MONITORING AND FORECAST OF RESIN INFUSION PROCESSES WITHOUT CONTACT TO PART

Nico Liebers, Dominic Bertling, Markus Kleineberg, Martin Wiedemann

Knowledge for Tomorrow

Motivation for Resin Flow Monitoring and Forecast

- Deviations in material and temperature etc. lead to different flow patterns
- Race tracking can lead to insufficient impregnation and gas entrapments
- Only experts with deep understanding can rate a running process and might induce the right measures to ensure successful fill

Ultrasonic Process Monitoring: In-house Developed Sensors

- Sound impulses are sent through mould and laminate
 - No direct contact to part, vacuum integrity and part surface not affected
- Allows monitoring of resin arrival, cure, gelation, vitrification and thickness
- Conventional transducers
 - Difficult to integrate, limited temperature range
 - Unreliable due to critical couple interface
- Resolved by direct application of piezo element on mould
- High reliability and measurement performance, low cost, easy integration

Conventional sensors versus tool mounted piezo elements

Low cost ultrasonic process monitoring sensors

Flow Front Monitoring

- Pulse-Echo:
 - Before resin arrival →Total reflection at mould-cavityinterface
 - On resin arrival → Reflection amplitude drops until sensor cross section is completely wetted, then constant
- Transmission:
 - Sound can only be propagated through wetted preform
 - Amplitude increases upon resin arrival until subsection completely filled over thickness
 - But gas bubbles etc. also attenuate amplitude → amplitude increase after the bubbles have passed

Flow Front Monitoring

- Combination of the two pulse echo and the transmission signal can be used for flow front shape reconstruction
- Distinction between wedge and U shape
- Delay shows wedge angle

Principle of reconstructing the flow front shape over thickness from sensor results

Flow Front Monitoring

Application example

- Autoclave based infusion of two ribs of a wing box demonstrator
- EU project LOCOMACHS
- 24 ultrasound sensors
- Process close to industrial aeronautical manufacturing

• Reflection amplitude depends on ratio of wetted sensor cross section

$$\bar{A}_{PE} = 1 - \frac{S_{wetted}}{S_{Sensor}} \cdot \left(1 - \frac{R_1}{R_0}\right)$$

Amplitude drop speed depends on flow front speed
→ Flow velocity = Sensor Dimension / Time span of amplitude drop

Simulation of pressure distribution and amplitude drop over flow front position

- In reality pressure field not homogenous and depending on mould material and thickness
- With increasing mould thickness pressure focused on center, effective sensor diameter reduced
- For precise velocity measurement correction (simulation) or calibration (measurement) needed

• Validation with transparent mould (PMMA) and image processing for flow front position and velocity and sensor contour

- Flow velocity obtained by curve fit into measured curve
- Nomalized error ~3.5%
- Correction factor required, can be obtained from pressure field simulation or through calibration
- Works for thin and thick mould walls

Flow front direction monitoring

- Amplitude drop curve depends on flow direction for sensors that are not rotationally symmetric
- \rightarrow Using to estimate angle between flow direction and sensor
- Example of quadratic sensor:

Flow front direction monitoring

- Quadratic character only at low mould thicknesses
- Only for small mould thicknesses a precise angle measurement is possible

Laminate thickness monitoring

- Time of flight of transmission signal = Laminate thickness / Sound velocity
- In general low increase of sound velocity before gelation
- In this case very slow reacting resin at infusion temperature \rightarrow Sound velocity increase negligible
- Compensation through calibration measurement or special sensor setting

Monitoring and forecast system Expected flow front propagation

Monitoring and forecast system What we might get

Monitoring and forecast system Sensor values

Measured resin arrival at sensor positions

Monitoring and forecast system The way it should work

Monitoring and forecast

Monitoring and forecast system Design of experiments and generation of training data

Variation of simulation parameter

Training data (sensor values)

Monitoring and forecast system Supervised machine learning

Variation of simulation parameter

Training data (sensor values)

Monitoring and forecast system

Predict parameter, visualize current degree of filling and forecast further process evolution

Conclusions

- Low cost ultrasound sensors
- No contact to part required
- Allow high number of sensors
- Monitoring of the most crucial parameters:
 - Flow front arrival, shape, velocity (and direction)
 - Laminate thickness
 - Cure, gellation, vitrification
- Only experts can forecast risk of incomplete fill from sensor data
- Solution:
 - Using a machine learning algorithm to find simulation parameters that match sensor data
 - Run simulation to forecast infusion
 - Rate infusion forecast and decide if measures have to be undertaken
 - Algorithm trained through simulation results with varied process parameters

DLR.de • Chart 22 > ISCM 2016 > N. Liebers • MONITORING AND FORECAST OF RESIN INFUSION PROCESSES WITHOUT CONTACT TO PART > August 24th 2016

Thank you for your attention!

