Jonas Jepsen, Bjorn Nagel
Institute of Air Transportation Systems, German Aerospace Center
21079 Hamburg, Germany. Email: mailto:arne.bachmann@dlr.de

Abstract—While polyglot software development is a widely used
approach to tackling today’s complex IT development and maintenance
challenges, finding and promoting a single programming language for
tasks ranging from DevOps duties to scientific analysis codes in aviation
research projects bears many advantages for agile, distributed multi-
disciplinary design teams. This paper details advantages of employing
Python as a central software tool at the Institute of Air Transport Systems
and discusses its features in relation to other languages.

I. INTRODUCTION

Collaboration in complex aviation projects within multi-disci-
plinary teams brings together for every design or assessment task
a selected number of specialists with each very different and specific
demands for technical working environments, availability of soft-
ware tools, computing and data resources, and organizational and
computational methods. Additionally, every participant brings into
meetings their personal cultural background, collaborative experience
and familiarity with integrated working methodologies.

At DLR’s Institute of Air Transportation Systems (LY)! inside
German Aerospace Center (DLR), the existing collaborative culture
of conducting complex aviation projects has been advanced into
having both a versatile distributed technical infrastructure at the scien-
tists” disposal, and utilizing meetings regularly in focused, facilitated
workshops with individuals’ access to relevant disciplinary software
codes in a distributed multi-fidelity, multi-disciplinary design process
at rotating sites throughout Germany, Europe and/or worldwide. To
support this kind of highly communicative and interactive work
technically and organizationally, integrated working spaces and in-
terdisciplinary software integration environments were developed and
set up at DLR, with the Integrated Design Laboratory (IDL) being
its most prominent instantiation to support and investigate these
collaboration principles at the Hamburg-Harburg site.

A. The Integrated Design Laboratory

Built to maximize meeting flexibility and collective research effi-
ciency both on-site and when collaborating remotely, the IDL was
equipped with solutions that do not necessarily maximize a single
quality of the many ways to improve effective interconnected work,
e.g., high-resolution visualization capabilities, specialized high-end
workstations, or fast network links, but balance all aspects to find a
perfect trade-off for flexible and dynamic engineering sessions, with
a focus on bringing together knowledge carriers and their supporting
tools and processes in a pleasant and productive atmosphere. This
entailed having both cable and wireless networks available, allowing
users to bring their own portable computers or workstations, provid-
ing movable working desks with integrated monitors, networking and
video switches, and generally routing video signals from any source
in a many-to-many fashion to the large main image wall or other
target systems in and around the laboratory. The IDL thus serves
systematic development and examination of improved collaboration

Unstitute website: http://www.dIr.de/ly

Fig. 1. The IDL’s high-contrast, high-resolution image wall.

methods for the design of air transport systems and other complex
research topics [1]. Additionally, it provides the technical infrastruc-
ture for enhanced communication between engineers. Lessons learned
from this kind of distributed work include intermittent co-located
intensive and social sessions as described in [2]. The research results
of experiments on participative multidisciplinary design optimization
and the role of visualization in engineering performance in the IDL
are detailed in [3], [4], [5], [6]. The IDL as a meeting and integration
hub provides users with a bright high-resolution and high-contrast
image wall that allows placement, routing and stretching of arbitrary
digital streams and analog video signals onto it by means of hand-held
tablet computers or other devices like wall terminals, cf. Figure 1.
The image wall is connected to a central display driver that not only
manages, decodes and feeds all video streams to the wall’s 18 cased
projector modules, but may also serve as a central work station giving
users access to the full display resolution to run any software they
need. The versatility of a system that is fully controllable by a mobile
room operator, but also able to run any custom user visualization 1is
a key feature of the IDL’s current stage of expansion.

B. Software Integration Infrastructure

Jointly with the IDL’s meeting rooms, a technical infrastructure
has been set up to provide for an on-demand computing environment
for projects and meetings that use and support the IDL and plan to
experiment with different forms of technical collaboration. During the
construction of the lab environment, several general purpose servers
selected at a Pareto optimum for maximum thread performance,
number of threads and cost incurred (cf. Table I), an iSCSIZ Network
Attached Storage (NAS) appliance with a gross capacity of 64 TB,
as well as a selection of video signal converters and encoders
were purchased and integrated into a unified streaming and software
infrastructure, able to display video signals streamed wirelessly and

2iSCSI: Internet Small Computer Systems Interface.
https://en.wikipedia.org/wiki/ISCSI

from network-enabled, easily rearrangeable working desks. The entire
IDL concept was augmented by a network design able to switch
between internal and public networks, air conditioning and heat
dissipation systems, plus additional audio mixing equipment for
moderated symposia, web conferences and workshops.

Yearx No. Intel CPU model GHz GiB St Cf T§ Bechmark||

2011 1 Core i7-2600 34-38 16 1 4 8 1921
2012 3 Xeon E5-2667v2 3.3-4.0 64 2 8 16 1777
2015 1 Xeon E7-8880v3 2.3-3.1 256 4 72 144 1628

TABLE I
EVOLVING COMPUTING EQUIPMENT OF THE IDL’S SERVER ROOM. * YEAR
OF PURCHASE, T NUMBER OF SOCKETS, { NO. OF CORES, § NO. OF
THREADS, || CPU BENCHMARK DIVIDED BY NUMBER OF CORES, CF.
HTTPS://PASSMARK.COM.

As the prime software integration and orchestration platform,
DLR’s open-source in-house product RCE (Remote Component En-
vironment)3 [71, [8] is mainly used, but alternative job schedulers are
under investigation and may complement RCE in the future.

II. THE CHALLENGE OF AMALGAMATING RESEARCH AND IT
PROCESSES

This section describes the current state of collaboration in avi-
ation projects that meet in the IDL, and how development of the
information technology (IT) infrastructure can be merged with the
disciplinary design and development processes to close the gap
between both worlds.

A. Engineering processes in software-centric research projects

The individual participants’ work packages and tasks within avi-
ation projects working and meeting in the IDL had a relatively
long setup phase in the past — termed the “build phase” of the
engineering services [9] —, in which needed scientific codes had
to be written, programs designed, and methods validated [10], in
order to become qualified and able to perform the actual scientific
computations with confidence. After that, the targeted “configuration
and execution phase” can be started, which strives to answer the
research questions using the tools created and are integrated with
each other in the build phase. This setup process often consumed
the major part of the scheduled project time frame, caused by the
repeated need to debug software codes, clarify semantics of model
parameters, and evolve the common design language.

Over time, however, early and in-depth communication became
more recognized, and these collaborative projects [9], [11], [12]
became more agile. They integrated rolling-wave planning into
their project management plans, thus improving project success and
stakeholder engagement by means of regularly scheduled technical
assessments, facilitated workshops, social events, and a generally
layered approach to improving tool design fidelity and reliability
throughout the project schedule. Aside from the individual projects’
contents, DLR’s infrastructure for software integration using RCE
was further improved and published as open-source to gain more
overall visibility and encourage project partners to contribute.

For effective meetings that often cover many topics in a short
amount of time, a reliable network and computing environment was
especially important for the IDL, to serve both users and the network
of integrated scientific analysis codes. Those computing resources
enable users and meeting organizers to prepare design studies either
on the eves of an upcoming meeting or overnight between the

3RCE website: http://rcenvironment.de

scheduled meeting days. In addition, participants are enabled to
connect to their agency’s offices’ computer desktops to check on
their codes or data repositories when needed, while at the same time
being part of a larger distributed workload computation process.

B. DevOps in the IDL

To improve the user experience for these meetings and reduce lead
time for the introduction of new tools, project’s user groups, and
computational studies, the IDL staff decided to slowly introduce and
commoditize process principles that can be subsumed under the term
of “DevOps” [13].

In the DevOps movement IT operations and development converge
and become part of a single configuration management (CM) and
continuous integration (CI) processes (“infrastructure as code”), all
while adhering to agile practices. This is accomplished by appealing
to the common goals between developers and IT operations staff
alike and maximizing the use of same or similar processes and
tools, thus allowing quicker response times when reacting to changes
and implementing responses. As explained in [14], key ideas behind
DevOps is to extend operations to development, and the other way
around. In addition, it is ventured to embed one discipline into the
other, again doing it in both directions.

In the case of aviation research, the researchers at DLR usually
fulfill all kinds of roles including acting as developers, project
managers, team leaders, and even part-time ITC managers. There
are additional roles occupied by staff equipped with a different set
of skills and resources, including people responsible for office and
appointments management, IT planning, purchases and setup, net-
work infrastructure development, safety and security, quality and legal
concerns. Bringing together both engineers and auxiliary services is
expected to result in collaboration with a deeper knowledge of the
entire design process and each participant’s responsibilities, with the
ultimate goal to reduce lead time, enhance quality delivered, relieve
project members from peripheral and distracting duties, and lastly
build up team trust and gain team maturity.

C. Choosing a universal programming language for DevOps and
research applications alike

The task at hand is to find a programming language that supports
both utility scripts and “serious” computing applications. Some
natural candidates for this goal are the languages Python and Ruby?,
which are at the heart of this text. Python is often termed a “scripting
language”, even by the language’s designers. A purported feature
of scripting languages is that they are considered more productive
and suited for quick prototyping computer programs in comparison
to traditional (compiled, linked) languages [15]. A second goal
considers code expressiveness, testability, and simplified concurrency,
which are all features of functional programming languages and are
partially supported by above two candidates, which would best be
characterized as multi-paradigm languages, incorporating procedural,
object-oriented (OOP) and functional (FP) programming language
styles®. Python includes elements of imperative, mutable state pro-
gramming style, OO capabilities, list and dictionary comprehen-
sions, iterators and generator expressions’, map/filter/reduce, lambda

4Python website: https://www.python.org
Ruby website: https://www.ruby-lang.org
SWikipedia article on Python, accessed Aug 25, 2016:
https://en.wikipedia.org/wiki/Python_(programming_language)
brelevant quotes on OOP vs. FP:
https://dzone.com/articles/whats-wrong-with-object-oriented- programming
7https://docs.python.org/2/howto/functional .html

functions, pattern matching (limited to tuples), plus multiple return
values. Where appropriate, comparison of Python and Ruby with non-
scripted functional languages are referred throughout the text.

An informal survey of the programming language landscape used
to create common free and open-source DevOps tools reveals the
importance of Python and its main competitor in the field of dynamic
“scripting” languages, Ruby; Table II provides an overview of the
distribution of programming languages amongst software repositories,
including the ones targeted at DevOps. Simple database queries
against the source code and software hosting platforms Sourceforge8
and Github® reveal a predominance of Python over Ruby for most
keywords, with the exception of a search for the specific keyword
“devops” and “configuration management” on Github!'®. Data from
the “Periodic Table of DevOps Tools™! hints to a draw between
the popularity of Python and Ruby, but quality of available data
varies strongly and includes many missing and/or outdated links,
often pointing to commercial websites of the respective tools vendors.

The difference in numbers between the former two platforms may
be explained by the age and effective usage and audience of the
respective sites; while GitHub has recently become popular for all
kinds of collaborative software development using and integrating
the distributed version control system Git!2, Sourceforge represents
an older repository mainly used for geo-aware binary software
distribution with an alleged number of 4.8 million daily downloads.

Regarding the development of language use over time, a statistical
overview!? shows a steady increment in the number of Python-
oriented repositories (with a total number of about 165.000), while
the accrual of Ruby seems stagnating (133.000 projects in total).
GitHub registered a total increase of 900.000 repositories between
the last quarters of 2013 and 2014, but no recent data is available
from that source.

For the IDL, Python was therefore selected as the best candidate
for a unified DevOps and application programming language; an in-
depth description of its benefits is laid out in the following sections.

D. Python introduction

Python is a versatile, open source, dynamically typed general
purpose programming language with a focus on readability and
syntactic brevity; this coincides with its low number of special literals
like :;, %[] used to distinguish different language constructs, and
the language’s number of reserved keywords, when compared to
other languages: Erlang 27'4; Python (2.7) 31; C 32; Python (3.5)
33; Ruby (2.1) 41; Java 40-45; Pony 47 and C++ 62-7315. A fact

8Sourceforge website, Aug 23, 2016: https://sourceforge.net
9GitHub website, accessed Aug 23, 2016: https://github.com
10GitHub website query example, accessed Aug 24, 2016:
https://github.com/search?q=devops
Results may differ by day of query and depend on exact query phrasing, e.g.,
language mentiond vs. file extension, using the language: prefix
11X ebia Labs’ Periodic table of DevOps tools, accessed Sep 3, 2016:
https://xebialabs.com/periodic-table-of-devops-tools/

Survey procedure: For each category in the tools matrix, every list of
tools was checked. For every tool with a working Wikipedia link the main
programming language was looked up. Tools with professionally written
Wikipedia entries that listed mainly company information were disregarded.
Counting includes all mentions of a language, removing duplicate tool listings
for different categories.

12Git website: https://git-scm.com

13GitHut website, accessed Sep 1, 2016: http://githut.info

4http://erlang.org/doc/reference_manual/introduction.html
http://tutorial.ponylang.org/appendices/keywords.html
http://s.dlr.de/hb3c ; http://s.dlr.de/w38x ; http://s.dlr.de/tmf3
http://en.cppreference.com/w/cpp/keyword

15import keyword; print (len(keyword.kwlist))

Query String Top Language Python Ruby Matlab
Sourceforge
(total) Java (53884) 16741 2076 1499
CM Java (40) 16 5 0
science Java (9349) 3474 263 818
scientific C++ (7469) 2947 194 750
hpc C (23) 15 1 0
cluster C (135) 65 6 7
devops Python 2 0 0
virtuali[z/s]ation Java (174) 125 22 0
GitHub
(total) JS (23 mio) 1.1*10° 1.0%10° 56.772
CM Ruby 96 125 0
science R (5870) 3775 63 29
scientific Python 730 23 31
hpc C (374) 235 0 20
cluster Python 3347 932 237
devops Shell (652) 360 535 0
virtuali[z/s]ation JS (2276) 1502 861 22
containerization Shell (150) 45 23 0
Xebia Labs Java (21) 14 13 0
TABLE 1T

COUNT OF MAIN PROGRAMMING LANGUAGES FROM SOFTWARE HOSTING,
DEVELOP AND LISTING PAGES BY QUERY TERMS. EXCEPTIONAL VALUES
ARE SHOWN IN BOLD FONT.

supporting Python’s characterization as a scripting language might
be Python’s concise and compact, yet explicit writing style with
cautious additions of functional elements, plus its ability to replace
other scripting languages like Shell scripts easily allowing users to
write operating system-level (OS) scripts in the same language as
their domain code. On the other hand Python has become useful even
for computational demanding problems, replacing commercial tools
like Matlab!®, by utilizing prominent and popular external software
libraries like “numpy”, “scipy” and “matplotlib””.

Although originally an interpreted language, Python has been
ported to and re-implemented not only on many different operating
systems but also to numerous and diverse runtime environments at
varying placements on a continuum from fully interpreted to compiled
to machine code, including a port to the Java Virtual Machine
JVM: Jythonlg), the .NET platform and its Common Language
Infrastructure (CLI: IronPython19), a Just-In-Time Python compiler
(JIT: PyPyzO) and native code compilation (py2exe), source code
translation (Cython).

E. Python language features

Polyglotism in software development has been a topic discussed
controversially over the past years2! and may be seen as an essential
trait of successful agile developers; on the downside, it could be
perceived as unnecessary complexity that places new dependencies
on projects [16], [17], and is actively discussed in the developer
cornrnunity22 .

16Matlab website: http://www.mathworks.de/products/matlab/
17NumPy, SciPy, and Matplotlib websites:
http://www.numpy.org, https://www.scipy.org, http://matplotlib.org
18 Jython website: http://www.jython.org
9TronPython website: http://ironpython.net
20pypy, Py2Exe, Cython websites:
http://pypy.org, http://www.py2exe.org, http://cython.org
2]Blog of Neal Ford from Dec 05, 2006, accessed Aug 25, 2016:
https://memeagora.blogspot.de/2006/12/polyglot-programming.html
— Article by Andres Almiray on Dzone website from Jun 04, 2008:
https://dzone.com/articles/how- many-times- are- we- going-ki
22Conference website, accessed Aug 29, 2016: http://polyconf.com

In the context of this paper the authors generally concur with
the general propositions of developing polyglot systems. These con-
siderations, however, might hold true mainly for developer-centric
teams, which are not always at the heart of DLR’s researcher base
with their large diversity of scientific backgrounds and programming
experience. Therefore a consolidation of programming tools from
different application areas down to a common language, being Python
in this case, may help reduce training effort, sources of errors and
scattering of staff skills, and serves the purpose of the DevOps
concepts detailed in Section II-B for extending and embedding IT
workflows with research activities.

The fields of application for Python, covered in this paper in
Section III, focus on IT infrastructure maintenance, GUI development
and web services for moderation and operations, and scientific user
software integration into the distributed computation network using
RCE. In all three areas Python helps achieving a consolidation
according to the DevOps paradigm. In addition, there is a persistent
popularity of Python, reliable core stability, low initial learning effort
in comparison to either non-scripting languages or even Ruby, an
imperative programming style with careful additions of functional-
flavored program constructs, which makes Python a good candidate
for DevOps convergence between IT processes and research applica-
tions.

The following paragraphs highlight certain aspects of the Python
programming language and its relevance for the integration in the
research infrastructure and culture:

The dynamic nature of Python programs helps users writing
compact code and reduces entrance barriers. There is no need to
declare variables or variable types in advance, which reduces the
amount of code to write and thus may improve code readability,
which is an important productivity quality, namely code cleanliness
and readability:

[...] a computer language [...] is a novel formal
medium for expressing ideas about methodology. Thus,
programs must be written for people to read, and only
incidentally for machines to execute.

(Abelson & Sussman) [18]

Python software distributions come with a well-documented com-
prehensive standard library, although it is highly fragmented,
historically grown and does not follow a unified naming schema.
A (typical) programming pattern is the optimization of sorting
operations through the “Decorate-Sort-Undecorate” (DSU) approach.
To avoid visiting elements more than once during sorting by pairwise
comparisons, the decorate phase computes the sort criterion and
associates it with the sequence’s objects, then sorts the sequence by
these values, before restoring the original structure in the undecorate
phase. It is, however, also possible to transform this pattern into just
one expression. The DSU approach is useful whenever the sorting
criterion of its elements is expensive to extract or compute. Python’s
standard library offers both sorting variants for its sort and sorted
built-in functions: a lambda function for the pairwise comparison via
the cmp keyword argument, or a Schwartzian transform?? of the DSU
pattern via the key argument that carries a function reference for the
criterion extraction, which is guaranteed to be evaluated only once
per element prior to sorting. Listing 1 shows the DPU pattern and a
call to the optimized sort and sorted functions.

>>> decorated = [(student.grade, i, student) for i, student in enumeratel(
< students)]

23 Archived original post, accessed Sep 3, 2016: http://www.stonchenge.
com/merlyn/UnixReview/col64.html

>>> decorated.sort () 2

>>> [student for grade, i, student in decorated] # 3
<= undecorate

[(’john’, ’'A’, 15), (’Ijane’, 'B’, 12), ('dave’, 'B’, 10)] 4

Listing 1. Example for the DSU pattern in Python.

Python 3 deprecated the pairwise comparison altogether, keeping
only the Schwartzian transform. Ruby sorting supports DSU by its
sort_by parameter.

Listing 2 demonstrates the use of list comprehensions that allow
filtering or composition of Python lists in a single expression without
the need for explicit control structures:

loads = \
+ [(0, load, "System") for pid, load, name in P.values()
[(pid, load, name) for pid, load, name in P.values()

if pid == 0]
if pid != 0]

W=

Listing 2. List filtering and reordering operations using list comprehensions
in Python. Code taken from the IDL’s server loads monitoring system.

Another example shows how to apply or compose several functions
on lists of data, representing a vertical approach to Python’s map
built-in function which allows an arbitrary number of sequences of
function arguments:

def applyOrNone (func, args, #+kwargs): 1N
srr 2
Apply a function and catch errors into None return. 3
>>> print applyOrNone (lambda a,b: 1/0, 1, 2) 4
None 5
>>> print applyOrNone (lambda ¢ = 0: ¢ + 1, ¢ = 5) 6
6 7
’ 8
try: return func(kargs, *+kwargs) 9
except Exception, e: import sys; print >> sys.stderr, "Wrapped_exception_’%s’ "0
<= % e; return None
11
def applyAll (funcs, argss = [], kwargss = []): 12
rrr 13
Apply different values to a collection of functions. 14
>>> applyAll ([lambda a: 1/a, lambda a: 2+a], \ 15
[(0,), (2,)1) 16
[None, 4] 17
>>> applyAll ([lambda a: 1/a, lambda a: 2+aj, \ 18
kwargss = [{’a’:0}, {(’a’:2}]) 19
[None, 4] 20
rrr 21
return [applyOrNone (func, *args, xxkwargs) 22
for func, args, kwargs in zip(23
funcs, \ 24
argss if len(argss) == len(funcs) else [()] * len(funcs),\ 25
kwargss if len(kwargss) == len(funcs) else [{}] * len(funcs) 26
) 27
1 28
-

Listing 3. Aggregate function application in Python.

This example can also be extended to recursive function application
to chain results.

Another benefit for beginners starting to interact with Python is
its selection of sensible defaults. The following listing shows the
example of negative sequence (slice-) indexing, and the advantages
of having memorable operator precedence that coincides with natural
language use, thus avoiding most parentheses used for explicit
marking of execution order:

>>> a, b, ¢ = [1, 21, [1], [!

>>> print al[:-1], b[:-1], c[:-1] # slicing for "all but the last element" 2

(1, 1, 0 3

>>> inbounds = lambda x0, y0, x, y, w, h: x0 >= x and y0 >= y and x0 < x + w and}
< y0<y+h

>>> print inbounds (20, 0, 0, 0, 100,

100), inbounds(0, 100, 0, 0, 100, 100) 5
True False 6

Listing 4. Easy to use defaults and operator precedence in Python.

The Pony 1anguag624, a recent functional programming language
with a similar approach to readability and code cleanliness as Python
(having, e.g., interned docstrings) has an operator precedence even
easier to memorize, which is always left to right unless marked
otherwise. This allows to write the following code:

24Pony website: http://www.ponylang.org

a=b=a # works in Pony 1
a, b =b, a # works in Python 2

Listing 5. Code example for swapping variables in Pony and Python.

Observing Ruby code, it optionally allows to leave out parentheses
around function arguments; additionally it does not have Python’s
block opening marker : nor syntactical indentation, thus requiring
an explicit block-terminating keyword end.

Regarding convenience and interoperability, Python’s stan-
dard library comes with a vast number of modules ranging from
very specific OS level manipulation as in posix, socket, file
archive support and compression algorithms as in bz2, gzip,
zipfile, network protocol support as in ftplib, telnetlib,
xmlrpclib, to Python-centered modules as in abc, ast, dis.

Although there is no directly parsable structured markup as
JavaScript has with JSON%, Python supports parsing JSON by means
of the standard modulejson. XML data can be parsed by sev-
eral implementations of streaming and DOMZ® parsers xml . dom,
xml.sax; at LY the external library 1xm127 is used a lot, which
provides an intuitive OO access to XML documents. For parsing
YAML structures, which are used in many DevOps tools like An-
sible28, Chef?® or Puppet’®, however, an external library has to be
installed, while Ruby supports it by default.

For unit tests and source documentation, Python comes with
two very useful features: Unlike Java, where documentation from
the source code isn’t persisted in its .class bytecode files, in
Python every block of code may be augmented by a simple string
that contains information about it, which can either be extracted as
browsable documentation or be queried during runtime by a simple
attribute access. Secondly, the standard library contains the doctest
module, which allows to place unit test code into these docstrings.
This serves as usage specification, and puts the test code very close
to the tested code, which has advantages especially when shipping
small units of self-sufficient code.

In conclusion, the Python programming language lends itself to
support both researchers and DevOps endeavors quite naturally,
as it exhibits explicit encoding of behavior in an imperative pro-
gramming style without too much implicit language “magic™3!, e.g.,
avoiding larger amounts of “convention over configuration” that
require programmers to memorize and eventually understand many
underlying assumptions and mechanics of the software system to
benefit from the actual convenience these frameworks promise. While
the Ruby language offers a more functional programming style and is
suitable for utilization as a domain specific language (DSL) for many
configuration needs, Python is considered easier to adopt by students
that have learned an imperative (and OO) first programming language,
and by engineers familiar with various languages and environments
including the matrix-oriented programming style encountered in the
Matlab environment and language, which might as well largely be
replaced by Python and its accompanying libraries.

III. USE CASES WITHIN THE IDL CONTEXT

After comparing Python with other languages and describing
its general properties and benefits, this section demonstrates how

25JSON website: http://www.json.org

26pocument Object Model: http://s.dlr.de/8lqg

2T1xml website: http://Ixml.de

28 Ansible website, accessed Aug 25, 2016: https://docs.ansible.com

29Chef website, accessed Aug 25, 2016: https://www.chef.io

30puppet website, accessed Aug 25, 2016: https://puppet.com

31Chris Oliver, Ruby vs. Python, accessed Sep 1, 2016:
http://learn.onemonth.com/ruby-vs-python

Fig. 2. Screenshot of the server loads dashboard application.

Python as a unified tool helps in solving problems in three very
distinct areas of application around the IDL, namely IT infrastructure
maintenance, GUI development and web services for moderation and
operations, and scientific user software integration into the distributed
computation network using RCE.

A. HPC cluster monitoring and administration

The three main principles of the developing field of DevOps
are communication, collaboration and integration, which match very
well with the virtues of modern engineering design methodologies
used in concurrent engineering (CE) or multi-disciplinary design,
analysis and optimization (MDAO) processes, including the aerospace
research sector that this paper is concerned with: Enhanced and inten-
sified team and technical communication, multi- and interdisciplinary
collaboration, and knowledge and software integration. The DevOps’
agile approach to uniting development and operations is therefore
becoming increasingly relevant for the IDL’s ongoing and future
undertakings.

Example 1: Using Python as a generic CPU loading tool. The
following script utilizes a CPU at 100% by employing a busy
wait performing simple operations in a loop, by means of the
multiprocessing module.

import multiprocessing,time 1)

2

def killer(): 3

a=20 4

try: 5

while True: a = int(float(str(a)) + 3.) / 2 6

except KeyboardInterrupt: pass 7

8

if __name__ == ’_main__': 9
cpus = multiprocessing.cpu_count () 10
ps = [] 11
for cpu in range (cpus) : 12

P = multiprocessing.Process (target = killer) 13
ps.append (P); P.start() 14
try: 15
while True: time.sleep(.1) 16

L except KeyboardInterrupt: pass 17

Listing 6. CPU-loading script “killer.py”.

Lines 5-6 in Listing 6 intentionally compress the code to the utmost at
the expense of cleanliness, exhibiting one limitation of the syntactical
power of Python: one is not allowed to open more than one code
block on any line, or have two colons on the same line of code. It is
possible, however, to put a short block of code on the same line as its
opening condition (line 7), although often considered a bad practice.

Figure 2 shows a screenshot of an in-house Python dashboard
application for current and historic server loads display.

Example 2: In order to assess bandwidth, stability and data
integrity, a tool was created that demonstrates how to concurrently
write bulk data on a storage device. The data was generated by
concatenating patterns of increasing byte values in blocks of 16 MiB,

import multiprocessing,os,signal,sys,time,threading,uuid 1
2
maxProcesses = 4 3
runFor = 60 = 60 # 1 hour in seconds 4
kibi = 1024L 5
mebi = kibi *x 2 6
gibi = kibi *x 3 7
8
def filler (index, data): # concurrent writer 9
assert len(data) == 16 * mebi 10
st = long(time.time()); count = OL # every increment equals len(data) bytes 11
try: 12
with open(uuid.uuid4().hex + ".dat", "wb") as fd: 13
while True: fd.write(data); count += 1L 14
except KeyboardInterrupt: time.sleep(index * 1.4) # linearize output after 15
<= break
except Exception: print "Error" 16
finally: print "Process", index, "wrote", count x long(len(data)) / gibi, "GB7
<> at", count * long(len(data)) / (mebi * (long(time.time()) - st)), "MB/s"
18
if __name__ == ’_main__': 19
st = time.time() 20
cpus = multiprocessing.cpu_count (); print "$3d_cores_found" % cpus 21
cpus = min(maxProcesses, cpus); print "Using_%3d_cores" % cpus 22
data = ("".join([chr(i) for i in range(256)])) * 256 * 256 # 16MB of 23
<= consecutive 256 different bytes)
ps = [] # TODO use multiprocessing.Pool instead 24
for cpu in range (cpus): 25
P = multiprocessing.Process(target = filler, args = [cpu, datal) 26
ps.append (P); P.start () 27
try: 28
while True: 29
time.sleep(.1) 30
if (time.time() - st) > runFor: 31
threading.Thread (target = os.kill, args = [os.getpid(), signal. 32
<> CTRL_C_EVENT if sys.platform == ’'win32’ else signal.SIGINT]).start
= 0
time.sleep (maxProcesses / 2) 33
break 34
except KeyboardInterrupt: pass 35
finally: print "Ran_for", int(time.time() - st) / 60, "minutes" 36

Listing 7. Storage-loading script “filler.py”.

as shown in listing 7: Table III shows data rate results from perfor-
mance measuring with the serially attached network storage (SAN)
appliance; for testing purposes 20 TB of data were written to load-
test the device. A similar program called “checker.py” reads back in
all data and validates its contents; purpose of these tools is to trigger
file system limitations or find RAID system misconfiguration, which
have been reason for data loss in the past. The table shows a varying
throughout depending on concurrent Python processes, highlighting
effects of blocking I/O. Currently it is unclear, why data rates may
exceed the theoretical bandwidth bounds of 114 MB/s32 when taking
into account TCP and iSCSI protocol overheads, since there is no
compression expected, nor caching assumed for the data streams; yet
there may be an error in the implementation or assumptions. The
SAN was attached to the test server by a Gigabit Ethernet network
connection, however link aggregation (multipathing) was disabled on
the appliance and the server not configured to support it, which would
contradict these findings. Nevertheless this test confirmed a) that the
storage device provides reliably storage capacity and bandwidth in
the context of the IDL servers, and b) proved that Python may be
used for specific kinds of I/O-bound load testing.

In order to achieve high data rates on the application level, a soft-
ware and hardware combination needs to be defined and integrated
that takes into account any performance blockers in the process chain
of data feeders and drains, e.g., by dumping and archiving large
amounts of detailed logging data, as detailed in [19], [20], [21].

B. Meeting and moderation support tools

Example 1: Python for GUI-centric tools and moderation sup-
port. While the HPC cluster is intended to run continuously, utility
software deployed on tablet computers or wall terminals around the
IDL premises may be turned on and off at any time. Regardless of

32Serverfault FAQ website: https://serverfault.com/questions/301505/iscsi-
transfer-rate-using-standard- gigabit-networking

Threads® Average (MiB/s)t Total (MiB/s)f Written (GiB)§

1 209 209 37
2 64 127 22
4 38 153 27
8 17 136 24

TABLE III
WRITE SPEEDS TO GIGABIT-ATTACHED SAN APPLIANCE IN THE IDL
SERVER RACK. *: PARALLEL PYTHON THREADS, }: AVERAGE THREAD
THROUGHPUT, }: TOTAL THROUGHPUT, §: TOTAL DATA WRITTEN.

the fact that these portable devices are prone to sudden standby-
hibernations or restarts, they are still expected to provide their
services on demand whenever turned on, communicating with the
image wall and streaming control systems.

Whenever an application on these devices is hibernated or put into
standby-mode, its connection to the server is lost and/or its active
session may be invalidated or outdated.

Therefore the detection of a wake-up from an undetermined time of
standby or hibernation is needed, implemented as a regular timestamp
check that may trigger a certain sequence of commands to re-establish
and re-assert the previous state, or to update the application state with
changes performed on the server in the meantime.

class AtIntervals(threading.Thread): 1)

def __init_ (_, callback, interval = 0.7): 2

_.callback = callback 3

_.interval = interval 4

_.stopped = threading.Event () 5

threading.Thread.__init__(_) 6

7

def run(_): 3

while not _.stopped.wait (_.interval): _.callback() 9
10

def stop(_): 11
_.stopped.set () 12
13

14

class StandbyDetector (object) : 15
def _ init_ (_, callback, interval = 1.5): 16
.periodic = AtIntervals (._checkWakeUp, interval) 17
_.callback = callback 18
_.interval = interval 19
_.lastCheck = time.time () 20
_.periodic.start () 21
22

def _checkWakeUp(_): 23
newTime = time.time () 24
if (newTime - _.lastCheck) > _.interval x 1.l: # give ten percent 25
_.callback() # notify app about wakeup 26
_.lastCheck = time.time() # new timestamp because callback may run for a 27

<> longer time

else: 28
_.lastCheck = newTime 29

30

def stop(_): 31
_.periodic.stop() 32

Listing 8. Wake-up recognition for GUI updates from recent server state.

Example 2: A second facet from the application above shows how
Python is able to comfortably work around faulty implementations
and non-conformance with established standards in legacy systems:
To communicate with the IDL’s image wall control server, a tablet
application developed at LY uses the vendor’s application program-
ming interface (API), which is provided in the form of a WSDL
document33, which is a meta-language for web services.

Listing 9 shows part of a function description of the server’s WSDL
as parsed with the SOAP3* library suds3?.

The entire WSDL document has a length of roughly 250.000
lines when output as a Python data structure and can therefore only
be humanly digested and made sense of through informed guesses
and text editor support. As can be seen from Listing 9, the service
description is not self-explanatory, and while it gives a good idea

33Web Services Description Language website 1.1 from Mar 15, 2001,
accessed Aug 25, 2016: https://www.w3.org/TR/wsdl
34Simple Object Access Protocol specification website,
accessed Sep 1, 2016: https://www.w3.org/TR/soap12/
35Forked “suds” website: https://bitbucket.org/jurko/suds

of the data types required for each function, it lacks a general
description of the function’s purpose or usage, e.g., order of calls,
statefulness, guarantees, or error codes, and the function arguments’
names, requiring developers to guess and reverse-engineer required
functionality.

createPerspective2 = 1
(Operation) { 2
name = "createPerspective2" 3
tns[] = 4
"tns", 5
"http://openapi.cms.barco.com/", 6
input = 7
(Message) { 8
name = "createPerspective2" 9
gname = " (createPerspective2,_http://openapi.cms.barco.com/)" 10
parts[] = 11
(Part) { 12
root = <wsdl:part type="tns:sessionId" name="arg0"></wsdl:park3
— >
name = "arg0" 14
gname[] = 15
"arg0", 16
"http://openapi.cms.barco.com/", 17
element = "None" 18
type = " (u’sessionId’, _u’http://openapi.cms.barco.com/’)" 19
I 20
} 1
output = 2
(Message) { 3
name = "createPerspective2Response" 4
gname = " (createPerspective2Response, http://openapi.cms.barco.com/y
-
parts[] = 6
(Part) { 7
root = <wsdl:part type="tns:objectId" name="return"></wsdl: 8
< part>
name = "return" 9
gname[] = 10
"return", 11
"http://openapi.cms.barco.com/", 12
element = "None" 13
type = "(u’objectld’, _u’http://openapi.cms.barco.com/’)" 14
}, 15
} 16
faults[] = <empty> 17
} 18

Listing 9. WSDL excerpt from the image wall control server SOAP API.

To provide a tangible added value and gain a real benefit over
what the vendor itself provides as software tools for use in the
IDL, the tablet applications need to access two network services on
different systems through SOAP and REST (Representational State
Transfer) APIs respectively. By combining these two services, the
IDL software development allows users to make maximum use of
the state-of-the-art hardware systems themselves, which only lack
problem-oriented software solutions. Figure 3 gives an impression of
the highly simplified user interface that enables meeting moderators
to freely route and place arbitrary wired or wireless image streams
from IDL rooms on the central image wall, thus replacing and
surpassing the vendor’s unwieldy standard software.

Python serves here as a means for evolving and augmenting legacy
software and hardware systems, which cannot be modified by its users
or whose creator does not take interest in opening its tools; cf. [22]
as an example for problems arising from software that had not been
designed with steady evolution in mind and which is oblivious to
its context of application. The specific workaround found to parse
a faulty server WSDL was a) to use Python’s ability to (monkey-
)patch a method in the ss1 sub-module of a strictly validating
implementation of the third-party XML parser suds, b) to replace
all break tags
 by the standards-conform form
 (cf.
below), and ¢) to remove excess characters after the last closing tag
to avoid parser errors. All this is possible without the need to modify
and distribute additional source code on the target devices due to
Python’s module system and dynamic nature, plus treating functions
as first-class objects (also termed “first-class citizens” [23]).

‘ import suds 1 w

Info |

16:9 4:3 Text |

Fig. 3. Screenshots of the simplified (left) and comprehensive (right) video
signal routing app.

import suds.reader 2
Because Barco CMS delivers non-wellformed XML with exceeding characters that 3
<> break parsing, we need to patch SUDS’s SAX parser:
def monkeyPatchedSudsDownload(_, url): 4
content = None # this is original code 5
store = _.options.documentStore 6
if store is not None: content = store.open (url) 7
if content is None: 8
fp = _.options.transport.open (suds.transport.Request (url)) 9
try: content = fp.read() 10
finally: fp.close() 11
ctx = _.plugins.document.loaded (url=url, document=content) 12
content = ctx.document 13
Now fix buffer bug: this is new code 14
last = -1 15
while content[last] != ’>’: last -=1 16
if last < -1: content = content[:last + 1] 17
Now fix lazy tags 18
import re; regex = re.compile (’ ([a-zA-Z]+)=([a-2zA-20123456789]+) ([>_\\n])") 19
content = regex.sub(’\\1="\\2"\\3’, content).replace(’
’, ’'
') 20
sax = suds.sax.parser.Parser () 21
return sax.parse(string = content) 22
suds.reader.DocumentReader.download = monkeyPatchedSudsDownload # patch the cod&3
import suds.client # now load the module that uses the patched method 24

Listing 10. Definition of a code replacement for parts of an external Python
library to work around a faulty legacy system response.

Working with legacy systems, Python’s ability for dynamic code
replacement makes it easy to ship code without modifying the
sources it depends on, when code is imported from external modules.

“Monkey-patching” is a colloquial term for replacing a function
reference by another, which opens up a way for Python to implement
ideas stemming from aspect-oriented programming (AOP) [24].

Since Python supports the concept of name spaces that define a
new mapping from symbols to objects whenever a module is imported
into a Python program, and every imported module is an object that
references its members, including all functions, it is easy to change
any such reference to point to a new code object, effectively replacing
the function’s implementation dynamically at runtime. This works
for most places exactly like changing a variable’s reference thus
effectively modifying its value, cf. Listing 11:

>>> import math

1
>>> print (round (math.sin (1), 1)) 2
0.8 3
>>> math.sin, math.cos = math.cos, math.sin # do not do this! 4
>>> print (round (math.sin(1), 1)) 5
0.5 6

Listing 11. Replacing module-level function references.

The REST operations used to contact the wireless video transmis-
sion appliance are easily implemented in Python:

import json, urllib2

1

j = json.loads (urllib2.urlopen (url).read()) # GET 2
3

request = urllib2.Request (url, data = ’value=%s’ % value) 4
request.get_method = lambda: 'PUT’ 5
j = json.loads (urllib2.urlopen(request).read()) # PUT 6

Listing 12. REST-ful operations GET and PUT with the Python standard
library, without error handling.

One emerging, bytecode-exclusive and/or compiled programming
language to monitor in the future, equally suited for GUI development

and concurrent programming, is Lever30.

36Lever website: http:/leverlanguage.com

C. User software integration on the HPC cluster

Example 1: Embedding scientific modeling and analysis codes
into the RCE framework. For collaboration in aircraft design
LY, together with its project partners, has developed the open
data exchange format “Common Parametric Aircraft Configuration
Schema” (CPACS)37, which serves as the central technical language
for information exchange between disciplinary software tools in
multi-disciplinary aviation collaboration projects, cf. [11]. The RCE
framework not only allows defining software wrappers for arbitrary
programs, but also provides special support for the extraction and
manipulation of single design parameters from hierarchical, XML-
based CPACS datasets. Nevertheless, many of these integrated soft-
ware used in the analysis workflows have been developed at DLR
over a long time and were made CPACS-compatible only recently.
Here Python simplifies the wrapping process, as it allows writing
simple wrappers around existing code in order to extract specific
configuration items and switches that steer the software’s execution.
Therefore Python is part of almost any scientific code present in
the RCE network, even if the software itself is written in another
programming language or has been compiled into a binary executable.

Example 2: Virtual environments for Python. When developing
several projects at the same time, keeping track of Python package
dependencies can be difficult. When working with a single Python
installation for the development of multiple applications it can be
difficult to keep track of all the python packages which are used by
each of them. It is even more difficult when there are conflicts in
the dependencies such that for application “A” a specific version of
a Python package is required and for application “B” a different one.
Under these circumstances Python’s support for virtual environments
is invaluable and can be seen as a simple containerization solution,
in contrast to operating system level or machine level virtualizations.

By making use of virtual environments each application can run
in its own Python environment containing a minimum of packages
required for the application to run. At LY the conda’® package man-
agement system with its integrated support for virtual environments
is used. On the example of the open source conceptual aircraft design
software VAMPzero the use of virtual environments for developing
and testing software is presented. The development of VAMPzero is
done in its own virtual environment. A new virtual environment is
created by:

'

Listing 13. Command-line example to create a virtual Python development
environment.

Lconda create -n VZ python=2.7 numpy matplotlib scipy networkx lxml sphinx

This creates a new Python 2.7 environment with the name VAM-
Pzero_dev. The list of Python packages given with the command are
installed into the environment which make it immediately ready for
use.

The environment can either be activated for use in a shell or
configured in an integrated development environment (IDE) such as
PyCharm40.

Even more useful than for development is the use of a virtual
environment for testing of releases. When a version is ready for
release, e.g. as a Python wheel file*!, the generated wheel can thus

3TCPACS website: http:/cpacs.de

38Conda introduction: http://conda.pydata.org/docs/intro.html

39VAMPzero website: https://software.dlr.de/p/vampzero/

4OPyChaIm website, accessed Sep 1, 2016:
https://www.jetbrains.com/pycharm/

41Python Wheels website: http://pythonwheels.com

Fig. 4. Screenshot from a trends comparison query for Python and Ruby,
restricted to the category “Computer and Technology”.

be tested in a clean environment. Dependencies given in the packages
setup.py would automatically be installed. After a successful
installation procedure, other test cases can be run on the clean system
as a validation for the wheel correctness.

Example 3: Generic code wrapping. The survey from Section II-C
already showed a significant predominance of Python over Ruby for
DevOps tools. Two further analyses from Google Trends*2, cf. Figure
4, and the often cited TIOBE Index of programming languages43
underpin this observation: In the August 2016 index, Python scored
fifth place with 4.4 % appearance and Ruby twelfth with 2.3 %. this
might hint to an easier adoption for new Python users. By means of its
highly popular third-party libraries numpy, scipy, matplotlib, Python
may serve almost as a drop-in replacement for the Matlab language
with similar ease of matrix and list operations and visualization
capabilities, but freely available.

Concurrently with the construction of the IDL the processes for
integrating and managing user code into the distributed computing
platform have been developed, tested, and revised repeatedly.

Example 2: Embedded Python: The RCE platform for integration,
automation, collaboration and data management comes equipped with
software wrappers for the Python language, delivered in two flavors:
Binary Python installations are supported, and require only a manual
setup for Python’s interpreter path for the first time each workflow
file is opened. Interestingly though, due to the fact RCE is build
on Java technology, the language’s JVM implementation “Jython” is
shipped directly with RCE, allowing a zero effort script integration
into user workflows. The drawback found in this context, however, is
the fact that RCE currently ships only with a highly outdated Jython
version equivalent to Python’s standard library version 2.5.1, which
lacks many (backported) library additions present in the 2.7 and 3.x
versions.

D. Writing functional-flavored Python code

For the sake of readability and conciseness, it may be beneficial to
agree on breaking some conventions communicated in the Python
community. The underscore character _, for example, in Python
marks methods as implicitly private (not exported), and on the
interactive Python shell always carries the last computed expression’s
return value. Due to its unique appearance in source code, however,
the underscore may be used for other purposes quite elegantly:

Example 1: When attempting to move from an imperative, destruc-
tive, hard to test and to parallelize to a functional and collection-cen-
tric programming style, the underscore may serve as a placeholder
representing the current element inside a list comprehension:

Extracts server with a matching name (assuming there is one) 1
myServer = [_ for _ in servers if _.name == nodeName] [0] 2
Listing 14. Example code for a possible use of underscore in list

comprehensions, taken from a HPC configuration management tool used on
the HPC cluster.

42Google Trends website: https://www.google.de/trends/
TIOBE Index website: http://www.tiobe.com/tiobe-index/

Compare this with an Erlang code example, which has a more maths-
inspired syntax for the same task and uses the underscore only
as a throw-away placeholder in patterns, cf. also Listing 19 (here
Server# marks variable S as a specific record type):

1

Lhd([s || S <- servers, Server#S.name == NodeName]) .

Listing 15. Example code for list comprehensions in Erlang.

In other cases, the use of underscore might not be appropriate, e.g.,
when naming the intermediate variables by their generic meaning like
“key” and “value’:

]

Listing 16. Example code for a possible naming inside list comprehensions
while iterating over a dictionary.

tconver:ed = [(int (k), str(v)) for k, v in d.items ()]

Example 2: When writing OO programs in Python, it may feel
cumbersome to declare the (almost implicit) “self’-reference of the
current object in the signature of every method that object exposes.
Traditionally called “self”, the first function parameter is usually
understood by IDEs through support of auto-completion and text
suggestions; the Python object model always automatically and
silently prepends the current object’s self-reference to any method
call of that object (via dot notation). Making it a habit to use the
underscore instead, as used in Listing 8, however, may improve
method declaration and readability instantly, as there is a visual
discriminability between named variables and the (unnamed) self-
reference, invoke other methods (as in _ . getName ()) and refer to
objects’ attributes (as in _.name).

A combination of above two suggestions for code clarity, however,
will lead to hard to track errors; therefore the use of a double-
underscore for the list comprehension may be considered as in the
following code:

asInts = [int(__) for __ in alist] 1
asReverse = {_v: int(_k) for _k, _v in maps.items()} 2

Listing 17. List and dictionary comprehensions using underscores in private,
intermediate run variables.

Example 3: Conditional (or ternary) expressions (or operators)
are sometimes frowned upon for obscuring code readability, but
match the expressive programming style known from functional
programming languages when trying to achieve something similar
in Python**:

safeValue = getValue(x) if x is not None else 0 1
protected = lambda A, B: A / B if B != 0. else 0. # as in Pony language 2

Listing 18. Ternary/Conditional expression/operator in Python.

This may be read as “assign to the variable safeValue by default
the result of the expression getValue (x) if the condition x is
not None holds true (is being the identity comparison operator),
otherwise assign it the (exceptional) value of 0”. This provides a
clear hint about what is the norm or expected program flow, but
also defines a standard alternative (fallback) after it, making it easy
to understand by humans reading the code, as it emphasizes the
important (or “unmarked”) default case before mentioning the (less
likely) exceptional case. Interestingly, most languages implement a
different order of arguments to the ternary expression, with one other
exception beside Python being Fortran, cf. Table IV: No matter how it
is implemented syntactically in any language, most developers agree
in that nesting ternary operators is a bad practice to avoid.

44Qriginal poll from Guido van Rossum, accessed Aug 25, 2016:
http://legacy.python.org/dev/peps/pep-0308/

Language Conditional Expression Order
C, Java, Haskell, ... COND ? THEN : ELSE ;
Pony if COND then THEN else ELSE end
Python THEN if COND else ELSE
Fortran merge(THEN , ELSE , COND)
TABLE IV

CONDITIONAL EXPRESSION ELEMENT ORDER FOR DIFFERENT
PROGRAMMING LANGUAGES. COND REPRESENTS THE CONDITION
EXPRESSION, THEN AND ELSE THE EXPRESSIONS OR STATEMENTS THAT
ARE CONDITIONALLY EVALUATED.

In Erlang, as in most functional programming languages , there
exists no special ternary expression, but every block of code is an
expression in its own right. The 1f (and case) expression allows
to evaluate conditions which might act as a ternary (or higher count)
conditions, while the compiler ensures that the different if clauses
always guarantee a result or raise an exception. An example for such
a function body is given in the following Erlang code:

saxHandler ({startElement, _, "link", _, Attrs}, _, {Entries, inItem, Entry}) —> 1
case lists:any(fun(Elem) —-> element (3, Elem) == "href" end, Attrs) of ¢ 2
<> sometimes href contains link
true -> 3
{Entries, inItem, Entry#entry{url = case Entry#entry.url of undefined -> 4
<> helpers:removeUtmSource (element (4, hd(lists:filter (fun(Elem) =>
< element (3, Elem) == "href" end, Attrs)))); Any => Any end}};
false —> 5
{Entries, inItemLink, Entry} £ go into sax loop and wait for character 6
< content
end; 7

Listing 19. Case expression in Erlang, example from a news feed parser.

Pony implements a C-style conditional with a block structure
as in Erlang45. Python again takes an interesting hybrid approach
by allowing even left-side conditional expressions, e.g., for making
conditional behavioral selection, as follows:

Example 1: Conditionally calling one of two functions
result = (sophisticatedFunc if supported else simplifiedFunc) (funcArgs)
Example 2: Calling an indexed function from a dict

result = myDict[myKey] (functionArguments) # similar use of indirection

Dos L —

Listing 20. Use of left-side conditional expressions in Python.

Example 4: Anonymous inline functions, marked by the 1ambda
keyword, helps in writing collection-centric and functional-style
programs in Python, since they have both a dense syntax by leaving
out the return statement, can be defined anonymously at any place
in the code. Lambda expressions provide a similar expressiveness
as normal function declarations using the def keyword and just as
named functions allow for positional and keyword arguments plus
default values, but accept only one expression in their immediate
function body, disallowing multiple expressions or statements chained
by semicolons. Side effects are, however, not prohibited and left to
the developer’s discretion how and if to avoid them. Listing 21 shows
uses of lambda uses:

filter (lambda elem: elem.hasProperty (), listOfElements) # by predicate
map (lambda elem: int(elem), listOfStrNumbers) # apply to each element
[int (elem) for elem in listOfStrNumbers] # equivalent, but faster
sorted (myList, lambda a, b: emp(alll, b[1])) # sorts by sub-element

ENERNCE

>
>
>
>

Listing 21. Use of left-side conditional expressions in Python.

IV. CONCLUSION

Avoiding polyglotism and focusing on one programming language
for a certain spectrum of applications from IT operations and in-
frastructure software development on one side, aviation research and
efficient workshop support on the other side, yields the advantages

4STutorial, accessed Sep 1, 2016:
http://tutorial.ponylang.org/expressions/control-structures.html

of reduced training effort, higher code quality, easier debugging
and setup of development environment. Python as a single unified
tool for these diverse jobs provides users both from the converging
DevOps and research staff with a powerful, versatile and easy to learn
programming language. Administration and maintenance of Python
distributions is easy, and almost any operating system is supported,
while different distributions are optimized for aspects ranging from
performance over interoperability to concurrency guarantees.

Ruby came about some years later than Python, with a different
design philosophy, but was initially at a disadvantage with low
performance and very much linked with its landmark convention-
over-configuration web framework Rails. These early drawbacks have
mostly been resolved [25] and there are even JIT implementations of
Ruby under way46, however in the context of the needs and historic
education of most the IDL’s staff Python is deemed a much better
candidate selected for all the tasks and use cases documented above.

A. Outlook

The transition to infrastructure-as-code in the IDL is still ongoing,
and collaboration processes are not yet mature enough for every
participant to allow for a full on-demand IT self-service. These goals,
however, have been laid down and are part of the laboratory and
working methodologies evolution, both a central part of LY’s current
and future development.

To name a mundane software engineering decision and educational
challenge , the migration of existing, and a best practice recom-
mendation for future code to the new language variant Python 3
will become a major activity in the future. Although largely source
compatible, the language overhaul entails several syntactic changes
that require sometimes restructuring or reimplementation of certain
code constructs. Due to extensive library and platform support most
developers still write their code in Python 2.x at LY. Whoever wants
to enjoy the benefits of the new language and its library additions,
however, is recommended to migrate to Python 3, as only certain
security fixes and features are backported to the 2.7 branch.

Further consideration on improvements around the IDL infras-
tructure and user processes has to go into ubiquitous monitoring
and logging to gather data for better and more agile decision
making, observing security and privacy concerns, invest into more
reproducible build automation and release management, provide more
on-demand services provisioning (platform-as-a-service), and provide
integrated training on the IT and research convergence.

REFERENCES

[1] A. Bachmann, J. Lakemeier, and E. Moerland, “An integrated laboratory
for collaborative design in the air transportation system,” in 19/ ISPE
International Conference on Concurrent Engineering, Trier, Germany,
2012, pp. 1-2. [Online]. Available: http://www.ce2012.org

[2] B. Nagel et al., “Virtual aircraft multidisciplinary analysis and de-
sign processes — lessons learned from the collaborative design project
vamp,” in 4" CEAS Air & Space Conference, Flygtekniska Férening,
Linkoping, Sweden, 2013.

[3] E. Dineva et al., “Empirical performance evaluation in collaborative
aircraft design tasks,” in 20’" ISPE International Conference
on Concurrent Engineering, 2013, pp. 110-118. [Online]. Avail-
able: http://ebooks.iospress.nl/book/20th-ispe-international-conference-
on-concurrent-engineering

[4] ——, “New methodology to explore the role of visualisation in
aircraft design tasks: An empirical study,” International Journal of
Agile Systems and Management (IJASM), vol. 7, no. 3/4, pp.
220-241, 2014, DOL 10.1504/1IJASM.2014.065356. ISBN online:
1741-9182; print: 1741-9174. ISSN 1741-9174. [Online]. Available:
http://www.inderscience.com/info/inarticle.php?artid=65356

40Rubinius website, accessed Aug 30, 2016: http://rubinius.com
JRuby website, accessed Aug 30, 2016: http://jruby.org
Topaz website, accessed Aug 30, 2016: http://www.topazruby.com
RuJIT GitHub website, accessed Aug 30, 2016:
https://github.com/imasahiro/rujit
InfoQ webcast, accessed Aug 30, 2016:
https://www.infoq.com/presentations/graal-trufle

[5]

(6]

(71

(8]

(91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(171

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

——, “Human expertise as the critical challenge in participative
multidisciplinary design optimization — an empirical approach,” in
Moving Integrated Product Development to Service Clouds in the
Global Economy Advances in Transdisciplinary Engineering. 10S
Press, 2014, pp. 223-232, ISBN 978-1-61499-439-8 (print); 978-
1-61499-440-4 (online). [Online]. Available: http://ebooks.iospress.nl/
volumearticle/37865

“Lessons learned in participative multidisciplinary design
optimization,” Journal of Aerospace Operations, 2016, DOI
10.3233/A0OP-150054. [Online]. Available: http://content.iospress.com/
articles/journal-of-aerospace-operations/aop054

M. Kunde and A. Schreiber, “Advantages of an integrated simulation
environment,” CEAS Aerospace Aerodynamics Research Conference,
Sep. 16-19, 2013, ISBN 789175195193, ISSN: 0001-9240. [Online].
Available: http://www.ceas2013.org/images/images/CEAS2013.pdf

D. Seider, “Open source framework RCE: Integration, automation,
collaboration,” electronic, Toulouse, France, Nov. 26-28, 2014,
presentation. [Online]. Available: http://elib.dlr.de/93323/

E. Moerland et al., “Collaborative aircraft design using an integrated
and distributed multidisciplinary product development process,” in ICAS
2016, Daejeon, Korea, 2016, forthcoming.

C. Liersch and M. Hepperle, “A distributed toolbox for multidisciplinary
preliminary aircraft design,” CEAS Aeronautical Journal, vol. 2, pp. 57—
68, Dec. 2011, DOI: 10.1007/s13272-011-0024-6. [Online]. Available:
https://link.springer.com/article/10.1007%2Fs13272-011-0024-6

B. Nagel et al., “Communication in aircraft design: Can we establish a
common language?” in 28" International Congress of the Aeronautical
Sciences ICAS 2012, Brisbane, Australia, Sep. 23-28, 2012.

E. Moerland, R.-G. Becker, and B. Nagel, “Collaborative understanding
of disciplinary correlations using a low-fidelity physics based aerospace
toolkit,” CEAS Aeronautical Journal, vol. 6, pp. 441454, Sep. 2015,
DOI: 10.1007/s13272-015-0153-4.

I. Zioni, “What is DevOps? The beginner’s guide,” electronic, Aug. 17,
2016. [Online]. Available: https://dzone.com/articles/what-is-devops-
the-beginners- guide- from-logzio

M. Hittermann, “DevOps matrix clarifies areas of Dev-
Ops practice,” electronic, Jun. 25, 2014. [Online]. Avail-
able: https://www.sdxcentral.com/articles/contributed/devops-matrix-

clarifies-devops-practice-michael-huettermann/2014/06/

L. Prechelt, “An empirical comparison of seven programming
languages,” Computer, vol. 33, Oct. 2000, ISSN: 0018-9162; DOI:
10.1109/2.876288. [Online]. Available: https://dl.acm.org/citation.cfm?
id=621567

H.-C. Fjeldberg, “Polyglot programming. a business perspective,” Mas-
ter’s thesis, Norwegian University of Science and Technology, Depart-
ment of Computer and Information Science, 2008.

F. C. A. Tomassetti, “Polyglot software development,” Ph.D. dissertation,
Politecnico di Torino, 2014. [Online]. Available: http://porto.polito.it/
2537697/

H. Abelson, G. J. Sussman, and J. Sussman, “Structure and
interpretation of computer programs,” manual, 1990, ISBN 0-262-
01153-0 (hardcover), 0-262-51087-1 (paperback). [Online]. Available:
https://mitpress.mit.edu/sicp/full-text/sicp/book/book.html

A. C. Rasmussen et al., “Tritonsort: A balanced large-scale sorting
system,” in Proceedings of the 8/ USENIX Symposium on Networked
Systems Design and Implementation (NSDI 2011), Boston, MA, Mar.
30-Apr. 1, 2011.

A. C. Rasmussen, “I/O-efficient data-intensive computing,” Ph.D. dis-
sertation, University of California, San Diego, 2013.

——, “Unorthodox paths to high performance,” electronic, Aug.
21, 2016. [Online]. Available: https://www.infoq.com/presentations/
tritonsort-themis

M. Hering, “How to deal with COTS products in a DevOps world,”
electronic, Jul. 24, 2016. [Online]. Available: https://www.infoq.com/
articles/cots-in-devops-world

R. Burstall, “Christopher strachey - understanding programming
languages,” Higher-Order and Symbolic Computation, vol. 13: 51, pp.
51-55, Apr. 2000, DOI: 10.1023/A:1010052305354, ISSN: 1388-3690
(print), 1573-0557 (online), http://link.springer.com/article/10.1023%
2FA%3A1010052305354. [Online]. Available: http://www.cs.cmu.edu/
~crary/819-f09/Strachey67.pdf

A. Bachmann, H. Bergmeyer, and A. Schreiber, “Evaluation of aspect-
oriented frameworks in python for extending a project with provenance
documentation features,” The Python Papers, vol. 6, pp. 3: 1-15, 2011,
ISSN: 1834-3147, Free online access: http://ojs.pythonpapers.org/index.
php/tpp/issue/view/28.

C. Seaton, “Deoptimizing ruby,” electronic, Nov. 17, 2014. [Online].
Available: http://chrisseaton.com/rubytruffie/deoptimizing/

