Bachelorthesis

Ermittlung der Materialeigenschaften von Speichermaterialien

Von:

Philipp Tonnier

Matrikelnummer: 287529

Deutsches Zentrum für Luft- und Raumfahrt e.V. Institut für technische Thermodynamik

Betreuer:

DLR Stuttgart:

Dr.-Ing. Claudia Martin

HTWG Konstanz:

Prof. Dr. Todd Alexander Deißer

Eigenständigkeitserklärung

Hiermit bestätige ich, dass ich die vorliegende Arbeit selbständig verfasst und keine anderen als die angegebenen Hilfsmittel benutzt habe. Die Stellen der Arbeit, die dem Wortlaut oder dem Sinn nach anderen Werken (dazu zählen auch Internetquellen) entnommen sind, wurden unter Angabe der Quelle kenntlich gemacht.

Stuttgart, 26.08.2016					
Philipp Toppior					
Philipp Tonnier					

Verfasser: Philipp Tonnier Seite: I
Matrikelnummer: 287529 Datum: 26.08.2016

Inhaltsverzeichnis

Ei	I		
Abbildungsverzeichnis			
Tabellenverzeichnis			
1	1 Einleitung		
2	Schad	densfallanalyse des Speichers	2
3	Elasti	zitätstheorie und Einkristallkonstanten	4
	3.1	Elastizitätstheoretische Grundlagen	4
	3.2	Elastische Materialeigenschaften	6
	3.3	Thermomechanische Literaturkennwerte von Natriumnitrat	9
	3.4	Makroskopische Betrachtung der Einkristallkonstanten	11
4	Herst	ellung von Probekörpern	16
	4.1	Aufbau des Rohrofens	16
	4.2	Temperaturparameter für die Probekörperherstellung	18
	4.3	Kubische Probenform	20
	4.3.1	Aufbau und Werkstoffauswahl	20
	4.3.2	Erzeugte Probekörper mit der kubischen Probenform	22
	4.4	Zylindrische Probenform	25
	4.4.1	Probenvorbereitung	25
	4.4.2	Erzeugte Probekörper	26
	4.5	Nachbearbeitung der Probekörper	28
	4.5.1	Nachbearbeitung der Druckproben	28
	4.5.2	Nachbearbeitung der Dilatometerproben	31

5	Werk	stoffprüfung am Natriumnitrat	33
	5.1	Messtechnik für die Druckprüfung	33
	5.1.1	Dehnungsmessstreifen	34
	5.1.2	GOM – Aramis	38
	5.2	Druckprüfung	41
	5.2.1	Grundlagen	41
	5.2.2	Prüfvorbereitung und Prüfparameter	42
	5.2.3	DMS Applikation	44
	5.2.4	Berechnungen	45
	5.2.5	Versagensdokumentation der Druckprobe und Rissproblematik mit GOM	47
	5.3	Dilatometermessung	50
	5.3.1	Grundlagen	50
	5.3.2	Messtechnik	52
6	Ausw	ertung und Ergebnisse	54
	6.1	Druckversuche	54
	6.2	Dilatometermessung	59
7	Fazit		63
Q	Litora	turverzeichnis	65