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1. Motivation

1. Motivation

Eu:CROPIS (Euglena and Combined Regenerative Organic-Food Production in Space)[1]

is a spacecraft mission of the German Aerospace Center (DLR), which focuses on re-

searching the behavior of two greenhouses at different gravity levels. To achieve this a

cylindrical satellite is rotating around its longitudinal axis at different angular speeds.

The goal of Eu:CROPIS is to grow tomatoes in Moon and Mars gravity levels. Water is

of course needed to grow tomatoes. For this reason, two sector-annular cylindrical tanks

of 3 l volume filled with approximately 1.5 l water are on-board of the satellite.[2] Due to

the rotation of the satellite, the water motion can affect the stability of the Attitude and

Orbit Control System (AOCS). Consequently, the study of sloshing and its effects on the

spacecraft AOCS is of paramount importance.

The periodic motion of liquid (e.g. propellant) with free surface in reservoirs is defined

as sloshing. The liquid sloshing interacts with the tank walls and affects the overall system

dynamics. The satellite dynamics and the forces distribution causes the liquid sloshing,

which in turn influences the whole system dynamics of the satellite. For this reason, it is

very important to predict the sloshing behavior and thus be able to guarantee the dynamic

stability of the system.[3]

Sloshing can be identified by different parameters such as hydrodynamic pressure dis-

tributions, forces and moments or natural frequencies. These parameters affect the rigid

body motion of the satellite directly, since they describe the sloshing behavior, which ulti-

mately affects the spacecraft AOCS.[3] Usually, Equivalent Mechanical Models (EMM’s)

are used to simplify the sloshing phenomena analysis. EMM is a system made of basic

mechanic elements such as springs, pendulums etc., that simulate the sloshing behavior

and make them easy to model and understand. The EMM is then incorporated in the

spacecraft motion and the AOCS model, which allows us to check and modify the AOCS.

[4]
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1. Motivation

Figure 1.1: Eu:CROPIS spacecraft CAD-model as cylindrical body with four deployable

solar arrays.[5]

In this thesis, the water sloshing inside the tank of the spin stabilized satellite (Eu:CROPIS)

has been identified. First, a Computational Fluid Dynamics-Analysis was used to simulate

a liquid motion under realistic boundary conditions. Here the water Center of Mass (CoM)

motion was computed to determine the liquid sloshing transfer functions. The method

of system identification was used to determine the transfer function parameters. Overall

four cases were considered: a tank with and without baffles at the lowest gravity level

and a tank with baffles at two other gravity levels. Each case includes three simulations

in relevant axis direction: circumferential, radial and longitudinal. So altogether twelve

simulations are realized. Implemented baffles in the water tank are used to damp the

liquid motion.

2



1. Motivation

Figure 1.2: Eu:CROPIS spacecraft CAD-model, inside view with pressure chamber includ-

ing a main experiment with water tanks. The Spacecraft is a cylinder with a

diameter of 1000 mm and a height of 1100 mm.[5]

3



2. Problem Definition

2. Problem Definition

The liquid slosh motion interacts with the satellite dynamics, i.e. the orbit perturbing

forces and AOCS induces forces affect liquid sloshing and the other way around. To ensure

the stability of the system, the sloshing dynamics must be considered, so the AOCS can

be designed and optimized. Figure 2.1 shows the design of the water tanks with the

implemented baffles inside:

Figure 2.1: Water tank including baffles: 1. CAD-model of the water tank with baffles.

2. Equivalent Engineering Model (EEM) of the payload, on the left the water

tank and on the right the chamber for tomato plant, mounted on the holding

structure. 3. Water tank prototype on the shaker table.[5],[6]

The satellite includes two symmetrical mounted tanks 150 mm above the satellite Cen-

ter of Mass (CoM). It is not possible to achieve micro-g on earth for the needed time

span of ≈ 100 s (drop tower ≈ 9s, parabolic flight ≈ 30s), therefore numerical simulations

are used to predict liquid motion in such gravity conditions. Numerical simulations are
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2. Problem Definition

performed by means of Computational Fluid Dynamics (CFD)-Analysis with OpenFOAM

software. Open Source Field Operation and Manipulation (OpenFOAM) is a free software

including numerical solvers, pre- and post- processing tools to analyze mechanic, ther-

mal or combined problems, but also Computational Fluid Dynamics. OpenFOAM has a

lot of solvers to compute special numerical problems, like particle-tracking, combustion,

multiphase flow, free-surface tracking etc.[7]

In order to reduce computational complexity and time, the simulation includes only

one tank with simplified geometry (with and without baffles). However, all relevant ge-

ometrical tank parts are realized, like connections between the baffles, which influence

the physical behavior of the water. Consequently, the results are still valid, as the tanks

are equal and have a symmetrical configuration along spacecraft longitudinal axis. Differ-

ent angular velocities are simulated to generate various equivalent gravity levels, which is

calculated as follows [8]:

gequivalent = (ω2R)gearth, (2.1)

ω is the angular velocity, R is the radius, where the gravity appears and gearth = 9.81m
s2

is the earth gravitational acceleration. For the Moon gravity of 0.16 gearth at radius of

R = 340 mm the angular velocity has to be 2.1177 rad
s
. For Mars gravity of 0.38 gearth the

spin rate is 3.2636 rad
s
. Another spin rate of 0.5294 rad

s
with the equivalent gravity level of

0.01 gearth is also simulated, which is the initial spin rate of the satellite after orbit injection

and stabilization. In addition, various motions of the tank have to be implemented in the

simulations to identify a sloshing system behavior.

Simulation results have to be analyzed in order to specifically identify the sloshing

process. The liquid sloshing transfer functions are obtained by application of system

identification algorithm, which calculates transfer function parameters with the objective

to minimize the error between liquid sloshing systems and the simulated model. Once the

transfer functions are known, they can be implemented into the nutation simulation of the

AOCS at different spin velocities.
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3. Theoretical Background

3. Theoretical Background

In this section, theoretical background about sloshing, EMMs, system identification tech-

niques and CFD are presented. This information is needed to successfully tackle the

problem described in Section 2. First, the sloshing background is divided in lateral slosh-

ing and sloshing in a rotating container. The previous occurs in case of lateral oscillation

of a container partially filled with liquid and the latter in case of the rotational movement

(spinning). The EMM section describes the most common models used: the pendulum-

model and the spring-mass model. The system identification section gives an approach of

the algorithm used to determine the transfer functions. The CFD section describes the

basic work-flow in numerical simulations.

3.1. Lateral Sloshing

Sloshing is defined as the motion of a liquid free surface inside a partially filled container

in motion due to any disturbance. There are many types of sloshing modes, e.g. planar,

non-planar, rotational, symmetric or asymmetric. The general problem of liquid slosh-

ing involves the estimation of hydrodynamic pressure distribution, forces, moments and

natural frequencies of the liquid free surface. The main dynamical effect of sloshing is

oscillation of the liquid Center of Mass (CoM), which influences the rigid body motion of

the satellite.[3]

Different modes (configurations) of free surface sloshing can be defined by their wave

number m (number of waves in a circumferential direction, along the boundary line of a

circle) and by their mode number n (number of waves in a radial direction). Two general

modes of sloshing are the symmetric and the asymmetric. Figure 3.1 shows the first modes

of lateral liquid sloshing for asymmetric (a.) and symmetric modes (b.).[9]

For the first asymmetric mode the CoM shift in lateral direction is the biggest. For this

reason usually only the first mode is considered. The symmetric modes are less relevant

in case of lateral sloshing, since they do not cause CoM shift in lateral direction, but in

longitudinal.[4] Due to the micro-g environment, there is no regular gravitational potential

anymore, which stabilizes the liquid volume to the bottom. In this case, the prediction

6



3. Theoretical Background

Figure 3.1: First sloshing modes: a. Asymmetrical modes with CoM shift in lateral direc-

tion. b. Symmetrical modes without CoM shift in lateral direction, however

there is a CoM shift in longitudinal direction. [4]

about liquid reorientation becomes a problem. In general, the motion of sloshing systems

is influenced by capillary action, body inertia and viscous forces. The analysis of liquid

sloshing can be simplified if some forces are much smaller compared to others, so they

can be ignored. Dimensionless parameters are used to find out the dominant effects of the

system. These numbers separate the hydrodynamic behavior into three regimes (Figure

3.2) [4]:

• inertia dominated regime. In this case capillary forces are small compared to inertia

forces, so they can be neglected.

• gravity dominated regime. Here gravity forces are large, so inertia and capillary

forces can be neglected.

• capillary dominated regime. Here gravitational and inertia forces are small compared

to capillary forces. This is only the case in micro-g environments with a very small

disturbances forces.

7



3. Theoretical Background

Figure 3.2: Hydrodynamic regimes divided into inertia, gravity and capillary, separated

by the dimensionless parameters Bond and Weber numbers. Red box marks

the dominated regime relevant for this thesis, so the capillary forces can be

neglected in the numerical simulations.[4]

The ratio of gravitational to surface tension forces is defined by the Bond number [4]:

Bo =
ρgL2

σ
, (3.1)

where ρ is the density of the fluid, g is the acceleration due to the gravity, L is the char-

acteristic length (for example diameter of the capillary tube) and σ is the surface tension.

The ratio of inertia to capillary forces is defined by the Weber number as follows[4]:

We =
ρV 2L

σ
, (3.2)

where v is the characteristic velocity of the fluid, L is the characteristic length of the

system, ρ is the density of the fluid and σ is the surface tension. The Froude number

defines the importance of inertia and body forces and is defined as the ratio between the

Weber and the Bond number [4]:

Fr =
V 2

gL
=

We

Bo
. (3.3)
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3. Theoretical Background

In each case the importance of viscous effects must be determined separately from the

Reynolds number, which is defined as [3]:

Re =
vρL

µ
, (3.4)

where ρ is the density, L is the characteristic length, v is the relative velocity of the object

with respect to the fluid and µ is the dynamic viscosity of the fluid.

3.2. Sloshing in a rotating container

In the previous section we have seen that lateral sloshing shifts the CoM position of the

liquid. This section gives an overview on the specific case of liquid in rotating containers,

since this one applies to the mission Eu:CROPIS.

The aspect of sloshing in a rotating container is important due to the stabilization of

the satellite by spinning around the major moment of inertia axis. Due to the fact that

the transverse angular velocities are not exactly zero, the desired spacecraft spin axis and

the angular momentum vector do not coincide. For this reason the spacecraft starts to

nutate around its spin axis. Nutation effects the liquid motion relative to the tank and

can lead to spacecraft instability, when it interacts with the AOCS. In general, the liquid

motion tends to damp nutation, which is a positive effect for the AOCS, because there

is no active system needed to damp the nutation angle.[4] Nevertheless it is essential to

analyze liquid sloshing and its damping effect on the spacecraft. Two types of natural

oscillation are possible in rotating containers [10]:

• free surface oscillations (sloshing waves),

• internal liquid oscillations (inertial waves).

Sloshing waves can only occur if free surfaces exist and are defined as the dynamic in-

teraction between pressure forces and effective gravity (generally a combination between

true gravity and centripetal forces, in the case of micro-g environment, mostly centripetal

forces). Viscosity provides some damping of the motion, but does not change the slosh

natural frequencies much. Resonant frequencies are more than twice the spin rate. [10]

9



3. Theoretical Background

Inertial waves can also occur in a fully filled tank, however the CoM shift is negligible in

this case. Internal liquid oscillations are defined as dynamic interactions between pressure

and Coriolis forces. Resonant frequencies are less than twice the spin rate. [10]

In the case of rotating tanks the characteristic (dimensionless) numbers can be written

as a function of the spin rate. The centrifugal (rotational) Bond number is then defined

as relation to the centrifugal acceleration [4]:

BoC =
ρ ·R · ω2 · L2

σ
, (3.5)

where ω is the spin rate, ρ is the density of the fluid, R is the radius (where equivalent

gravity is calculated), L is the characteristic length and σ is surface tension.

The most common conditions for space environments are for BoC >> 1, due to the large

spin rates and micro-g environment (small disturbance forces). In this case the centrifugal

acceleration (induced gravity) is the dominant force. For small spin rates surface tension

becomes more dominant and plays an important role in shaping the free surface. Surface

tension forces also influences liquid motion damping and has to be taken into account.[4]

In case of Eu:CROPIS payload the tanks are not fully filled with fluid, so sloshing waves

occur and produce the CoM shift. The centrifugal force dominates the liquid sloshing

behavior (BoC >> 1), which allow to neglect capillary forces.

3.3. Equivalent Mechanical Model

The main dynamic effect of sloshing is the oscillation of the liquid CoM relative to the

tank. Such oscillations can have a significant influence on the stability of a satellite.

EMMs are typically used to ease the implementation of fluid dynamics into AOCS sim-

ulations, because their equations are relatively easy to implement. EMMs reproduce the

forces and moments acting on tank walls due to the sloshing, by using simple mechanical

components.[3]

In the case of a filled container, the fluid dynamics can be represented by an equivalent

rigid body. However, when a partially filled container is considered, the sloshing has

more than one natural frequency, so the model must contain free oscillating masses. The

10



3. Theoretical Background

linear motion of liquid CoM can be represented by another linear dynamic model. The

parameters of the EMMs only depend on the tank shape and the liquid properties.[3]

Figure 3.3 shows two EMMs commonly used to represent linear sloshing: the pendulum

and spring-mass models. Both models induce the same forces and torques (equivalent

to the sloshing). The pendulum model has the advantage that its natural frequency

depends on the acceleration (or gravity g), as the liquid sloshing frequency, so there is a

direct dependence between natural frequency, pendulum length and the gravity. Compared

to pendulum model, the spring constant K has to be changed, if there are changes in

acceleration g.[4]

Figure 3.3: Equivalent mechanical models, which represent linear sloshing. EMM param-

eters are: pendulum length ln, sloshing mass mn, spring constant Kn and

damping constant Dn. Different numbers of systems are used to realize differ-

ent sloshing natural frequencies.[3]

11



3. Theoretical Background

The natural frequencies for both models are defined as [9]:

ωp =

√

g

ln
, (3.6)

ωsm =

√

Kn

mn

, (3.7)

where g is the acceleration or equivalent gravity field, ln is the pendulum length, Kn is

the spring constant and mn is the mass. The index n represents the sloshing mode. Each

model can be extended by a viscous dash-pot to include the liquid damping. More than

one model can be added to represent different slosh modes or to characterize complex

geometries.

The first task, when using EMM, is to choose a compatible model and derive its equa-

tions of motion. The model has to result into the same position shift, as the CoM shift

caused by the liquid sloshing. It is important to know the dominant motion of the tank.

Figure 3.4: Complex EMMs. 1. EMM for a spinning spherical tank including rotor with

damping and attached damped pendulum.[10] 2. EMM for cylindrical tank for

slow spinning rates including a slider with non linear spring constant depended

on the spin rate to represent non-linear sloshing. [3]

12



3. Theoretical Background

Once the model is chosen, the parameters, such as the spring constant or the pendulum

length have to be determined analytically from liquid properties and depended on the tank

geometry, or by an experiment. In general, more complex non-linear mechanical models,

like sliding mass along longitudinal axis and additional non-linear springs (see Fig. 3.4)

can be used.[10]

It is possible to add other mechanical models to characterize liquid sloshing for other

excitations, like for example spinning. An example is shown in Figure 3.4, which consists of

a rotor with an pendulum. Analytical derivation of model parameters requires a theoretical

analysis of the sloshing. However, in many cases this is not possible or practical. In

such cases the model parameters are determined by experimental measurements. The

experimental procedure consists of exciting the tank (typically a scaled model) with a

simple harmonic motion (horizontal) and measuring the resulting forces and torques caused

by liquid sloshing on the walls. Finally, the model equations of motion are fitted to the

torque and force measurements. The disadvantage of this approach is that the estimated

model has to be scaled to the micro-g environment.[4]

3.4. System identification of liquid sloshing dynamics on board of a

spin-stabilized satellite

In the previous sections an introduction about lateral and rotating sloshing and EMM has

been given. This section describes the approach used to identify and model liquid sloshing

in case of Eu:CROPIS spacecraft.

The main task is to identify the interaction between the spacecraft nutation and liquid

dynamics. As mentioned before, the dominant dynamic effects of liquid sloshing are the

CoM shift and the liquid forces acting on the spacecraft. The approach selected in this

thesis consists in predicting the CoM shift by CFD-analysis under micro-g conditions in

each relevant direction, i.e., circumference, radial and axial. It is important to stimulate

all the frequencies of the system in each direction. To do so, a step function in acceleration

can be used as the system excitation. By knowing the system excitation and its response

the transfer function can be determined. Finally, the estimated transfer functions can be

13



3. Theoretical Background

implemented into the spacecraft nutation simulation to predict the influence of the liquid

dynamics on the satellite dynamics. It is expected, that the liquid sloshing motion will

damp the nutation angle. Therefore the system of liquid will act as a passive nutation

damper.

The transfer function identification approach [11] has the advantage that no knowledge

of the mechanical model is needed. All of the parameters, like spring constant, equivalent

mass, etc. are integrated in the numerator and the denominator of the transfer function.

Consequently, it is not necessary to derive the mechanical systems equation of motions.

Before doing the simulations, it is important to identify the liquid motion regime by means

of the Bond number, where the equivalent gravity g caused by centrifugal forces is used.

The centrifugal Bond number is calculated as in Equation 3.5. The equivalent gravity

acceleration is calculated as follows [8]:

g = (ω2 ·R), (3.8)

where ω is the spin rate, R is the g-reference radius and gearth = 9.81 m
s2
.

Table 3.1 summarizes the cases needed to identify liquid sloshing. For each case there are

three numerical simulations in three relevant sloshing directions required. The simulation

case without baffles was realized only for the smallest spin rate to show the effect of using

them. The final configuration of the tank is with integrated baffles inside.

Case No. Spin rate [ rad
s
] Eq. g-level Baffles Bo

1 0.5294 0.01 no 5.93

2 0.5294 0.01 yes 5.93

3 2.1177 0.16 yes 94.9

4 3.2636 0.38 yes 225.4

Table 3.1: Cases needed to identify liquid sloshing with their important parameters as spin

rate, g-level and Bo number.
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3. Theoretical Background

As shown in Table 3.1 all of the cases have the Bo ≫ 1 number, so the surface tension

forces can be neglected. In this case the centrifugal acceleration is the dominant force,

which presses the liquid against the outer tank wall. The negligence of the surface tension

forces allows simplified simulations which reduces computational time.

3.5. Theory of system identification

Figure 3.5 shows liquid sloshing as a dynamic system with an input u(t) and an output

y(t). This relationship between the input and output signals represent the system. This

relationship is known as the transfer function (in the frequency domain) and the impulse

response (in the time domain) of the system, its estimation is done by different system

identification techniques.[12]

Figure 3.5: Block diagram of the liquid sloshing LTI-system. The system can be charac-

terized if proper input and output signals are available.[12]

A key aspect in system identification problems [11] is the generation and measurement

of the signals u(t) and y(t). It is important to stimulate all the modes of the unknown

system. A suitable input signal is the step signal, as it contains all the frequencies.

Here, the liquid sloshing is the system that needs to be identified. A step function (in

acceleration) is applied to the liquid in each relevant direction separately in the simulation

by realization of different tank motion. This signal is the input signal u(t), or

u(t) =







0 if t < 0

A if t ≥ 0
(3.9)

where A is the acceleration amplitude. The output signal, y(t), is defined as the motion of

liquid’s CoM (angle or position), which is calculated by the CFD program OpenFOAM.

The liquid sloshing is assumed to be a linear and time-invariant system (LTI), because

the amount of water used by the plants is very small, so the following rational and time-
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discrete transfer function is used as a model:

Ĝ(z−1) =
b̂0 + b̂1z

−1 + ...+ b̂mz
−m

1 + â1z−1 + ...+ ânz−n
=

B̂(z−1)

Â(z−1)
. (3.10)

The objective is to determine the coefficients âi and b̂j since these parameters characterize

the LTI system frequency response. One of the methods is to calculate the output error

eA(z) shown in Figure 3.6. In this case, the coefficients determination is a non linear

optimization problem, in which no closed solution exists. In order to obtain a linear

Figure 3.6: Block diagram to generate an output error from the actual model and the esti-

mated model outputs. In order to deal with a linear optimization problem the

output error eA(k) is multiplied by the denominator of the estimated transfer

function Â(z−1). [12]

optimization problem, the output error, eA(k), is multiplied by Â(z−1), i.e.

eG(z) = Â(z−1) · ea(z) = Â(z−1)[y(z)− ŷ(z)]

= Â(z−1)[y(z)− u(z)Ĝ(z−1)]

= Â(z−1)

[

y(z)− u(z)
B̂(z−1)

Â(z−1)

]

= y(z)Â(z−1)− u(z)B̂(z−1). (3.11)

The modified error, eG(z), is now a linear combination of the output y(z) weighted by

Â(z−1) and the input u(z) weighted by B̂(z−1). According to this, the block diagram

shown in Figure 3.7 is obtained. For eG(z) = 0 the system G and the estimated system Ĝ,

are exactly the same. The target is to minimize modified error eG(z) by the Least squares
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Figure 3.7: Modified block diagram, where error eG(K) is a linear combination of input

and output signals.[12]

method. The determination of the numerator B̂(z−1) and the denominator Â(z−1) lead

to a system of linear equations:

y(z)Â(z−1)− u(z)B̂(z−1) = eG (3.12)

or

y(z)[1 + â1z
−1 + â2z

−2 + ...+ ânz
−n]

−u(z)[b0 + b̂1z
−1 + b̂2z

−2 + ...+ b̂mz
−m] = eG. (3.13)

This equation now can be back-transformed to the discrete-time domain, k, as follows:

[y(k) + â1y(k − 1) + â1y(k − 2) + ...+ âny(k − n)]−

−[b̂0u(k) + b̂1u(k − 1) + b̂2u(k − 2) + ...+ b̂mu(k −m)] = eG, (3.14)

which can be re-written as:

−[â1y(k − 1) + â2y(k − 2) + ...+ âny(k − n)] +

+[b̂0u(k) + b̂1u(k − 1) + b̂2u(k − 2) + ...+ b̂mu(k −m)] = y(k).

There are at least N = m + n + 1 equations needed to solve the system of equations for

the unknown parameters â1, ..., ân, b̂0, ..., b̂m. The system of equations can be expressed in

the following matrix form:

M · p̂− y = eG (3.15)
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where

M =



































uk uk−1 · · · uk−m −yk−1 −yk−2 · · · −yk−m

uk+1 uk · · · uk+1−m −yk −yk−1 · · · −yk+1−m

...
...

...
...

...
...

uk+m uk+m−1 · · · uk −yk+m−1 −yk+m−2 · · · −yk

uk+m+1 uk+m · · · uk+1 −yk+m −yk+m−1 · · · −yk+1
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(3.16)
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(3.17)

and

y =



































yk

yk+1

...

yk+m

yk+m+1

...

yk+m+n



































(3.18)

For any matrix M with at least a rank of N , the parameter vector, p̂, can be calculated

by the Least squares method:

p̂ = (MTM)−1MT · y. (3.19)

This algorithm is implemented in a MATLAB System Identification Toolbox and has been

used to determine liquid sloshing transfer functions.
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3.6. Computational Fluid Dynamics

Computational Fluid Dynamics (CFD) uses applied mathematics, physics and computa-

tional software to solve problems, which involve fluid flow. The CFD strategy is to replace

the continuous problem domain with a discrete domain using a grid. The process of CFD

can be divided in three main tasks as shown in Figure 3.8 [13]:

• pre-processor,

• solver,

• post-processor.

The pre-processor includes the geometry and mesh generation, including material prop-

erties and boundary conditions definition. The pre-processor is the input for the solver

task. The process of mesh generation is very important for the solver task: no accurate

and reasonable solutions without a good mesh are possible. It is a difficult process, be-

cause it is important to find balance between accuracy, which requires very fine mesh, and

computational time, which is shorter for a coarse mesh. The problem definition affects

the decision between accuracy and computational time.

The solver contains the solving of the governing equations for each mesh point and

time step. Here the transport equations are solved (mass, momentum, energy or other

transport variables) with the help of physical models (turbulence). It is important to

control and monitor the solution process. In case of solver instabilities (non-physical

behavior of transport quantities), which lead to aborting the simulation, the mesh and

boundary conditions have to be checked and improved.

The post-processor includes result reporting and visualization. Here graphs, contour

plots or calculated required physical parameters like drag-coefficient and others are shown.

Post-processing is very important to analyze the CoM data, the free surface motion visu-

alization gives indication about the validity of the results.
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Figure 3.8: Computational Fluid dynamics workflow divided in three main tasks: pre-

processer, solver and post-processor. [13]

3.6.1. Solution Errors and Uncertainty

The solver includes the continuous solving of the system of algebraic equations by means

of numerical methods, which results in an approximate solution of the problem. It is

important to point out, that the approximate solution is affected by uncertainties and

errors through numerical calculations.

The errors of the solution can be separated in acknowledged and unacknowledged errors.

The former ones can be identified and removed, or their value can be estimated. The latter

are not under control and may occur in the simulation. Overall, simulation errors and

uncertainties can be classified as follows [14], [15]:
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Acknowledged Errors

• Discretization errors appear due to the representation of the governing equa-

tions as algebraic expressions in a discrete spatial domain (grid) and time (dis-

crete time steps). This type of error is strongly affected by the density of the

mesh. For this reason, the grid convergence study has to be implemented to

determine their order.

• Computer round-off errors occur because of the limited number of computer

digits given for a storage of physical value on the computer. They are not

significant compared to other error sources and can be minimized by choosing

higher precision of the floating number storage.

• Iteration errors (convergence) are defined as the difference between the

exact and the iterative solution of the discretized equations. These errors are

inherent to any numerical computation and they can be minimized by reducing

the residual value to the desired level.

• Physical modeling errors result due to the idealization of models, which are

used to reduce computational time (turbulence). Other processes, like multi-

phase flow are difficult to describe precisely, so therefore approximate models

are used.

Unacknowledged Errors

• Computer programming errors are mistakes in the CFD-code. These errors

can be removed by performing validation studies of the code.

• Usage errors are caused by inexperience in handling CFD codes, for example

setting wrong boundary conditions or using inviscid flow for computing known

as turbulent flow. Usage errors can also exist in the CAD, mesh generation

and result-analysis. These errors can be minimized by training and gaining

experience in using CFD and other software.
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4. CFD-Simulation implementations

This section describes the CFD process using the software OpenFOAM as stated in Sec-

tion 3.6. First, the selection of the solver and the physics of the problem are presented.

Then the geometry and mesh generation is explained, including geometry simplifications

and quality mesh statistics. In addition, a grid study is performed to approve the mesh

independence of the result and to estimate the errors caused by discretization. After that

the CFD simulations results are presented. The last section deals with the problem of the

transfer function identification for each simulation case.

4.1. Solver and Physics Selection: Volume of Fluid (VoF) Method

The VoF method is a numerical technique used in multiphase flow simulations. [16] The

main aspect of this method is the definition of an indicator function, which includes

information about, how each cell is occupied by one or another fluid (also mix of fluids).

This fraction function represents the volume fraction of one phase. The phase fraction

has values between 0 ≤ α ≤ 1. The value of zero stands for regions with gas and value of

one for regions with fluid, in case of two phase flow with gas and liquid. (Figure 4.1) The

numerical simulations are done using free CFD-Software OpenFOAM (Open Source Field

Operation and Manipulation). The problem definition is implemented into interDyMFoam

solver, which is convenient for two incompressible, isothermal and immiscible fluids. This

solver uses a VoF phase-fraction based on interface capturing approach. It is possible to

include mesh motion and a topology change in a interDyMFoam solver. [16]

It is important to guarantee the stability of the solver. One necessary stability criteria

is the Courant number (or CFL-condition1), which is defined as follows [14]:

Co =
U ·∆t

∆x
, (4.1)

where U is the velocity of the fluid, ∆x is a vector between calculation points of control

volumes and ∆t is a time step. In order to achieve a stable and an accurate run, the

maximal Courant number was set to 0.25 in the simulation cases. It is relevant to mention,

that the computational time increases by decreasing the maximal Courant number.

1Courant-Friedrichs-Lewy condition
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Figure 4.1: Schematic representation of VoF-Method using a phase fraction function. The

value of zero stands for the air phase, the value of one stands for the water

phase.

To realize stable solver run and accurate results the time step has to be adjusted to

the stability criteria, as direct dependency exist between them (4.1). This is done by

implementing an adaptive time step control. For each time step the Courant number

is calculated. In case that the Courant number is greater than the allowed value, the

new time step has to be calculated from flow velocity and the Courant number from

the previous time step according to the equation 4.1. This algorithm ensures stable and

accurate simulation run. Due to the fact that the Courant number and the velocity from

the previous steps are needed, it is important to set a small initial time step, which was

set in the following simulations to 10−4 s. [7]

4.2. Case Definitions

As mentioned before, the satellite spins around its longitudinal axis. This is defined as

the y-axis. Due to the rotation, sloshing in circumferential, radial, and longitudinal axis

have to be identified by applying a step function (acceleration) in each direction (Figure

4.2). It results in three simulations for each spinning rate.
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Figure 4.2: Axis and relevant direction definition of the water tank with mounted baffles.

Sloshing in three relevant directions was analyzed: circumferential, radial and

longitudinal.

Circumferential direction

To realize the step of acceleration in circumferential direction circular motion with constant

acceleration was used. To describe the mesh motion in the simulation the position of the

water tank for each time step is needed. In this case, the angular travel φ is used, defined

as:

φ = 0.5 · α · t2 + ω0 · t, (4.2)

where α is angular acceleration, t is time and ω0 is the initial angular velocity. The initial

gas-water phase was defined, as the steady state for constant initial spin rate ω0. In this

case, the water is pressed by centrifugal forces against the outer wall of the water tank,

as shown in the Figure 4.4. The water also has the initial velocity defined as follows:

Vinitial = ω0 × rcell, (4.3)
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where rcell is the radius from the rotating center to each mesh point and ω0 is the initial

angular velocity.

Figure 4.3: Initial gas-water phase to identify sloshing in circumferential and longitudinal

direction. This position is the steady state solution in case water tank spins

with a constant angular velocity.

Radial direction

To realize the step in radial direction, there is another initial gas-water phase required.

In this case the water is set to the bottom of the water tank, but the initial velocity

was defined as in previous case (Eq.: 4.3). To cancel out the sloshing in circumferential

direction there is no angular acceleration, so the angular travel is calculated by:

φ = ω0 · t, (4.4)

where ω0 is the initial angular velocity and t is time. With the first time step the water

experienced the step in acceleration caused by centrifugal forces as result of the spinning

and starts to reorient to the water tank outer wall. The Figure shows the initial gas-water

phase, which identifies sloshing in a radial direction.
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Figure 4.4: Initial gas-water phase supposed to identify sloshing in radial direction.

Longitudinal direction

Here, the rotating water tank with constant spin rate is translated in y-direction with a

constant acceleration. So the angular travel is calculated as in Eq.: 4.4 and the translation

position y as follows:

y = 0.5 · ay · t2, (4.5)

a is the acceleration in y-direction and t is time. The initial velocity in the y-direction is

set to zero. The initial gas-water phase is equal to the case of circumferential direction,

which is showed in Figure 4.3. The initial velocity was calculated as in Eq.: 4.3. Fallowing

Table 4.1 summarizes all numerical simulations with their important initial conditions,

which have to be implemented in OpenFOAM :
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Direction Acceleration Initial spin rate ω0 Baffles

Circumferential 3 deg

s2
0.5294 rad

s
no

Radial 0.0981 m
s2

0.5294 rad
s

no

C
as
e
1

Longitudinal 0.001/0.01 m
s2

0.5294 rad
s

no

C
as
e
2 Circumferential 3 deg

s2
0.5294 rad

s
yes

Radial 0.0981 m
s2

0.5294 rad
s

yes

Longitudinal 0.001 m
s2

0.5294 rad
s

yes

C
as
e
3 Circumferential 3 deg

s2
2.1177 rad

s
yes

Radial 1.5696 m
s2

2.1177 rad
s

yes

Longitudinal 0.001 m
s2

2.1177 rad
s

yes

C
as
e
4 Circumferential 3 deg

s2
3.2636 rad

s
yes

Radial 3.7278 m
s2

3.2636 rad
s

yes

Longitudinal 0.001 m
s2

3.2636 rad
s

yes

Table 4.1: Simulation cases with their initial states realized in OpenFOAM. The direction

in which sloshing can occur was the relevant parameter to classify the simula-

tions. Step of acceleration in each direction was applied to identify the liquid

sloshing behavior.

4.3. Pre-Processing and run controls

This section gives an overview about the relevant settings and assumptions made for the

pre-processor, including geometry simplification and mesh generation, but also boundary

conditions and physics selection. In addition, relevant parameters of solver settings and run

controls are discussed. The detailed information about transport properties, discretization

schemes and solution controls in OpenFOAM is attached to the document as Appendices

A, B and C

4.3.1. Geometry and Mesh generation

The mesh generation process was realized with a ANSYS software and then exported to

OpenFOAM. Before the mesh generation process was started, geometry was simplified to
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reduce the cell number and associated computational time. This process of simplification

affects also the grid quality. Nevertheless, all important physical properties of the geometry

have to be retained.

First, the geometry simplification and the mesh generation process of the water tank

without the baffles is described. In this case, the baffles and the other connection elements,

like screws, are canceled. The result is sector-annular cylindrical tank as a solid body. All

of the edges radii were removed. The simplified meshed geometry for the tank without

baffles is shown in Figure 4.5.

Figure 4.5: Simplified geometry of the tank, which is meshed by hexahedra cells resulting

in a structured mesh.

It is important to check the mesh quality before the simulation. There are three impor-

tant quality metrics:

• Non-Orthogonality measures the angle between the line connecting two cell centers

and the normal between their common face. This parameter has a value between 0

and 180, however 0 is the better value. [7]

• Skewness measures the distance between the intersection of the line connecting two
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cell centres with their common face and the centre of that face. Skewness has a value

between 0 and 1, a smaller value is better.[17]

• Aspect Ratio describes the stretching of the cell and is the ratio between the longest

and the shortest length. It has a value between 0 and 1, however 1 is the better

value.[17]

Bad mesh quality parameters can decrease the accuracy of the solution, make the solver

slow or stop the simulation. Good mesh quality is necessary to get accurate results.[18]

Due to simple geometry, in this case, it is possible to generate structured mesh, which

lead to a good quality mesh. The mesh metrics parameters are summarized in Table 4.2:

Mesh Metrics Max. Value Recomended value [18]

Non-Orthogonality 0.0523701 < 60

Skewness 0.0134738 < 0.9

Aspect Ratio 1.49973 < 40

Table 4.2: Mesh statistics of generated mesh for case without baffles compared with rec-

ommended values.

In the case of the implemented baffles inside, the tank geometry is more complex. First

the simplification of baffles was done, each baffle thickens was reduced to constant 3 mm.

The most important part ot the baffles are the openings, trough which water can move from

one sector to another. For this, three holes in the middle and quarter-holes on each edge

of the baffles are made. In the end, these baffles were subtracted in the defined orientation

from the simplified tank described before. The result was a solid body including all the

connections between each sector.
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Figure 4.6: Simplified tank geometry with implemented baffles, realized as connections

between each sector.

Due to the complex geometry in the case of the baffles, unstructured mesh is realized

out of tetrahedra cells, however the cell size was refined in the area of the holes and

connections between the sectors. The mesh metrics parameters are summarized in Table

4.3:

Mesh Metrics Max. Value Recommended value [18]

Non-Orthogonality 57.8207 < 60

Skewness 0.6895 < 0.9

Aspect Ratio 5.07 < 40

Table 4.3: Mesh statistics of a generated mesh for a case with baffles compared with rec-

ommended values.
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The mesh statistics are poorer compared to the case without baffles, however all of the

parameters are in the range of the recommended value. This mesh was chosen for all

simulation cases with baffles. It is important to note, that this mesh is not the ideal one,

yet the best compromise between the accuracy and computational time. To estimate the

order of discretization error the grid study in Section 4.4.2 is realized, where finer grids

are also compared. The simplified meshed geometry for the tank with baffles is shown in

Figure 4.7:

Figure 4.7: Simplified geometry of the tank with implemented baffles. The mesh is un-

structured out of the tetrahedra. The size of the grid was refined in the area

of the sector connections to improve the quality of the mesh.

4.3.2. Boundary Conditions

After the geometry and mesh generation process, boundary conditions have to be set. All

faces of the geometry are set to boundary condition of a type wall. This means a rigid

wall, which does not allow fluid flow trough these faces.

The hydrostatic pressure in the water tank is negotiable small, therefore the initial

hydrostatic pressure in the tank was set to 0 in all cases. The gas-liquid phase was

realized as an air-water phase, which is an assumption to the real boundary conditions

in the tank during the mission. In reality there is water, the mix of water vapour and
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nitrogen gas. This assumption is valid due to the fact that the density of the water is a

factor of 1000 higher than nitrogen or air. Only the water sloshing affects significant CoM

shift of the water tank.

The initial velocity of the water and gas were set dependent on the simulation case. In

case of a grid study, the velocity was set to 0 m
s
, however in other simulations it was set

to the velocity, which equals the initial spin rate.

Water and air are Newtonian fluids, so consequently the transport model was set to

Newtonian in a transport properties definition. As mentioned before the surface tension

forces are small compared to the centrifugal and inertia forces, so the surface tension of

each fluid was set to 0. Table 4.4 summarizes the transport properties of the simulations:

Phase Density
[

kg

m3

]

Viscosity
[

m2

s

]

Transport model Surface tension
[

kg

s2

]

Water 998.2 10−6 Newtonian 0

Air 1 1.48 · 10−5 Newtonian 0

Table 4.4: Transport properties of air and water phase. Only water motion results in

significant CoM shift, due to the higher density. Surface tension is neglected

for both, water and air.

The flow was assumed to be laminar, so no physical turbulence model was used. The

main point of the simulations was to realize a micro-gravity environment. Here, the

assumption was made, that there is no constant gravity vector, so in the simulations it

was set to 0 m
s2

in all directions.

4.3.3. Solver Settings and Run Controls

There are different terms, that appear in simulation run, like for example derivatives or

gradients, different numerical schemes have to be specified and chosen. The Table 4.5

summarizes the numerical schemes chosen for different terms:
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Term Numerical scheme

Time derivative Euler

Gradient Gauss linear

Convective Gauss vanLeerV/Gauss vanLeer/Gauss linear

Diffusive Gauss linear corrected / limited

Interpolation linear

Table 4.5: Numerical schemes chosen for different term in simulation run. High order

numerical schemes yield accurate solutions.

The choice of discretization schemes has direct effect on the final solution, but also on

the stability. The first order schemes are diffuse and yield smeared gradients, however

they are stable compared to the high order schemes. The mesh quality has direct effect on

which scheme has to be chosen, so with a good mesh quality directly high order schemes

yield accurate and stable solutions, which were realized in this simulation cases. Beside,

numerical schemes, the equation solvers, tolerances and algorithms have to be defined for

the simulation run. [18]

For the phase equation a PISO-algorithm is used, which includes sub-cycles around it,

the phase equation is solved 3 times in implemented simulations.[7]For each discretized

equation there is a possibility to define their own linear solver. In order to achieve an

accurate solution, it is important to set the solution tolerances to a small value. This is

the solver criteria, in order to stop solving the equation. The detailed parameter overview

implemented for this simulation is attached as Appendix B.
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4.4. Results discussion

In this section the simulation results are discussed. First, the results of the grid conver-

gence study are given in order to determine the discretization error caused by the grid

generation process. After that, the simulation results for the liquid sloshing identification

with a calculated transfer functions are presented.

4.4.1. Data Processing

In the OpenFOAM software, an implemented script writes the position of the CoM in x,y

and z coordinates. However, this includes the CoM of the moving tank and the fluid inside

of it. In order to obtain the CoM shift caused by the liquid motion, the tank motion needs

to be subtracted.

For the circumferential sloshing case, the CoM motion of the tank can be expressed in

x- and y- directions as follows:

x(t) = rsin(φt− φ0), (4.6)

y(t) = rcos(φt− φ0), (4.7)

φ = 0.5at2 + ω0t is the angular position of the tank and has a value from 0 to infinite, r

is the initial radius of the CoM and φ0 is the angle offset.

Due to the rotational movement of the tank, it is useful to transform both data from

Cartesian to Polar coordinates. After the transformation the data has the value between

+π and −π, including jumps after every turn of the tank. Next, the simulated CoM data

is subtracted from the calculated tank position. Due to the fact that both movements are

not exactly the same, there are still jumps in the graphs with an exact value of 2π. This

jumps were canceled by adding, respectively subtracting, the value of 2π at the jump. The

result is the relevant CoM shift, only caused by water motion. This is the angle variance

in radiant refer to the ideal movement of the tank.

In the radial direction the radius is calculated by:

r =
√
x2 + z2, (4.8)

where x and z are the CoM coordinates of the rotating tank. The simulation data has

the offset of ≈ 0.325 m due to the initial CoM radius. This offset was canceled later
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on for a transfer function determination. For the longitudinal direction there was no

data processing needed. Because of the time step adjustment loop implemented in the

numerical simulations, the data has noise, so the data was filtered. This was necessary to

realize the transfer function calculation.

The free surface movement of the air-water phase was analyzed in order to validate

physical integrity of the fluid flow. However, the free surface motion is similar for each

simulation case, only the grid convergence study results are presented, in form of figures.

4.4.2. Grid Convergence Study

A Grid convergence study is a method to determine the order of discretization errors in

a CFD simulations. The approach is to perform the same simulation cases on multiple

fine grids. With every finer grid the discretization errors asymptotically decrease to the

true solution, excluding round-off errors. The method, used here, is based on Richardson’s

extrapolation.[19]

Four grids, generated with ANSYS Software, were used. The Table 4.6 summarizes

the grids with their quality parameters. The overall quality of the elemnts, including the

parameters described before, were used here. The mesh quality has a value between 1 and

0, where 1 is the better value. The value of 0.4 is acceptable by regarding, that only few

elements have this value. Most of the elements have the value > 0.7.

❳
❳
❳
❳

❳
❳
❳
❳

❳
❳
❳
❳

❳
❳
❳
❳

❳❳

Parameter

Mesh Nr.
Mesh 1 Mesh 2 Mesh 3 Mesh 4

Number of Elements 36891 57875 77719 160229

Min. Quality 0.39 0.39 0.39 0.37

Table 4.6: Mesh statistics for different grids used for the grid convergence study. The

number of elements was increased by refining the mesh on the sector, but also

on the connections between them.

The case was defined similar to the simulation case in circumferential direction, the

starting air-water phase was set to be on the outer tank wall. The liquid start velocity
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was set to 0 m
s
, however the spin rate was set to constant 0.5294 rad

s
without acceleration

in any direction. The spinning was in a counterclockwise direction. The simulation time

was set to 100 s. Figure 4.8 shows the calculating air-water phase for the finest mesh at

different time points.

(a) Time 0 s (b) Time 0.5 s (c) Time 2.5 s

(d) Time 5 s (e) Time 10 s (f) Time 20 s

Figure 4.8: Example results of the grid convergence study. Calculated Water-air phase at

different time points for the finest grid. Blue is equal to the air phase, red to

the water phase.
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The initial state with the water phase at the outer tank wall is defined at time 0s. With

the next time step 0.5 s the water reorientation, due to the inertia forces caused by the

sudden spinning movement, is seen. At time 5 s, the water starts to reorient at the outer

tank wall, because of the centrifugal forces. At time 20 s there is an almost steady state

position of the water-air phase. These figures are helpful for a validation of the water

movement.

For the grid convergence study, the CoM variation in the circumferential direction was

observed, until the steady state was achieved. The last values of the state were chosen

as the final solution for each case, which also were used for the extrapolation described

below. Figure 4.9 shows the results of the grid convergence study including four meshes.

The steady state values of each mesh are used for the extrapolation, these are summa-

rized in Table 4.7:

Mesh Nr. Value [rad]

Mesh 1 -0.009865

Mesh 2 -0.007497

Mesh 3 -0.006683

Mesh 4 -0.006014

Table 4.7: Steady state solutions of each grid. With finer mesh the solution approximates

to the true solution.

The method of Richardson’s extrapolation is used to determine the order of discretiza-

tion errors caused by the grid. The Richardson’s extrapolation calculates the final true

solution and is defined as follows:
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Figure 4.9: Grid convergence study for the 4 different meshes. The CoM position over time,

subtracted from the tank movement, is shown. With higher grid refinement,

the steady state solution converge to the true solution and the discretization

error became smaller.

ftrue ≈ f2 +
(f1 − f2)r

p

rp − 1
, (4.9)

where f1 − f2 are the solutions of the grid, r is the refinement ratio and p is the order of

convergence. Since the refinement ratio is not constant, the effective grid refinement ratio

was used instead:

reffective =

(

N1

N2

)
1

D

, (4.10)

where N is the number of grid points and D = 3 is the dimension of the 3D-flow domain.

The order of gird convergence can be calculated from a steady state solutions of the

following three grids:

p =
ln

(

f3−f2
f2−f1

)

ln(r)
, (4.11)

where f1, f2, f3 are the values of the steady state solutions and reffective is the effective

refinement ratio. The Results of the extrapolation are shown in Figure 4.10, including the
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extrapolated true solution. For the simulations the mesh number 3 with 77719 cells was

used. The error compared to the true solution is 13.3 %. This is an acceptable compromise

between computational time and error in this stage of research. Nevertheless this error

has to be implemented into the AOCS simulation.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

× 10
-3

-10

-9

-8

-7

-6

Mesh2(57875 Cells)

Mesh1(36891 Cells)

Mesh4(160229 Cells)

Mesh3(77719 Cells)

True Solution

Figure 4.10: Richardson’s extrapolation including the steady state results of four different

meshes and extrapolated true solution.
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4.4.3. Simulation Results

Circumferential direction without baffles ω = 0.5294ω = 0.5294ω = 0.5294

As described in Section 4.4.1, the simulations data was post-processed. The results are

shown in Figure 4.11. The first graph shows the filtered CoM data in circumferential

direction as an angle variation from the initial tank movement, which is only caused by

the liquid sloshing. The tank motion starts with ω = 0.5294 rad
s

with a step in acceleration

of 3 deg

s2
, so the velocity starts to increase continuously. As expected the angle becomes

negative with an oscillation caused by the step in acceleration with the starting tank

motion. The amplitude becomes smaller until the steady state is reached. After t=80 s

the amplitude of the oscillation starts to rise again. This is caused by the numerical

problems, due to the fact, that the velocity has become too fast and at the same time

there is no big motion in the water-air phase. This phenomena was observed over all the

simulations. This effect increases with the higher starting rotation rate. More studies are

needed to get rid off this numerical problem, yet the results up to this point are valid.

The second graph is a zoom of the first graph and shows the comparison between un-

filtered (red) and filtered (green) data. As mentioned before this noise is caused by an

adjustable time step control loop, which is implemented in OpenFOAM.
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Figure 4.11: Sloshing in circumferential direction of the tank without baffles with the start-

ing spin rate of ω0 = 0.5294 rad
s

and step in the acceleration of 3 deg

s2
. The top

graph shows the filtered data over the time range of 100 s. The graph below

is a zoom in of the first graph starting at t = 95 s and shows the noise of the

unfiltered data (red) compared to the filtered (blue).
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Longitudinal direction without baffles ω = 0.5294ω = 0.5294ω = 0.5294

Figure 4.12 shows the case results in a longitudinal direction of the tank without the

implemented baffles. The CoM position in the y-direction in meter is plotted over the

time. The spin rate is constant at ω0 = 0.5294 rad
s
, the starting velocity of the fluid is also

adapted to the spin velocity. Parallel to this motion the tank is accelerated by ay = 0.01m
s2

along the y-axis.

With the starting acceleration in a positive direction the CoM starts moving in the

negative direction and starts to oscillate. The behavior of the sloshing corresponded to

the weakly damped system. After 40 s the oscillation is decayed. After ca. 45 s numerical

problems occur again, however there is no relevant physical meaning anymore.
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Figure 4.12: Sloshing in longitudinal direction of the tank without baffles with a constant

spin rate of ω0 = 0.5294 rad
s

and a step in the acceleration along y-axis of

0.01 m
s2
.
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Radial direction without baffles ω = 0.5294ω = 0.5294ω = 0.5294

Figure 4.12 shows the CoM variation in a radial direction. As expected, with a starting

rotation rate, the water is pressed against the outer wall. This leads to CoM oscillation

and shift in a positive radial direction. However, there is a CoM shift in longitudinal

direction along the y-axis. The CoM motion along y-axis is shown in Figure 4.13. In

this case, the acceleration of 0.0981 m
s2

is generated in one single time step. In reality, the

equivalent g-level is generated slowly.
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Figure 4.13: Sloshing in radial direction of the tank without baffles with constant spin rate

of ω0 = 0.5294 rad
s

and a step in the acceleration of 0.0981 m
s2
.
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Comparison between simulation results of the tank with and without

implemented baffles ω = 0.5294ω = 0.5294ω = 0.5294

In order to demonstrate the effect of the implemented baffles, a comparison between

simulation results of the tank with and without implemented baffles were made. All

boundary conditions, including the water-air phase definition, but also the tank motion

are equivalent. The only difference is the implemented baffles.

Figure 4.14 shows the results of two equivalent simulation cases for tank with (green)

and without (red) the implemented baffles. As expected, implemented baffles damp the

sloshing movement in a circumferential direction, therefore the amplitude is smaller, com-

pared to the tank without baffles. Even the time, in which the sloshing is decayed, is

reduced compared to the case without baffles. The sloshing behavior of the tank with

baffles correlates to the behavior of a damped system. This demonstrates the baffles effect

in order to reduce the sloshing in circumferential direction.
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Figure 4.14: Sloshing in circumferential direction at ω0 = 0.5294 rad
s

and step in the ac-

celeration of 3 deg

s2
. Comparison between tank without (red line) and with

(green line) implemented baffles.

The comparison of a simulation results in a radial direction between a tank with and

without baffles are shown in Figure 4.15, there a similar behavior expected, because there

are no baffles implemented in the radial direction. Yet, there are differences between these
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two cases: the sloshing in a radial direction with the implemented baffles has a smaller

amplitude. Also the oscillation is decayed after 10 s already. The reason of this behavior,

is the fact, that the baffles increase the area for the fluid shear stress. This leads to a

bigger damping of the liquid sloshing.
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Figure 4.15: Sloshing in radial direction, showing the comparison between the simulation

case with and without implemented baffles. There was a the similar behavior

expected due to the fact that baffles damp sloshing in a circumferential di-

rection. There is still a damping effect of the baffles in a radial direction, this

is caused by liquid separation into smaller parts (increasing the wall area).

Figure 4.16 shows the simulation results in a longitudinal direction of the tank with

and without implemented baffles. As expected, the CoM variation along y-axis is for

both tank configurations nearly the same, because no baffles are implemented in this

direction. The small variations in the amplitude are caused by the increased area of the

fluid shear stress in case of the implemented baffles. The CoM variation has the order of

10−4 m, which is very small and can be neglected. Therefore no bigger disturbances in the

orbit are expected. Summarizing the sloshing in longitudinal direction caused by external

acceleration can be neglected.
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Figure 4.16: Sloshing in longitudinal direction showing the comparison between the sim-

ulation case with and without implemented baffles. The acceleration along

y-axis has the value of 0.001 m
s2
.
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Simulation results for the tank with implemented baffles at different spin

rates

For the tank with implemented baffles the sloshing in circumferential, radial and longitu-

dinal direction at different spin rates was analyzed. The result is the CoM motion in each

relevant direction at different spin rates. With this data, transfer functions were gener-

ated. The transfer functions for spin rates between analyzed cases can be interpolated.

In order to realize comparable data, same cases were used, only the initial spin and liquid

velocity were changed respectively.
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Figure 4.17: Sloshing in circumferential direction of the tank with implemented baffles at

different spin rates with the step response in acceleration of 3deg

s2
. Numerical

instabilities occur at higher spin velocities, so for the simulation case at ω3

there is no valid data available after t > 6 s. However, similar behavior as

for other spin rates is assumed. With the higher initial spin rate the sloshing

amplitude became lower, due to the higher equivalent gravity level caused by

centrifugal forces.
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Figure 4.17 shows the simulations results in circumferential direction, the CoM angle

variation is caused by liquid sloshing. Due to the instabilities at higher spin rates, the

simulation case at the spin rate ω3 = 3.2636 has a valid data only until t < 6s. However, the

behavior is predicted to be the same as for other spin rates, but with a smaller amplitude

and faster steady state solution.

The amplitude of the sloshing decrease with an increasing spin rate. The time, in which

the maximal amplitude is reached decreases with the increasing spin rate. Higher spin

rates lead to higher equivalent g-level acting on the water. This leads to the sloshing

damping in a circumferential direction with an increased spin velocity.

The results of the sloshing in longitudinal direction are presented in Figure 4.18. As

expected, with the higher spin rate the sloshing amplitude became smaller. For the spin

rates ω2 and ω3 the sloshing can be completely neglected, because of the small amplitude.

For the spin rate ω1 there is a near linear CoM oscillation. However, the order of the am-

plitude has a range of 10−4, the spin rate sloshing in this direction, caused by acceleration

of ay = 0.001m
s2

can be neglected. In the orbit the order of the disturbances is smaller than

ay = 0.001m
s2
.
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Figure 4.18: Sloshing in a longitudinal direction of the tank with implemented baffles at

different spin rates with the step response in acceleration along y-axis of

ay = 0.001 m
s2
.
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Figure 4.19 shows the CoM variation in a radial direction, caused by an abrupt tank

acceleration to the initial spin rate. After this acceleration the spin rate of the tank

stays constant. This way, for different spin rates, different values of step sizes appear in

each case. The graph shows, that the amplitudes stay nearly the same at different spin

velocities. Only the time constant, the time after the steady state is reached, became

lower with a higher velocity. This behavior is caused by the rising equivalent gravity level

within higher spin rates.

In radial case also the CoM shift in a longitudinal direction along y-axis occur. These

results are shown in Figure 4.20. In this case linear sloshing occurs, so oscillation is

damped with time. With the higher spin rate the time constant became smaller, like in

CoM shift in radial direction. This simulation case in a radial direction can be used to

identify sloshing in both directions, radial and longitudinal. The advantage of this case,

compared to the case in pure longitudinal direction, is that the step in acceleration is large

enough to excite sufficient CoM motion along the y-axis.
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Figure 4.19: Sloshing in a radial direction of the tank with implemented baffles and step

response in acceleration. The amplitudes at different spin rates has near the

same value, yet the time in which steady state is reached, became smaller

with the higher spin rate.
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Figure 4.20: Additional CoM motion in a longitudinal direction by applying step response

in radial direction. The sloshing behavior correlates to the linear system.

With higher spin rates the time constant became smaller, so the oscillation

is decayed after a shorter time period.
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4.4.4. Transfer Function Determinations

In this section the simulation results with respective CoM motion are used to identify

liquid sloshing in relevant directions. Only the transfer functions for the tank with the

implemented baffles are generated, since this is the tank configuration implemented in the

satellite. As mentioned in Section 3.5 the MATLAB System Identification Toolbox was

used to generate transfer functions. For each simulation case and for each spin rate, an

own transfer function is generated. Afterwards, the relationship between transfer function

and the initial spin rate was analyzed, in order to generate transfer functions for spin rates

among the simulated data.

To generate transfer functions, the denominator and numerator number has to be cho-

sen. This is an iteration process: first the small number of coefficients is selected in order

to keep the model as simply as possible. If the solution is not acceptable the number of

coefficients increases until the results are adequate. There are two criteria used to rate the

transfer function: the estimated fit to OpenFOAM data and the transient step response.

Circumferential direction

In this case the number of poles and zeros was set to 6 for the first estimation, because the

tank is divided into 6 sectors trough the baffles. Figure 4.21 show the step response of the

estimated transfer function with 6 coefficients (Eq.: 4.12) compared with the OpenFOAM

data.

TFω1
(s) =

0.01335s6 − 0.1151s5 + 0.5635s4 − 1.943s3

s6 + 2.596s5 + 9.116s4 + 6.043s3
...

...
−0.5331s2 − 0.6785s− 0.0083118

+2.884s2 + 2.884s+ 0.03585

(4.12)
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Figure 4.21: Step response of the estimated transfer function compared to OpenFOAM

data for initial spin rate of ω1 = 0.5294 rad
s
.

The estimated transfer function has acceptable estimation, however the small oscillation

after the first amplitude is not simulated. To realize this oscillation, transfer function with

higher coefficient numbers is needed. After some iteration steps the optimal solution was

found by setting the number of the numerator coefficients to 9 and the number of the

denominator coefficients to 15. The following transfer function was estimated:

TFω1
(s) =

−10.29s9 − 29.06s8 − 135.9s7 − 207.7s6 − 571.7s5 − 434.4s4

s15 + 6.174s14 + 41.03s13 + 140.7s12 + 514.5s11 + 1147s10
...

...
−828.4s3 − 220.7s2 − 196.3s− 2.349

2807s9 + 4329s8 + 7267s7 + 7784s6 + 8301s5 + 5790s4
...

...
+2928s3 + 1010s2 + 175.1s+ 10.32

(4.13)

Further studies are needed to decide, which transfer function provides satisfactory results.

If there are no major differences affecting AOCS, it is useful to implement transfer functions

with a lower order of coefficients on order to reduce computational time.
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Figure 4.22: Step response of the estimated transfer function compared to OpenFOAM

data.

The main difference of the transfer functions, is the value of the first amplitude with the

following oscillation and transient response. For every simulation case the same step size

in acceleration is used. This leads to the conclusion, that there is no relevant oscillation

after the first peak, this happens because it is damped by the centrifugal forces. The

oscillation, which occurs at higher spin rates, is expected to be a numerical oscillation of

a non constant frequency. For this case, further numerical simulations with higher step

sizes in acceleration are needed in order to determine this oscillation.

On this stage it is valid to use transfer functions with lower numbers of coefficients,

which do not simulate the oscillations after the first peak in the amplitude. Figure 4.23

shows the comparison between the estimated transfer function and simulated OpenFOAM

data. The estimated transfer function with 6 coefficients is defined as follows:

TFω2
(s) =

−0.03148s6 − 0.1328s5 − 0.245s4

s6 + 3.985s5 + 11.15s4 + 11.65s3
...

...
−0.8667s2 − 0.4604s− 0.01384

+5.334s2 + 1.542s+ 0.07202

(4.14)
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Figure 4.23: Step response of the estimated transfer function compared to OpenFOAM

data at spin rate ω2. The transfer function has 6 coefficients.

The estimated function for spin rate ω3 is shown in Figure 4.24. In this figure, difficulties

appear by generating a transfer function, because the numerical simulation provides only

valid data until 5 s. Here, the same steady state solution as for other spin rates is expected,

following transfer function with 6 poles and zeros is generated:

TFω3
(s) =

−0.0001971s6 + 0.006711s5 − 0.131s4

s6 + 7.756s5 + 47.05s4 + 146.8s3
...

...
−16.01s2 + 3.378s− 80.62

+282.3s2 + 557s+ 329.7

(4.15)

In order to realize the interpolation between each parameter of the transfer functions

further numerical simulations are needed. Additional data will allow to generate transfer

functions with equal numbers of the coefficients, this way the interpolation will be possible.

Further studies are needed, in order to eliminate the solver stability problems at higher

spin velocities.
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Figure 4.24: Step response of the estimated transfer function compared to OpenFOAM

data at spin rate ω3.

Radial direction

To identify sloshing in a radial direction the transfer function with 3 coefficients is used.

As described in the Section before, the amplitude, the steady state solution and the range

of the CoM varies in a radial direction are the same for each spin rate. The only thing

changing with the increasing spin velocity, is the time constant, which become lower.

Next transfer functions for each spin are generated in order to identify liquid sloshing

behavior:

TFω1
(s) =

0.00054s3 − 0.005023s2 + 0.06326s+ 0.0737

s3 + 1.577s2 + 8.568s+ 3.566
(4.16)

TFω2
(s) =

0.0003167s3 − 0.01292s2 + 1.048s+ 4.521

s3 + 6.088s2 + 136.4s+ 219.7
(4.17)

TFω3
(s) =

0.0002122s3 − 0.01187s2 + 2.521s+ 16.55

s3 + 9.299s2 + 324.2s+ 807.2
(4.18)
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Figure 4.25: Step response in radial direction of the estimated transfer function compared

to OpenFOAM for different spin rates

In order to generate transfer function as th function of the spin velocity, interpolation

was used. For the numerator the fallowing exponential function was used:

f(ω) = ae−bω + c, (4.19)

where a, b and c are the parameters generated with th curve fitting tool, and ω is the spin

velocity. For the denominator the power function was used:

f(ω) = αωβ, (4.20)

where α, β are parameters of the function fitted to the simulated data and ω is the spin

velocity. Following transfer function depending on the spin velocity was generated. The

parameter are shown in the following Table 4.8.

TF (ω, s) =
(a1e

−b1ω)s3 + (a2e
−b2ω + c2)s

2 + (a3e
−b3ω)s+ a4e

−b4ω

α1s3 + (α2ωβ2)s2 + (α3ωβ3)s1 + α4ωβ4

(4.21)

Longitudinal direction

The sloshing oscillation caused by the step in acceleration of 0.001m
s2

along the y-axis is

too small to identify the transfer functions. However, the results of CoM motion along the
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Numerator Value Denominator Value

a1 0.0006387 α1 1

a2 0.01229 α2 2.927

a3 0.1504 α3 30.35

a4 0.3557 α4 22.99

b1 0.3122 β1 0

b2 0.4612 β2 0.9771

b3 -0.8666 β3 2.002

b4 -1.177 β4 3.008

c2 -0.01463

Table 4.8: Parameter of the transfer function depending on the spin velocity.

y-axis in a radial case provide noticeable oscillation in this direction, this data is therefore

used to generate transfer functions. The results are presented in Figure 4.26, where dashed

lines are estimated transfer functions. Following transfer functions are generated:

TFω1
(s) =

−0.02073s4 − 0.04774s3 − 0.07579s2 − 0.1208s+ 8.79 · 10−5

s4 + 1.465s3 + 5.855s2 + 4.261s+ 7.892
(4.22)

TFω2
(s) =

−0.0211s4 − 0.1769s3 − 1.166s2 − 7.292s− 0.04518

s4 + 5.372s3 + 93.1s2 + 259.7s+ 2033
(4.23)

TFω3
(s) =

−0.02142s4 − 0.2601s3 − 2.726s2 − 24.69s− 0.4392

s4 + 8.095s3 + 216.9s2 + 883s+ 11030
(4.24)

As described in previous case, the transfer function over the spin rate is generated. The

following function is used to fit the coefficients of the transfer function:

f(ω) = aωb + c, (4.25)

where a, b and c are the coefficients of the fitted curve and ω is the spin velocity. The

transfer function over the spin rate is defined as follows with the coefficient shown in

Table 4.9:

TF (ω, s) =
(a1ω

b1 + c1)s
4 + (a2ω

b2)s3 + (a3ω
b3)s2 + (a4ω

b4)s+ a5ω
b5

α1s4 + (α2ωβ2)s3 + (α3ωβ3)s2 + (α4ωβ4)s+ α5ωβ5

(4.26)
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Figure 4.26: Step response along y-axis of the estimated transfer function compared to

OpenFOAM data for different spin rates.

Numerator Value Denominator Value

a1 0.0002251 α1 1

a2 0.08797 α2 2.653

a3 -0.2671 α3 21.4

a4 -0.8782 α4 27.92

a5 -0.000875 α5 108.1

b1 1.106 β1 0

b2 0.9191 β2 0.9427

b3 1.964 β3 1.958

b4 2.82 β4 2.92

b5 5.257 β5 3.91

c1 -0.02059

Table 4.9: Parameter of the transfer function depending on the spin velocity.
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5. Conclusion

Liquid sloshing has an paramount influence on the dynamic stability of a spacecraft, as

in majority cases there is liquid, e.g. propellant on board. It is therefore very important

to identify liquid sloshing behavior and its effect on the spacecraft dynamics to guarantee

the stability of the whole dynamical system.

In this thesis, liquid sloshing behavior, related to the EU:CROPIS space mission re-

alized by German Aerospace Center (DLR) was analyzed, since there are two tanks on

board of the spacecraft with 1.5 l water respectively, which is used to grow plants under

different gravity levels. This is realized by spinning the spacecraft at different velocities.

Computational Fluid Dynamics (CFD) were used to simulate the liquid sloshing behavior

at different operational modes, spin rates were therefore varied, but also other relevant

boundary conditions were implemented in order to initiate space conditions.

The first part of this work provides theoretical knowledge of all relevant topics, like

liquid sloshing, system identification and CFD. The main part of the thesis investigates

CFD-Simulation implementation. This part includes the determination of the relevant

sloshing direction, which are circumferential, radial and longitudinal. Different simulation

cases were implemented depending on the sloshing direction. OpenFOAM software was

used to achieve the simulations. In this work a relevant description is given, on how the

simulations were implemented. All significant CFD processes, like geometry and mesh

generation, but also solver settings and run controls were described in this work.

The most important part of the thesis are the results discussion. Here, simulations

data was post-processed, in order to extract pure CoM motion of the liquid. Grid con-

vergence study was realized for the purpose of discretization error determination. The

post-processed CoM data for each simulation case at different spin rates was an input for

the transfer function determination processes. The results were transfer functions for each

relevant spin velocity in each sloshing direction. For the sloshing in radial and longitudi-

nal direction the transfer function was determined, depending on the spin rate, using the

interpolation between each parameter of the transfer function. Further studies are needed

to achieve the same interpolation for the circumferential direction.
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5. Conclusion

In this thesis, the expected damping effect of the baffles in the circumferential direc-

tion was proven. In addition, it was demonstrated, that baffles in other directions are

not necessary. Liquid sloshing is assumed to have a positive effect on the AOCS of the

Eu:CROPIS spacecraft.
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6. Outlook

6. Outlook

The output of this thesis are the transfer functions, which represents the sloshing behavior

of the water tank implemented in EU:CROPIS payload. In order to analyze the sloshing

effect in the spacecraft dynamics, the transfer functions have to be implemented into

EU:CROPIS AOCS simulation. In the first stage, it is sufficient to implement the transfer

functions into a nutation simulation, in order to demonstrate the damping effect of the

liquid sloshing relating to the nutation angle, since this is the most relevant case.

Numerical problems have been identified during the simulation implementation with

OpenFOAM. Further studies are needed to solve this issue. One option is to decrease

tolerance by solving the equations and to increase the number of iterations. Another

option is to test various solvers. After this problem is solved, the data over a large time

interval and higher spin rates can be generated. This will allow to achieve the transfer

function interpolation for all sloshing directions.

The implemented grid convergence study showed, that the discretization error has a

range of ≈ 15 %. This error has to be implemented in further simulations. Also, numerical

simulations with finer grids can be made to decrease this error.

To validate numerical simulation results experimental verification will be needed. To

generate comparable data new simulation cases will be necessary , due to the gravity

conditions on earth. At the, the experimental and numerical results have to be compared.
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A. ControlDict

A. ControlDict
/*--------------------------------*- C++ -*----------------------------------*\

| ========= | |

| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

| \\ / O peration | Version: 2.3.1 |

| \\ / A nd | Web: www.OpenFOAM.org |

| \\/ M anipulation | |

\*---------------------------------------------------------------------------*/

FoamFile

{

version 2.0;

format ascii;

class dictionary;

location "system";

object controlDict;

}

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

application interDyMFoam;

startFrom startTime;

startTime 0;

stopAt endTime;

endTime 100;

deltaT 1e-4;

writeControl adjustableRunTime;

writeInterval 0.5;

purgeWrite 0;

writeFormat ascii;

writePrecision 6;

writeCompression compressed;

timeFormat general;

timePrecision 6;

runTimeModifiable yes;

adjustTimeStep yes;

maxCo 0.25;

maxAlphaCo 0.25;

maxDeltaT 1;
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A. ControlDict

functions

{

forces

{

type forces;

functionObjectLibs ( "libforces.so" );

patches (walls);

rhoName rho;

rhoInf ;

UName U;

log on;

outputControl timeStep;

outputInterval 1;

CofR (0 0 0);

}

CoM

{

type CoM;

functionObjectLibs ("libCoM.so");

outputControl adjustableTime;

writeInterval 0.01;

outputInterval 1;

}

}

// ************************************************************************* //
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B. fvSchemes

B. fvSchemes
/*--------------------------------*- C++ -*----------------------------------*\
| ========= | |
| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
| \\ / O peration | Version: 2.3.1 |
| \\ / A nd | Web: www.OpenFOAM.org |
| \\/ M anipulation | |
\*---------------------------------------------------------------------------*/
FoamFile
{

version 2.0;
format ascii;
class dictionary;
location "system";
object fvSchemes;

}
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

ddtSchemes
{

default Euler;
}

gradSchemes
{

default Gauss linear;
}

divSchemes
{

div(rhoPhi,U) Gauss vanLeerV;
div(phi,alpha) Gauss vanLeer;
div(phirb,alpha) Gauss vanLeer;
div((muEff*dev(T(grad(U))))) Gauss linear;

}

laplacianSchemes
{

default Gauss linear corrected;
}

interpolationSchemes
{

default linear;
}

snGradSchemes
{

default corrected;
}

fluxRequired
{

default no;
p_rgh;
pcorr;

}

// ************************************************************************* //
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C. fvSolution

C. fvSolution
/*--------------------------------*- C++ -*----------------------------------*\

| ========= | |

| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

| \\ / O peration | Version: 2.3.1 |

| \\ / A nd | Web: www.OpenFOAM.org |

| \\/ M anipulation | |

\*---------------------------------------------------------------------------*/

FoamFile

{

version 2.0;

format ascii;

class dictionary;

location "system";

object fvSolution;

}

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

solvers

{

alpha.water

{

nAlphaCorr 1;

nAlphaSubCycles 3;

cAlpha 1.5;

}

pcorr

{

solver PCG;

preconditioner

{

preconditioner GAMG;

tolerance 2e-09;

relTol 0;

smoother DICGaussSeidel;

nPreSweeps 2;

nPostSweeps 2;

nFinestSweeps 2;

cacheAgglomeration true;

nCellsInCoarsestLevel 10;

agglomerator faceAreaPair;

mergeLevels 1;

}

tolerance 2e-09;

relTol 0;

maxIter 150;

minIter 50;

}

pcorrFinal

{

solver PCG;

preconditioner

{

preconditioner GAMG;

tolerance 2e-09;

relTol 0;

smoother DICGaussSeidel;

nPreSweeps 2;

nPostSweeps 2;

nFinestSweeps 2;

cacheAgglomeration true;
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C. fvSolution

nCellsInCoarsestLevel 10;
agglomerator faceAreaPair;
mergeLevels 1;

}

tolerance 2e-09;
relTol 0;
maxIter 150;
minIter 50;

}

p_rgh
{

solver PCG;
preconditioner
{

preconditioner GAMG;
tolerance 2e-09;
relTol 0;
nVcycles 2;
smoother DICGaussSeidel;

nPreSweeps 2;
nPostSweeps 2;
nFinestSweeps 2;
cacheAgglomeration true;
nCellsInCoarsestLevel 10;
agglomerator faceAreaPair;
mergeLevels 1;

}

tolerance 2e-09;
relTol 0;
maxIter 150;
minIter 50;

}

p_rghFinal
{

solver PCG;
preconditioner
{

preconditioner GAMG;
tolerance 2e-09;
relTol 0;
nVcycles 2;
smoother DICGaussSeidel;

nPreSweeps 2;
nPostSweeps 2;
nFinestSweeps 2;
cacheAgglomeration true;
nCellsInCoarsestLevel 10;
agglomerator faceAreaPair;
mergeLevels 1;

}

tolerance 2e-09;
relTol 0;
maxIter 150;
minIter 50;

}
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C. fvSolution

U

{

solver PBiCG;

preconditioner DILU;

tolerance 1e-09;

relTol 0;

minIter 100;

maxIter 200;

}

UFinal

{

solver PBiCG;

preconditioner DILU;

tolerance 1e-09;

relTol 0;

minIter 100;

maxIter 200;

}

}

PIMPLE

{

momentumPredictor yes;

nCorrectors 5;

nNonOrthogonalCorrectors 0;

correctPhi yes;

pRefCell 0;

pRefValue 1e5;

}

relaxationFactors

{

fields

{

}

equations

{

"U.*" 1;

}

}

// ************************************************************************* //
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